Enzymatic hydrolysis of food waste for bioethanol production
DOI:
https://doi.org/10.5327/Z2176-94781978Keywords:
bioenergy; biofuels; circular economy; food residues.Abstract
The concern for environmental sustainability and the rational use of natural resources drives the development of new technologies to better utilize energy sources, culminating in the use of waste for biofuel production. This approach is strategic, as the use of agro-industrial and food waste aligns with the concept of circular bioeconomy and food security, allowing for value addition to waste and reducing environmental liabilities. Bioethanol stands out as the most promising biofuel derived from food waste, considering its chemical composition rich in carbohydrates and fermentable sugars. The biotechnological conversion of biomass into bioethanol requires pretreatment steps to facilitate enzyme action during the hydrolysis process, a crucial stage for sugar release. However, it underscores the need to optimize enzymatic processes, especially regarding pH and temperature ranges for enzyme activity, to ensure efficiency in converting biomass into bioethanol. The aim is to understand the processes involved in the enzymatic hydrolysis of organic waste. The literature review included studies with recent advances on the enzymatic hydrolysis of food waste for the sustainable production of bioethanol, using the keywords “Biomass,” “Enzymatic hydrolysis,” “Bioethanol,” and “Food waste” or “Food residues”. The hydrolysis of food waste for bioethanol production highlights the necessity of selecting the most efficient and sustainable pretreatment techniques, aiming to minimize byproduct generation while fully utilizing the raw material. Additionally, the use of different classes of enzymes in consortium during the production processes is emphasized.
Downloads
References
Abdullah, B.; Muhammad, S.A.F.A.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A. N.; Aziz, M.M.A., 2019. Fourth generation biofuel: a review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, v. 107, 37-50. https://doi.org/10.1016/j.rser.2019.02.018
Álvarez, C.; Reyes‐Sosa, F.M.; Díez, B., 2016. Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology, v. 9, (2), 149-156. https://doi.org/10.1111/1751-7915.12346
Angelo, A.C.M.; Saraiva, A.B.; Clímaco, J.C.N.; Infante, C.E.; Valle, R., 2017. Life Cycle Assessment and Multi-criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, v. 143, 744-756. https://doi.org/10.1016/j.jclepro.2016.12.049
Anwar Saeed, M.; Ma, H.; Yue, S.; Wang, Q.; Tu, M., 2018. Concise review on ethanol production from food waste: development and sustainability. Environmental Science and Pollution Research, v. 25, (29), 28851-28863. https://doi.org/10.1007/s11356-018-2972-4
Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W., 2014. Wheat bran-based biorefinery 2: Valorization of products. LWT-Food Science and Technology, v. 56, (2), 222-231. https://doi.org/10.1016/j.lwt.2013.12.003
Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L., 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, v. 123, 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035
Arumugam, A.; Malolan, V.V.; Ponnusami, V., 2021. Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste and Biomass Valorization, v. 12, (2), 577-612. https://doi.org/10.1007/s12649-020-00983-w
Atitallah, I.B.; Antonopoulou, G.; Ntaikou, I.; Alexandropoulou, M.; Nasri, M.; Mechichi, T.; Lyberatos, G., 2019. On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresource Technology, v. 289, 121614. https://doi.org/10.1016/j.biortech.2019.121614
Ávila, P.F.; Forte, M.B.; Goldbeck, R., 2018. Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass and Bioenergy, v. 116, 180-188. https://doi.org/10.1016/j.biombioe.2018.06.015
Banu, J.R.; Merrylin, J.; Usman, T.M.M.; Kannah, R.Y.; Gunasekaran, M.; Kim, S.; Kumar, G., 2020. Impact of pretreatment on food waste for biohydrogen production: a review. International Journal of Hydrogen Energy, v. 45, (36), 18211-18225. https://doi.org/10.1016/j.ijhydene.2019.09.176
