Transforming orange waste with yeasts: bioprocess prospects

Authors

DOI:

https://doi.org/10.5327/Z2176-94781859

Keywords:

biomass; pectin; sugar; fermentation; bioproducts

Abstract

It is mandatory to make the circular economy a reality, developing ways of transforming waste into valuable products. In this context, investigating the biotechnological potential of different residues is most welcome. This review analyzes how orange waste can be used as biorefinery feedstock to produce different bioproducts using yeasts as the major biocatalysts. In addition to the current orange market, its pectin-rich biomass is described in detail, aiming to elucidate how yeast cells can convert it into ethanol, xylitol, polyphenols, and organic acids (some of them, volatile compounds). Genetic, metabolic, and evolutionary engineering are also analyzed as biotechnological tools to improve the existing processes. Finally, this review also addresses the potential employment of fruit-dwelling yeasts in biorefining pectin-rich biomasses such as orange wastes. All the data presented herein lead to the conclusion that these residues could already be used for noble purposes.

Downloads

Download data is not yet available.

References

Albarello, M.L.R.; Giehl, A.; Tadioto, V.; dos Santos, A.A.; Milani, L.M.; Bristot, J.C.S.; Tramontin, M.A.; Treichel, H.; Bernardi, O.; Stambuk, B.U.; Alves Júnior, S.L., 2023. Analysis of the holocellulolytic and fermentative potentials of yeasts isolated from the gut of Spodoptera frugiperda larvae. Bioenergy Research, 1-12. https://doi.org/10.1007/s12155-023-10616-4

Alves Júnior, S.L.; Scapini, T.; Warken, A.; Klanovicz, N.; Procópio, D.P.; Tadioto, V.; Stambuk, B.U.; Basso, T.O.; Treichel, H., 2022. Engineered saccharomyces or prospected non-saccharomyces: is there only one good choice for biorefineries? In: Autores. yeasts: from nature to bioprocesses. Bentham Books, cidade, pp. 243-283. https://doi.org/10.2174/9789815051063122020011

Alves Júnior, S.L.; Fongaro, G.; Treichel, H., 2023. Second-generation biorefinery: a Brazilian perspective. Bioprocess and Biosystems Engineering, v. 46, 1075-1076. https://doi.org/10.1007/s00449-023-02901-5

Angelo, P.M.; Jorge, N., 2007. Compostos fenólicos em alimentos — uma breve revisão. Revista do Instituto Adolfo Lutz (Accessed November 08, 2023) at:. https://periodicos.saude.sp.gov. br/RIAL/article/view/32841/31672

Amorim, J.C.; Piccoli, R.H.; Duarte, W.F., 2018. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, v. 107, 518-527. https://doi.org/10.1016/j.foodres.2018.02.054

Andrade Barreto, S.M.; Martins da Silva, A.B.; Prudêncio Dutra, M.; Costa Bastos, D.; de Brito Araújo Carvalho, A.J.; Cardoso Viana, A.; Narain, N.; dos Santos Lima, M., 2023. Effect of commercial yeasts (Saccharomyces cerevisiae) on fermentation metabolites, phenolic compounds, and bioaccessibility of Brazilian fermented oranges. Food Chemistry, v. 408, 135121. https://doi.org/10.1016/j.foodchem.2022.135121

Ávila, P.F.; Martins, M.; Costa, F.A.; Goldbeck, R., 2020. Xylooligosaccharides production by commercial enzyme mixture from agricultural wastes and their prebiotic and antioxidant potential. Bioactive Carbohydrates and Dietary Fibre, v. 24, 100234. https://doi.org/10.1016/j.bcdf.2020.100234

Babbar, N.; Oberoi, H.S.; Sandhu, S.K., 2015. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition, v. 55, 319-337. https://doi.org/10.1080/10408398.2011.653734

Babbar, N.; Dejonghe, W.; Gatti, M.; Sforza, S.; Elst, K., 2016. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Critical Reviews in Biotechnology, v. 36, 594-606. https://doi.org/10.3109/07388551.2014.996732

Bai, F.-W.; Yang, S.; Ho, N.W.Y., 2019. Fuel Ethanol production from lignocellulosic biomass. In: Autores. Comprehensive Biotechnology. Elsevier, cidade, pp. 49-65. https://doi.org/10.1016/B978-0-444-64046-8.00150-6

Bampidis, V. A.; Robinson, P.H., 2006. Citrus by-products as ruminant feeds: a review. Animal Feed Science and Technology, v. 128, (3-4), 175-217. https://doi.org/10.1016/j.anifeedsci.2005.12.002

