Recent advances in xylitol production in biorefineries from lignocellulosic biomass: a review study
DOI:
https://doi.org/10.5327/Z2176-94781814Keywords:
waste; lignocellulose; biotechnological route; xylose.Abstract
The progression of sustainable practices in biorefineries is pivotal in mitigating carbon emissions and optimizing the utilization of natural resources, thereby preserving the environment. Biorefineries, which convert lignocellulosic biomass into a variety of products, distinguish themselves by efficiently transforming waste into high-value products. Xylitol stands out among biorefinery products. Derived from the conversion of xylose present in lignocellulose, it not only offers health benefits but is also considered an intermediate molecule in the production of valuable chemical products. Microbiological methods for xylitol production are increasingly acknowledged as efficient and environmentally friendly alternatives. These are some of the main factors discussed in this review, which aims to demonstrate the biotechnological route for producing xylitol through lignocellulosic materials. Several studies were observed to characterize various lignocellulosic residues, and it was noted that Eucalyptus globulusand banana leaves exhibit high levels of xylose. By analyzing the most recent researches related to xylitol production, the possibility of co-production of bioethanol using the same biotechnological route of xylitol production was identified. For instance, studies have shown that a combination of bagasse and sugarcane straw, as well as rice straw residue, are capable of producing substantial levels of xylitol and ethanol. The yields reached 30.61 g/L of xylitol and 47.97 g/L of ethanol, and 34.21 g/L of xylitol and 2.12 g/L of ethanol, respectively. These innovations not only promote sustainability but also have the potential to generate positive impacts on the global economy.
Downloads
References
Ahmed, S.F.; Mofijur, M.; Chowdhury, S.N.; Nahrin, M.; Rafa, N.; Chowdhury, A.T.; Nuzhat, S.; Ong, H.C., 2022. Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel, v. 318, 123618. https://doi.org/10.1016/j.fuel.2022.123618
Araújo, D.; Costa, T.; Freitas, F., 2021. Biovalorization of lignocellulosic materials for xylitol production by the yeast Komagataella pastoris. Applied Sciences, v. 11, (12), 5516. https://doi.org/10.3390/app11125516
Arcaño, Y.D.; García, O.D.V.; Mandelli, D.; Carvalho, W.A.; Pontes, L.A.M., 2020. Xylitol: A review on the progress and challenges of its production by chemical Route. Catalysis Today, v. 344, 2-14. https://doi.org/10.1016/j.cattod.2018.07.060
Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; Chuetor, S.; Dharmaraj, S.; Kumar, G.; Chen, W.-H.; Ngamcharussrivichai, C., 2022. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts — a critical review. Bioresource Technology, v. 344, 126195. https://doi.org/10.1016/j.biortech.2021.126195
Asim, A.M.; Uroos, M.; Naz, S.; Sultan, M.; Griffin, G.; Muhammad, N.; Khan, A.S., 2019. Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass. Journal of Molecular Liquids, v. 287, 110943. https://doi.org/10.1016/j.molliq.2019.110943
Benahmed, A.G.; Gasmi, A.; Arshad, M.; Shanaida, M.; Lysiuk, R.; Peana, M.; Pshyk-Titko, I.; Adamiv, S.; Shanaida, Y.; Bjørklund, G., 2020. Health benefits of xylitol. Applied Microbiology and Biotechnology, v. 104, 7225-7237. https://doi.org/10.1007/s00253-020-10708-7
Bhavana, B.K.; Mudliar, S.N.; Debnath, S., 2023. Life cycle assessment of fermentative xylitol production from wheat bran: A comparative evaluation of sulphuric acid and chemical-free wet air oxidation-based pretreatment. Journal of Cleaner Production, v. 423, 138666. https://doi.org/10.1016/j.jclepro.2023.138666