Batool, F.; Kurniawan, T. A.; Mohyuddin, A.; Othman, M. H. D.; Aziz, F.; Al-Hazmi, H.; Goh, H.H.; Anouzla, A., 2023. Environmental impacts of food waste management technologies: A critical review of life cycle assessment (LCA) studies. Trends in Food Science & Technology, 104287. https://doi.org/10.1016/j.tifs.2023.104287
Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S., 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, v. 36, 91-106. https://doi.org/10.1016/j.rser.2014.04.047
Behera, S.S.; Ray, R.C., 2016. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. International Journal of Biological Macromolecules, v. 86, 656-669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
Berlin, A.; Maximenko, V.; Bura, R.; Kang, K.; Gilkes, N.; Saddler, J., 2006. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, v. 93, (5), 880-886. https://doi.org/10.1002/bit.20783
Cai, C.; Zhang, C.; Li, N.; Liu, H.; Xie, J.; Lou, H.; Pan, X.; Zhu, J.Y.; Wang, F., 2023. Changing the role of lignin in enzymatic hydrolysis for a sustainable and efficient sugar platform. Renewable and Sustainable Energy Reviews, v. 183, 113445. https://doi.org/10.1016/j.rser.2023.113445
Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S., 2020. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresource Technology, v. 312, 123575. https://doi.org/10.1016/j.biortech.2020.123575
Calof, J.; Søilen, K. S.; Klavans, R.; Abdulkader, B.; El Moudni, I., 2022. Understanding the structure, characteristics, and future of collective intelligence using local and global bibliometric analyses. Technological Forecasting and Social Change, v. 178, 121561. https://doi.org/10.1016/j.techfore.2022.121561
Cekmecelioglu, D.; Uncu, O.N., 2013. Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Management, v. 33, (3), 735-739. https://doi.org/10.1016/j.wasman.2012.08.003
Chen, H.; Shen, H.; Su, H.; Chen, H.; Tan, F.; Lin, J., 2017. High-efficiency bioconversion of kitchen garbage to biobutanol using an enzymatic cocktail procedure. Bioresource Technology, v. 245, (Part A), 1110-1121. https://doi.org/10.1016/j.biortech.2017.09.056
Chen, J.; Wang, X.; Zhang, B.; Yang, Y.; Song, Y.; Zhang, F.; Liu, B.; Zhou, Y.; Yi, Y.; Shan, Y.; Lü, X., 2021. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. Science of the Total Environment, v. 770, 145321. https://doi.org/10.1016/j.scitotenv.2021.145321
Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J., 2015. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy, v. 140, 65-74. https://doi.org/10.1016/j.apenergy.2014.11.070
Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V., 2018. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, v. 248, 2-12. https://doi.org/10.1016/j.biortech.2017.07.176
Das, N.; Jena, P.K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G., 2021. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conversion and Biorefinery, 1-25. https://doi.org/10.1007/s13399-021-01294-3
Dawson, L.; Boopathy, R., 2007. Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology, v. 98, (9), 1695-1699. https://doi.org/10.1016/j.biortech.2006.07.029
De Castro, R.J.S.; Sato, H.H., 2015. Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, v. 74, 185-198. https://doi.org/10.1016/j.foodres.2015.05.013
Desai, R.P.; Dave, D.; Suthar, S.A.; Shah, S.; Ruparelia, N.; Kikani, B.A., 2021. Immobilization of α-Amylase on GO-Magnetite Nanoparticles for the Production of High Maltose Containing Syrup. International Journal of Biological Macromolecules, v. 169, 228-238. https://doi.org/10.1016/j.ijbiomac.2020.12.101
Dhiman, S.; Mukherjee, G., 2021. Present scenario and future scope of food waste to biofuel production. Journal of Food Process Engineering, v. 44, (2), e13594. https://doi.org/10.1111/jfpe.13594
Di Bitonto, L.; Antonopoulou, G.; Braguglia, C.; Campanale, C.; Gallipoli, A.; Lyberatos, G.; Ntaikou, I. ; Pastore, C., 2018. Lewis-Brønsted acid catalysed ethanolysis of the organic fraction of municipal solid waste for efficient production of biofuels. Bioresource Technology, v. 266, 297-305. https://doi.org/10.1016/j.biortech.2018.06.110