Baptista, S.L.; Carvalho, L.C.; Romaní, A.; Domingues, L., 2020. Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Industrial Crops and Products, v. 156, 112867. https://doi.org/10.1016/j.indcrop.2020.112867

Baptista, S.L.; Costa, C.E.; Cunha, J.T.; Soares, P.O., Domingues, L., 2021. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnology Advances, v. 47, 107697. https://doi.org/10.1016/j.biotechadv. 2021.107697

Barrick, J.E.; Lenski, R.E., 2013. Genome dynamics during experimental evolution. Nature Reviews Genetics, v. 14, 827-839. https://doi.org/10.1038/nrg3564

Bassim Atta, M.; Ruiz-Larrea, F., 2022. Fungal pectinases in food technology. In: Masuelli, M.A. Pectins - The New-Old Polysaccharides. IntechOpen, cidade, pp. xx-xx. https://doi.org/10.5772/intechopen.100910

Biz, A.; Sugai-Guérios, M.H.; Kuivanen, J.; Maaheimo, H.; Krieger, N.; Mitchell, D.A.; Richard, P., 2016. The introduction of the fungal d-galacturonate pathway enables the consumption of d-galacturonic acid by Saccharomyces cerevisiae. Microbial Cell Factories, v. 15, 144. https://doi.org/10.1186/s12934-016-0544-1

Bonatto, C.; Scapini, T.; Camargo, A.F.; Alves Júnior, S.L.; Fongaro, G.; de Oliveira, D.; Treichel, H., 2023. Microbiology of biofuels: Cultivating the future. In: Autores Relationship between microbes and the environment for sustainable ecosystem services. v. 3. Elsevier, cidade, pp.15-42. https://doi.org/10.1016/B978-0-323-89936-9.00005-9

Brandon, A.G.; Scheller, H. V., 2020. Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. Frontiers in Plant Science, v. 11. https://doi.org/10.3389/fpls.2020.00282

Cámara, E.; Olsson, L.; Zrimec, J.; Zelezniak, A.; Geijer, C.; Nygård, Y., 2022. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnology Advances, v. 57, 107947. https://doi.org/10.1016/j.biotechadv. 2022.107947

Carsanba, E.; Pintado, M.; Oliveira, C., 2021. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals, v. 14, 295. https://doi.org/10.3390/ph14040295

Carvalho, L.C.; Oliveira, A.L.S.; Carsanba, E.; Pintado, M.; Oliveira, C., 2022. Phenolic compounds modulation in β-farnesene fed-batch fermentation using sugarcane syrup as feedstock. Industrial Crops and Products, v. 188, 115721. https://doi.org/10.1016/j.indcrop.2022.115721

Chen, O.; Yi, L.; Deng, L.; Ruan, C.; Zeng, K., 2020. Screening antagonistic yeasts against citrus green mold and the possible biocontrol mechanisms of Pichia galeiformis (BAF03). Journal of the Science of Food and Agriculture, v. 100, 3812-3821. https://doi.org/10.1002/jsfa.10407

Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.-J., 2020. Bioconversion of biomass waste into high value chemicals. Bioresource Technology, v. 298, 122386. https://doi.org/10.1016/j.biortech.2019.122386

Coelho, E.M.; da Silva Haas, I.C.; de Azevedo, L.C.; Bastos, D.C.; Fedrigo, I.M.T.; dos Santos Lima, M.; de Mello Castanho Amboni, R.D., 2021. Multivariate chemometric analysis for the evaluation of 22 Citrus fruits growing in Brazil’s semi-arid region. Journal of Food Composition and Analysis, v. 101, 103964. https://doi.org/10.1016/j.jfca.2021.103964

Concha Olmos, J.; Zúñiga Hansen, M.E., 2012. Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chemical Engineering Journal, v. 192, 29-36. https://doi.org/10.1016/j.cej.2012.03.085

Cordente, A.G.; Solomon, M.; Schulkin, A.; Leigh Francis, I.; Barker, A.; Borneman, A.R.; Curtin, C.D., 2018. Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’ aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Applied Microbiology and Biotechnology. v. 102, 5977-5988. https://doi.org/10.1007/s00253-018-9054-x

Cosgrove, D.J., 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, v. 6, 850-861. https://doi.org/10.1038/nrm1746