Bhowmick, G.D.; Sarmah, A.K.; Sen, R., 2018. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, v. 247, 1144-1154. https://doi.org/10.1016/j.biortech.2017.09.163
Bonfiglio, F.; Cagno, M.; Yamakawa, C.K.; Mussatto, S.I., 2021. Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Industrial Crops & Products, v. 170, 113800. https://doi.org/10.1016/j.indcrop.2021.113800
Brito Junior, C.C.S.; M.R.; Barbosa, L.N.; Jaconi, A.; Rambo, M.K.D.; Rambo, M.C.D., 2020. Environmental-economic assessment of lignocellulosic residual from the Legal Amazon for conversion in biochars and bioproducts for biorefineries. International Journal of Advanced Engineering Research and Science, v. 7, (8). https://dx.doi.org/10.22161/ijaers.78.36
Chen, Z.; Che, L.; Khoo, K.S.; Gupta, V.K.; Sharma, M.; Show, P.L.; Yap, P.-S., 2023. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnology Advances, v. 69, 108265. https://doi.org/10.1016/j.biotechadv.2023.108265
Dharmaraja, J.; Shobana, S.; Arvindnarayan, S.; Francis, R.R.; Jeyakumar, R.B.; Saratale, R.G.; Ashokkumar, V.; Bhatia, S.K.; Kumar, V.; Kumar, G., 2023. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource Technology, v. 369, 128328. https://doi.org/10.1016/j.biortech.2022.128328
Gallon, R.; Draszewski, C.P.; Santos, J.A.A.; Wagner, R.; Brondani, M.; Zabot, G.L.; Tres, M.V.; Hoffmann, R.; Castilhos, F.; Abaide, E.R.; Mayer, F.D., 2023. Obtaining oil, fermentable sugars, and platform chemicals from Butia odorata seed using supercritical fluid extraction and subcritical water hydrolysis. The Journal of Supercritical Fluids, v. 203, 106062. https://doi.org/10.1016/j.supflu.2023.106062
Goli, J.K.; Hameeda, B., 2023. Production of xylitol and ethanol from acid and enzymatic hydrolysates of Typha latifolia by Candida tropicalis JFH5 and Saccharomyces cerevisiae VS3. Biomass Conversion and Biorefinery, v. 13, (11), 9741-9751. https://doi.org/10.1007/s13399-021-01868-1
Guo, H.; Zhao, Y.; Chang, J.; Lee, D., 2022. Inhibitor formation and detoxification during lignocellulose biorefinery: a review. Bioresource Technology, v. 361, 127666. https://doi.org/10.1016/j.biortech.2022.127666
Hernández-Pérez, A.F.; Arruda, P.V.; Sene, L.; Silva, S.S.; Chandel, A.K.; Felipe, M.G.A., 2019. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, v. 39, (7), 924-943. https://doi.org/10.1080/07388551.2019.1640658
Hoang, A.T.; Nizetic, S.; Ong, H.C.; Chong, C.T.; Atabani, A.; Pham, V.V., 2021. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management, v. 296, 113194. https://doi.org/10.1016/j.jenvman.2021.113194
Igreja, W.S.; da Silva Martins, L.H.; de Almeida, R.R.; de Oliveira, J.A.R.; Lopes, A.S.; Chisté, R.C., 2023. Açai seeds (Euterpe oleracea Mart) are agroindustrial waste with high potential to produce low-cost substrates after acid hydrolysis. Molecules, v. 28. https://doi.org/10.3390/molecules28186661
Irmak, S.; Canisag, H.; Vokoun, C.; Meryemoglu, B., 2017. Xylitol production from lignocellulosics: are corn biomass residues good candidates? Biocatalysis and Agricultural Biotechnology, v. 11, 220-223. https://doi.org/10.1016/j.bcab.2017.07.010
Kaur, S.; Guleria, P.; Sidana, A.; Yadav, S.K., 2022. Efficient process for xylitol production from nitric acid pretreated rice straw derived pentosans by Candida tropicalis GS18. Biomass and Bioenergy, v. 166, 106618. https://doi.org/10.1016/j.biombioe.2022.106618
Klasson, K.T.; Uchimiya, M.; Lima, I.M.; Boihem JR., L.L., 2011. Feasibility of removing furfurals from sugar solutions using activated biochars made from agricultural residues. BioResources, v. 6, (3), 3242-3251. https://doi.org/10.15376/biores.6.3.3242-3251