Du, J.; Liang, J.; Gao, X.; Liu, G.; Qu, Y., 2020. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresource Technology, v. 295, 122272. https://doi.org/10.1016/j.biortech.2019.122272
Esteban, J.; Ladero, M., 2018. Food waste as a source of value‐added chemicals and materials: a biorefinery perspective. International Journal of Food Science & Technology, v. 53, (5), 1095-1108. https://doi.org/10.1111/ijfs.13726
Gao, Y.; Remón, J.; Matharu, A. S., 2021. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review. Green Chemistry, v. 23, (10), 3502-3525. https://doi.org/10.1039/D1GC00623A
Hafid, H.S.; Shah, U.K.M.; Baharudin, A.S., 2015. Enhanced fermentable sugar production from kitchen waste using various pretreatments. Journal of Environmental Management, v. 156, 290-298. https://doi.org/10.1016/j.jenvman.2015.03.045
Hafid, H.S.; Nor'aini, A.R.; Mokhtar, M.N.; Talib, A.T.; Baharuddin, A.S.; Kalsom, M.S.U., 2017. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, v. 67, 95-105. https://doi.org/10.1016/j.wasman.2017.05.017
Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.A.; Wakisaka, M., 2021. Innovative conversion of food waste into biofuel in integrated waste management system. Critical Reviews in Environmental Science and Technology, 1-40. https://doi.org/10.1080/10643389.2021.1923976
Han, W.; Liu, Y.; Xu, X.; Huang, J.; He, H.; Chen, L.; Qiu, S.; Tang, J.; Hou, P. 2020. Bioethanol production from waste hamburger by enzymatic hydrolysis and fermentation. Journal of Cleaner Production, v. 264, 121658. https://doi.org/10.1016/j.jclepro.2020.121658
Hashem, M.; Asseri, T.Y.; Alamri, S.A.; Alrumman, S.A., 2019. Feasibility and sustainability of bioethanol production from starchy restaurants’ bio-wastes by new yeast strains. Waste and Biomass Valorization, v. 10, 1617-1626. https://doi.org/10.1007/s12649-017-0184-7
Hatakka, A.I., 1983. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. European Journal of Applied Microbiology and Biotechnology, v. 18, (6), 350-357. https://doi.org/10.1007/BF00504744
Ilić, N.; Davidović, S.; Milić, M.; Rajilić-Stojanović, M.; Pecarski, D.; Ivančić-Šantek, M.; Mihajlovski, K.; Dimitrijević-Branković, S., 2022. Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production. Biomass Conversion and Biorefinery, v. 13, 1-12. https://doi.org/10.1007/s13399-021-02145-x
Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C., 2021. Enhanced energy recovery from food waste by co-production of bioethanol and biomethane process. Fermentation, v. 7, (4), 265. https://doi.org/10.3390/fermentation7040265
Jørgensen, H.; Kristensen, J.B.; Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, v. 1, (2), 119-134. https://doi.org/10.1002/bbb.4
Karmee, S.K., 2016. Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, v. 53, 945-953. https://doi.org/10.1016/j.rser.2015.09.041
Karthikeyan, O.P.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.; Carrere, H., 2018. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource Technology, v. 249, 1025-1039. https://doi.org/10.1016/j.biortech.2017.09.105
Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y., 2014. Enzyme production from food wastes using a biorefinery concept. Waste and Biomass Valorization, v. 5, (6), 903-917. https://doi.org/10.1007/s12649-014-9311-x
Kordala, N.; Walter, M.; Brzozowski, B.; Lewandowska, M., 2024. 2G-biofuel ethanol: an overview of crucial operations, advances and limitations. Biomass Conversion and Biorefinery, v. 14, (3), 2983-3006. https://doi.org/10.1007/s13399-022-02861-y
Lahiri, A.; Daniel, S.; Kanthapazham, R.; Vanaraj, R.; Thambidurai, A.; Peter, L.S., 2023. A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, v. 10, 100266. https://doi.org/10.1016/j.hazadv.2023.100266