Cypriano, D.Z.; da Silva, L.L.; Tasic, L., 2018. High value-added products from the orange juice industry waste. Waste Management, v. 79, 71-78. https://doi.org/10.1016/j.wasman.2018.07.028

da Silva, E.; Borges, M.; Medina, C.; Piccoli, R.; Schwan, R., 2005. Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Research, v. 5, 859-865. https://doi.org/10.1016/j.femsyr.2005.02.006

de la Torre, I.; Martin-Dominguez, V.; Acedos, M.G.; Esteban, J.; Santos, V. E.; Ladero, M., 2019. Utilization/upgrading of orange peel waste from a biological biorefinery perspective. Applied Microbiology and Biotechnology, v. 103, 5975-5991. https://doi.org/10.1007/s00253-019-09929-2

di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M., 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, v. 81, 8-14. https://doi.org/10.1016/j.biocontrol.2014.10.004

Dien, B.S.; Kurtzman, C.P.; Saha, B.C.; Bothast, R.J., 1996. Screening for L-arabinose fermenting yeasts. Applied Biochemistry and Biotechnology, v. 57, 233-242. https://doi.org/10.1007/BF02941704

Du, J.; Shao, Z.; Zhao, H., 2011. Engineering microbial factories for synthesis of value-added products. Journal of Industrial Microbiology and Biotechnology, v. 38, 873-890. https://doi.org/10.1007/s10295-011-0970-3

Farias, D.; Maugeri-Filho, F., 2021. Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel, v. 288, 119673. https://doi.org/10.1016/j.fuel.2020.119673

Fazzino, F.; Mauriello, F.; Paone, E.; Sidari, R.; Calabrò, P.S., 2021. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere, v. 271, 129602. https://doi.org/10.1016/j.chemosphere.2021.129602

Feng, C.; Chen, J.; Ye, W.; Liao, K.; Wang, Z.; Song, X.; Qiao, M., 2022. Synthetic biology-driven microbial production of resveratrol: advances and perspectives. Frontiers in Bioengineering and Biotechnology, v. 10. https://doi.org/10.3389/fbioe.2022.833920

Fenner, E.D.; Scapini, T.; Diniz, M.C.; Giehl, A.; Treichel, H., Álvarez-Pérez, S.; Alves Júnior, S.L., 2022. Nature’s most fruitful threesome: the relationship between yeasts, insects, and angiosperms. Journal of Fungi, v. 8, (10), 984. https://doi.org/10.3390/jof8100984

Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J., 2020. Fruits by-products - a source of valuable active principles. a short review. Frontiers in Bioengineering and Biotechnology, v. 8. https://doi.org/10.3389/fbioe.2020.00319

Food and Agriculture Organization of the United Nations, 2021. Crops and livestock products (Accessed November 08, 2023) at:. https://www.fao.org/faostat/en/#data/QCL.

Frempong, K.E.B.; Chen, Y.; Wang, Z.; Xu, J.; Xu, X.; Cui, W.; Gong, H.; Peng, D.; Liang, L.; Meng, Y.; Lin, X., 2022. Study on textural changes and pectin degradation of tarocco blood Orange during storage. International Journal of Food Properties, v. 25, (1), 344-358. https://doi.org/10.1080/10942912.2022.2032736

Gaind, S., 2017. Exploitation of orange peel for fungal solubilization of rock phosphate by solid state fermentation. Waste Biomass Valorization, v. 8, 1351-1360. https://doi.org/10.1007/s12649-016-9682-2

Gómez, B.; Yáñez, R.; Parajó, J.C.; Alonso, J.L., 2016. Production of pectin‐derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. Journal of Chemical Technology & Biotechnology, v. 91, 234-247. https://doi.org/10.1002/jctb.4569

Gong, C.-S.; Chen, L.-F.; Flickinger, M.C.; Chiang, L.-C.; Tsao, G.T., 1981. Production of ethanol from d-xylose by using d-xylose isomerase and yeasts. Applied and Environmental Microbiology, v. 41, (2), 430-436. https://doi.org/10.1128/aem.41.2.430-436.1981

Grand View Research, 2017. Xylitol market analysis by application (Accessed November 15, 2023) at:. https://www.grandviewresearch.com/industry-analysis/xylitol-market

Grassino, A.N.; Barba, F.J.; Brnčić, M.; Lorenzo, J.M.; Lucini, L.; Brnčić, S.R., 2018. Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: a review. Food Chemistry, v. 266, 47-55. https://doi.org/10.1016/j.foodchem.2018.05.105

Grembecka, M.; Lebiedzińska, A.; Szefer, P., 2014. Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, v. 117, 77-82. https://doi.org/10.1016/j.microc.2014.06.012