Leonel, L.V.; Sene, L.; Cunha, M.A.A.; Dalanhol, K.C.F.; Felipe, M.G.A., 2020. Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess and Biosystems Engineering, v. 43, 2153-2163. https://doi.org/10.1007/s00449-020-02401-w
Li, J.; Yang, Y.; Zhang, D., 2019. DFT study of fructose dehydration to 5-hydroxymethylfurfural catalyzed by imidazolium-based ionic liquid. Chemical Physics Letters, v. 723, 175-181. https://doi.org/10.1016/j.cplett.2019.03.047
Li, Y.; Shao, J.; Wang, X.; Deng, Y.; Yang, H.; Chen, H., 2014. Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy Fuels, v. 28, 5119-5127. https://doi.org/10.1021/ef500725c
López-Linares, J.C.; Ruiz, E.; Romero, I.; Castro, E.; Manzanares, P., 2020. Xylitol Production from Exhausted Olive Pomace by Candida boidinii. Applied Sciences, v. 10, (19), 6966. https://doi.org/10.3390/app10196966
Malayil, S.; Surendran, A.N.; Kate, K.; Satyavolu, J., 2022. Impact of acid hydrolysis on composition, morphology and xylose recovery from almond biomass (skin and shell). Bioresource Technology Reports, v. 19, 101150. https://doi.org/10.1016/j.biteb.2022.101150
Marasca, N.; Brito, M.R.; Rambo, M.C.D.; Pedrazzi, C.; Scapin, E.; Rambo, M.K.D., 2022. Analysis of the potential of cupuaçu husks (Theobroma grandiflorum) as raw material for the synthesis of bioproducts and energy generation. Food Science and Technology, v. 42, e48421. https://doi.org/10.1590/fst.48421
Mohamad, N.L.; Kamal, M.; Mokhtar, M.N., 2015. Xylitol Biological Production: A Review of Recent Studies. Food Reviews International, v. 31, (1), 4-89. https://doi.org/10.1080/87559129.2014.961077
Mohanasundaram, Y.; Nambissan, V.D.; Gummadi, S.N., 2023. Optimization of sequential alkali/acid pretreatment of corn cob for xylitol production by Debaryomyces nepalensis. Biomass Conversion and Biorefinery, 1-18. https://doi.org/10.1007/s13399-022-03660-1
Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J., 2021. Recent advances in the valorization of plant biomass. Biotechnology for Biofuels, v. 14, (102). https://doi.org/10.1186/s13068-021-01949-3
Onumaegbu, C.; Mooney, J.; Alaswad, A.; Olabi, A.G., 2018. Pre-treatment methods for production of biofuel from microalgae biomass. Renewable and Sustainable Energy Reviews, v. 93, 16-26. https://doi.org/10.1016/j.rser.2018.04.015
Patel, A.; Shah, A.R., 2021. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. Journal of Bioresources and Bioproducts, v. 6, (2), 108-128. https://doi.org/10.1016/j.jobab.2021.02.001
Peterson, M.E., 2013. Xylitol. Topics in Companion Animal Medicine, v. 28, (1), 18-20. https://doi.org/10.1053/j.tcam.2013.03.008
Qi, C.; Wang, R.; Jia, S.; Chen, J.; Li, Y.; Zhang, J.; Li, G.; Luo, W., 2021. Biochar amendment to advance contaminant removal in anaerobic digestion of organic solid wastes: a review. Bioresource Technology, v. 341, 125827. https://doi.org/10.1016/j.biortech.2021.125827
Queiroz, S.S.; Jofre, F.M.; Mussatto, S.I.; Felipe, M.G.A., 2022. Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, v. 154, 111789. https://doi.org/10.1016/j.rser.2021.111789
Queiroz, S.S.; Jofre, F.M.; Santos, H.A.; Hernández-Pérez, A.F.; Felipe, M.G.A., 2023. Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Conversion and Biorefinery, v. 13, 3143-3152. https://doi.org/10.1007/s13399-021-01493-y
Rafiqul, I.S.M.; Mimi Sakinah, A.M., 2013. Processes for the production of xylitol — a review. Food Reviews International, v. 29, (2), 127-156. https://doi.org/10.1080/87559129.2012.714434