López-Abelairas, M.; Pallín, M.A.; Salvachúa, D.; Lú-Chau, T.; Martínez, M.J.; Lema, J.M., 2013. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering, v. 36, (9), 1251-1260. https://doi.org/10.1007/s00449-012-0869-z
Lubis, N.E.R.W.M.; Parashakti, R.D., 2019. Social entrepreneur in environmentally friendly unutilized land: a sustainable effort to develop village economy. Journal of Economics and Sustainable Development, v. 10, (8), 130-136. https://doi.org/10.7176/JESD/10-8-17
Lv, Y.; Zhang, Y.; Xu, Y., 2024. Understanding and technological approach of acid hydrolysis processing for lignocellulose biorefinery: Panorama and perspectives. Biomass and Bioenergy, v. 183, 107133. https://doi.org/10.1016/j.biombioe.2024.107133
Matsakas, L.; Kekos, D.; Loizidou, M.; Christakopoulos, P., 2014. Utilization of household food waste for the production of ethanol at high dry material content. Biotechnology for Biofuels, v. 7, (1), 4. https://doi.org/10.1186/1754-6834-7-4
Mezule, L.; Civzele, A., 2020. Bioprospecting white-rot basidiomycete Irpex lacteus for improved extraction of lignocellulose-degrading enzymes and their further application. Journal of Fungi, v. 6, (4), 256. https://doi.org/10.3390/jof6040256
Mussatto, S.I.; Dragone, G. Guimarães, P.M.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, v. 28, (6), 817-830. https://doi.org/10.1016/j.biotechadv.2010.07.001
Ntaikou, I.; Antonopoulou, G.; Lyberatos, G., 2020. Sustainable second-generation bioethanol production from enzymatically hydrolyzed domestic food waste using Pichia anomala as biocatalyst. Sustainability, v. 13, (1), 259. https://doi.org/10.3390/su13010259
Ntaikou, I.; Siankevich, S.; Lyberatos, G. 2021. Effect of thermo-chemical pretreatment on the saccharification and enzymatic digestibility of olive mill stones and their bioconversion towards alcohols. Environmental Science and Pollution Research, v. 28, 24570-24579. https://doi.org/10.1007/s11356-020-09625-z
Öner, M.; Nazan, M., 2018. Comparison of Acid and Alkaline Pretreatment Methods for the Bioethanol Production from Kitchen Waste. In: Nižetić, S., Papadopoulos, A. (Eds), The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham, pp. 363-372. https://doi.org/10.1007/978-3-319-89845-2_26
O’Driscoll, R.; Stettler, M.E.; Molden, N.; Oxley, T.; Apsimon, H.M., 2018. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Science of The Total Environment, v. 621, 282-290. https://doi.org/10.1016/j.scitotenv.2017.11.271
Ogeda, T.L, Petri, D.F.S., 2010. Biomass enzymatic hydrolysis. Química Nova, v. 33, (7), 1549-1558. https://doi.org/10.1590/S0100-40422010000700023
Osman, A.I.; Qasim, U.; Jamil, F.; Ala'a H. Al-Muhtaseb; Abu Jrai, A.; Al-Riyami, M.; Al-Maawali, S.; Al-Haj, L.; Al-Hinai, A.; Al-Abri, M.; Inayat, A.; Waris, A.; Farrell, C.; Maksoud, M.I.A.A.; Rooney, D.W., 2021. Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable Energy Reviews, v. 152, 111677. https://doi.org/10.1016/j.rser.2021.111677
Padhan, B.; Ray, M.; Patel, M.; Patel, R., 2023. Production and bioconversion efficiency of enzyme membrane bioreactors in the synthesis of valuable products. Membranes, v. 13, (7), 673. https://doi.org/10.3390/membranes13070673
Panahi, H.K.S.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M., 2022. Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science, v. 43, 71-81. https://doi.org/10.1016/j.cofs.2021.11.001
Patria, R.D.; Rehman, S.; Vuppaladadiyam, A.K.; Wang, H.; Lin, C.S.K.; Antunes, E.; Leu, S.Y., 2022. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics. Bioresource Technology, v. 352, 127083. https://doi.org/10.1016/j.biortech.2022.127083
Pesce, G.R.; Fernandes, M.C.; Mauromicale, G., 2020. Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass and Bioenergy, v. 134, 105471. https://doi.org/10.1016/j.biombioe.2020.105471
Potumarthi, R.; Baadhe, R.R.; Nayak, P.; Jetty, A., 2013. Simultaneous pretreatment and saccharification of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology, v. 128, 113-117. https://doi.org/10.1016/j.biortech.2012.10.030
Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D., 2020. Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation, v. 6, (2), 39. https://doi.org/10.3390/fermentation6020039
Qaseem, M. F.; Shaheen, H.; Wu, A.M., 2021. Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, v. 144, 110996. https://doi.org/10.1016/j.rser.2021.110996
Rehman, S.; Yang, Y.S.; Patria, R.D.; Zulfiqar, T.; Khanzada, N.K.; Khan, R.J.; Lin, C.S.K., Lee, D.J.; Leu, S.Y., 2023. Substrate-related factors and kinetic studies of Carbohydrate-Rich food wastes on enzymatic saccharification. Bioresource Technology, v. 390, 129858. https://doi.org/10.1016/j.biortech.2023.129858
Rezania, S.; Din, M.F.M.; Taib, S.M.; Mohamad, S.E.; Dahalan, F.A. Kamyab, H.; Darajeh, N.; Ebrahimi, S.S., 2018. Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste and Biomass Valorization, v. 9, 939-946. https://doi.org/10.1007/s12649-017-9883-3
Robak, K.; Balcerek, M., 2018. Review of second-generation bioethanol production from residual biomass. Food Technology and Biotechnology, v. 56, (2), 174. https://doi.org/10.17113/ftb.56.02.18.5428
Sadh, P.K.; Duhan, S.; Duhan, J.S., 2018. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, v. 5, (1), 1-15. https://doi.org/10.1186/s40643-017-0187-z
Said, Z.; Sharma, P.; Nhuong, Q.T.B.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T., 2023. Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, v. 377, 128952. https://doi.org/10.1016/j.biortech.2023.128952
Sagar, N.A.; Pathak, M.; Sati, H.; Agarwal, S.; Pareek, S., 2024. Advances in pretreatment methods for the upcycling of food waste: A sustainable approach. Trends in Food Science & Technology, 104413. https://doi.org/10.1016/j.tifs.2024.104413
Saha, B.C.; Qureshi, N.; Kennedy, G.J.; Cotta, M.A., 2016. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration & Biodegradation, v. 109, 29-35. https://doi.org/10.1016/j.ibiod.2015.12.020
Salimi, E.; Saragas, K.; Taheri, M.E.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou ,M., 2019. The role of enzyme loading on starch and cellulose hydrolysis of food waste. Waste and Biomass Valorization, v. 10, (12), 3753-3762. https://doi.org/10.1007/s12649-019-00826-3
Salvachúa, D.; Prieto, A.; López-Abelairas, M.; Lu-Chau, T.; Martínez, Á.T.; Martínez, M.J., 2011. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, v. 102, (16), 7500-7506. https://doi.org/10.1016/j.biortech.2011.05.027
Sarkar, N.; Gosh, S.K.; Banerjee, S.; Aikat, K., 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy, v. 37, (1), 19-27. https://doi.org/10.1016/j.renene.2011.06.045
Savatović, S.M.; Tepić, A.N.; Šumić, Z.M.; Nikolić, M.S., 2009. Antioxidant activity of polyphenol-enriched apple juice. Acta Periodica Technologica, v. 40, 95-102. https://doi.org/10.2298/APT0940095S
Sharma, K.; Karki, S.; Thakur, N.; Attri, S., 2012. Chemical composition, functional properties and processing of carrot- A review. Journal Food Science Technology, v. 49, 22-32. https://doi.org/10.1007/s13197-011-0310-7
Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A., 2023. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts, v. 16, (1), 44. https://doi.org/10.1186/s13068-023-02295-2
Sondhi, S.; Kaur, P.S., 2020. Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Applied Sciences, v. 2, (9), 1-13. https://doi.org/10.1007/s42452-020-03362-1
Sun, Y., 2024. Technology research and development prospects of biofuels. Journal of Education and Educational Research, v. 7, (1), 11-15. https://doi.org/10.54097/ks2m1h72
Sun, C.; Meng, X.; Sun, F.; Zhang, J.; Tu, M.; Chang, J.S.; Reungsang, A.; Xia, A.; Ragauskas, A.J., 2023. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: a review. Biotechnology Advances, v. 62, 108059. https://doi.org/10.1016/j.biotechadv.2022.108059
Tabatabaei, M.; Aghbashlo M.; Valijanian, E.; Kazemi, H.; Panahi, S.; Nazimi, A.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K., 2020 A comprehensive review on recent biological innovations to improve biogas production, part 2: mainstream and downstream strategies. Renewable Energy, v. 146, 1392-1407. https://doi.org/10.1016/j.renene.2019.07.047