Rao, L.V.; Goli, J.K.; Gentela, J.; Koti, S., 2016. Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technology, v. 213, 299-310. https://doi.org/10.1016/j.biortech.2016.04.092
Santos, J.R.; Viana, G.C.C.; Barbosa, R.S.; Borges, M.S.; Rambo, M.K.D.; Bertuol, D.A.; Scapin, E., 2023. Effect of different pretreatments of Passiflora edulis peel biomass on the conversion process into bioproducts for biorefineries. Sustainable Chemistry for the Environment, v. 2, 100013. https://doi.org/10.1016/j.scenv.2023.100013
Saravanan, P.; Ramesh, S.; Jaya, N.; Jabasingh, S.A., 2023. Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Conversion and Biorefinery, v. 13, 2813-2831. https://doi.org/10.1007/s13399-020-01221-y
Shankar, K.; Kulkarni, N.S.; Sajjanshetty, R.; Jayalakshmi, S.K.; Sreeramulu, K., 2020. Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Industrial Crops & Products, v. 155, 112809. https://doi.org/10.1016/j.indcrop.2020.112809
Soares, J.F.; Confortin, T.C.; Todero, I.; Luft, L.; Ugalde, G.A.; Tovar, L.P.; Mayer, F.D.; Mazutti, M.A., 2022. Estimation of bioethanol, biohydrogen, and chemicals production from biomass wastes in Brazil. Clean – Soil, Air, Water, v. 50, 2200155. https://doi.org/10.1002/clen.202200155
Song, Y.; Lee, Y.G.; Cho, E.J.; Bae, H.-J., 2020. Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel, v. 278, 118247. https://doi.org/10.1016/j.fuel.2020.118247
Suhartini, S.; Rohma, N.A.; Mardawati, E.; Kasbawati; Hidayat, N.; Melville, L., 2022. Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: a review. Renewable and Sustainable Energy Reviews, v. 154, 111817. https://doi.org/10.1016/j.rser.2021.111817
Umai, D.; Kayalvizhi, R.; Kumar, V.; Jacob, S., 2022. Xylitol: bioproduction and applications — a review. Frontiers in Sustainability, v. 3, 826190. https://doi.org/10.3389/frsus.2022.826190
Ur-Rehman, S.; Mushtaq, Z.; Zahoor, T.; Jamil, A.; Murtaza, M.A., 2015. Xylitol: A Review on bioproduction, application, health benefits, and related safety issues. Critical Reviews in Food Science and Nutrition, v. 55, (11), 1514-1528. https://doi.org/10.1080/10408398.2012.702288
Usmani, Z.; Sharma, M.; Awasthi, A.K.; Lukk, T.; Tuohy, M.G.; Gong, L.; Nguyen-Tri, P.; Goddard, A.D.; Bill, R.M.; Nayak, S.C.; Gupta, V.K., 2021. Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renewable and Sustainable Energy Reviews, v. 148, 111258. https://doi.org/10.1016/j.rser.2021.111258
Vardhan, D.; Sasamal, S.; Mohanty, K., 2022. Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochemistry, v. 122, 146-159. https://doi.org/10.1016/j.procbio.2022.10.005
Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M., 2022. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresource Technology, v. 343, 126151. https://doi.org/10.1016/j.biortech.2021.126151
Verified Market Research (VMR), 2023. Market research report, Global Xylitol Market (Accessed October 23, 2023) at:. https://www.verifiedmarketresearch.com/product/xylitol-market/
Xu, Linlin; Liu, L.; Li, S.; Zheng, W.; Cui, Y.; Liu, R.; Sun, W., 2019. Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate. Sugar Tech, v. 21, (2), 341-347. https://doi.org/10.1007/s12355-018-0650-y
Xu, Yirong; Chi, P.; Bilal, M.; Cheng, H., 2019. Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, v. 103, 5143-5160. https://doi.org/10.1007/s00253-019-09881-1
Zhou, Z.; Liu, D.; Zhao, X., 2021. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, v. 146, 111169. https://doi.org/10.1016/j.rser.2021.111169
Zhou, C.; Wang, Y., 2020. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. Science and Technology of Advanced Materials, v. 21, (1), 787-804. https://doi.org/10.1080/14686996.2020.1848213
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.