Taheri, M.E.; Salimi, E.; Saragas, K.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M., 2021. Effect of pretreatment techniques on enzymatic hydrolysis of food waste. Biomass Conversion and Biorefinery, v. 11, (2), 219-226. https://doi.org/10.1007/s13399-020-00729-7
Torres-León, C.; Chávez-González, M.L.; Hernández-Almanza, A.; Martínez-Medina, G.A.; Ramírez-Guzmán, N.; Londoño-Hernández, L.; Aguilar, C.N., 2021. Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Current Opinion in Food Science, v. 38, 40-45. https://doi.org/10.1016/j.cofs.2020.11.002
Ulbrich, M.; Bai, Y.; Flöter, E., 2020. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydrate Polymers, v. 230, 115633. https://doi.org/10.1016/j.carbpol.2019.115633
Uncu, O.N.; Cekmecelioglu, D., 2011. Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Management, v. 31, (4), 636-643. https://doi.org/10.1016/j.wasman.2010.12.007
United States Department of Agriculture (USDA), 2022. National Nutrition Database – HERBAZEST (Accessed in October 04, 2022) at: https://www.herbazest.com/herbs/lettuce
Xin, D.; Yang, M.; Chen, X.; Zhang, Y.; Wang, R.; Wen, P.; Zhang, J., 2020. Improving cellulase recycling efficiency by decreasing the inhibitory effect of unhydrolyzed solid on recycled corn stover saccharification. Renewable energy, v. 145, 215-221. https://doi.org/10.1016/j.renene.2019.06.029
Xue, S.; Zhao, N.; Song, J.; Wang, X., 2019. Interactive effects of chemical composition of food waste during anaerobic co-digestion under thermophilic temperature. Sustainability, v. 11, (10), 2933. https://doi.org/10.3390/su11102933
Yan, X.; Bergstrom, D.J.; Chen, X.B., 2012. Modeling of cell cultures in perfusion bioreactors. IEEE transactions on biomedical engineering, v. 59, (9), 2568-2575. https://doi.org/10.1109/TBME.2012.2206077
Yang, X.; Chen, Y.; Yao, S.; Qian, J.; Guo, H.; Cai, X., 2019. Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers, v. 218, 324-332. https://doi.org/10.1016/j.carbpol.2019.05.012
Yin, Y.; Liu, Y.; Meng, S.; Kiran, E.U.; Liu, Y., 2016. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Applied Energy, v. 179, 1131-1137. https://doi.org/10.1016/j.apenergy.2016.07.083
Yu, Z.; Jameel, H.; Chang, H. M.; Philips, R.; Park, S., 2013. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose. Bioresource Technology, v. 147, 369-377. https://doi.org/10.1016/j.biortech.2013.08.010
Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N., 2019. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, v. 105, 105-128. https://doi.org/10.1016/j.rser.2019.01.048
Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R., 2023. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chemical Reviews, v. 123, (11), 7193-7294. https://doi.org/10.1021/acs.chemrev.2c00673
Zhang, C.; Kang, X.; Wang, F.; Tian, Y.; Liu, T.; Su, Y.; Quian, T.; Zhang, Y., 2020. Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy, v. 208, 118379. https://doi.org/10.1016/j.energy.2020.118379
Zhang, H.; Han, L.; Dong, H., 2021. An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: experimental and modelling studies. Renewable and Sustainable Energy Reviews, v. 140, 110758. https://doi.org/10.1016/j.rser.2021.110758
Zhang, Z.; Liu, B.; Zhao, Z. K., 2012. Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polymer Degradation and Stability, v. 97, (4), 573-577. https://doi.org/10.1016/j.polymdegradstab.2012.01.010
Zhou, H.; Zhao, Q.; Jiang, J.; Wang, Z.; Li, L.; Gao, Q.; Wang, K., 2023. Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure. Bioresource Technology, v. 379, 128989. https://doi.org/10.1016/j.biortech.2023.128989
Zou, L.; Wan, Y.; Zhang, S.; Luo, J.; Li, Y.Y.; Liu, J., 2020. Valorization of food waste to multiple bio-energies based on enzymatic pretreatment: A critical review and blueprint for the future. Journal of Cleaner Production, v. 277, 124091. https://doi.org/10.1016/j.jclepro.2020.124091
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.