Gu, Y.; Ma, J.; Zhu, Y.; Ding, X.; Xu, P., 2020. Engineering Yarrowia lipolytica as a Chassis for De Novo Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synthetic Biology, v. 9, 2096-2106. https://doi.org/10.1021/acssynbio.0c00185

Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J.C.; Alonso, J.L., 2013. Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science & Technology, v. 30, 153-161. https://doi.org/10.1016/j.tifs.2013.01.006

Guzmán, J.L.; Delgado-Pertíñez, M.; Beriáin, M.J.; Pino, R.; Zarazaga, L.Á.; Horcada, A., 2020. The use of concentrates rich in orange by-products in goat feed and its effects on physico-chemical, textural, fatty acids, volatile compounds and sensory characteristics of the meat of suckling kids. Animals, v. 10, (5), 766. https://doi.org/10.3390/ani10050766

Haile, M.; Kang, W.H., 2019. Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms, v. 7, 401. https://doi.org/10.3390/microorganisms7100401

He, Q.; Szczepańska, P.; Yuzbashev, T.; Lazar, Z., Ledesma-Amaro, R., 2020. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica. Metabolic Engineering Communications, v. 11, e00146. https://doi.org/10.1016/j.mec.2020.e00146

He, Y.; Li, H.; Chen, L.; Zheng, L.; Ye, C.; Hou, J.; Bao, X.; Liu, W.; Shen, Y., 2021. Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues. Microbial Biotechnology, v. 14, 2059-2071. https://doi.org/10.1111/1751-7915.13881

Hickert, L.R.; Souza-Cruz, P.B.; Rosa, C.A.; Ayub, M.A.Z., 2013. Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresource Technology, v. 143, 112-116. https://doi.org/10.1016/j.biortech.2013.05.123

Hong, W.; Wu, Y.E.; Fu, X.; Chang, Z., 2012. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends in Microbiology, v. 20, (7), 328-335. https://doi.org/10.1016/j.tim.2012.03.001

Huang, R.; Che, H.J.; Zhang, J.; Yang, L.; Jiang, D.H.; Li, G.Q., 2012. Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits. Biological Control, v. 62, 53-63. https://doi.org/10.1016/j.biocontrol.2012.02.010

Instituto Brasileiro de Geografia e Estatística, 2022. Historical series - Orange Production (Accessed November 25, 2023) at:. https://www.ibge.gov. br/explica/producao-agropecuaria/laranja/br

Jang, S.-K.; Jung, C.-D.; Seong, H.; Myung, S.; Kim, H., 2022. An integrated biorefinery process for mandarin peel waste elimination. Journal of Cleaner Production, v. 371, 133594. https://doi.org/10.1016/j.jclepro.2022.133594

Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K., 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, v. 73, 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3

Jha, P.; Singh, S.; Raghuram, M.; Nair, G.; Jobby, R.; Gupta, A.; Desai, N., 2019. Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. Environmental Sustainability, v. 2, 33-41. https://doi.org/10.1007/s42398-019-00048-2

Joshi, S.M.; Waghmare, J.S.; Sonawane, K.D.; Waghmare, S.R., 2015. Bio-ethanol and bio-butanol production from orange peel waste. Biofuels, v. 6, (1-2), 55-61. https://doi.org/10.1080/17597269.2015.1045276

Kang, N.K.; Lee, J.W.; Ort, D.R.; Jin, Y., 2022. L‐malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnology Journal, v. 17, 2000431. https://doi.org/10.1002/biot.202000431

Kong, H.; Zhang, D.; Xu, H.; Fu, X.; Wang, R.; Shan, Y.; Ding, S., 2023. Progress in preparation, purification, and biological activities of pectic oligosaccharides. Shipin Kexue/Food Science, v. 44. https://doi.org/10.7506/spkx1002-6630-20220322-269

Kumar, K.; Singh, E.; Shrivastava, S., 2022. Microbial xylitol production. Applied Microbiology and Biotechnology, v. 106, 971-979. https://doi.org/10.1007/s00253-022-11793-6

Lee, Y.-G.; Kim, C.; Kuanyshev, N.; Kang, N.K.; Fatma, Z.; Wu, Z.-Y.; Cheng, M.-H.; Singh, V.; Yoshikuni, Y.; Zhao, H.; Jin, Y.-S., 2022. Cas9-based metabolic engineering of Issatchenkia orientalis for enhanced utilization of cellulosic hydrolysates. Journal of Agricultural and Food Chemistry, v. 70, 12085-12094. https://doi.org/10.1021/acs.jafc.2c04251

Leloir, L.F., 1951. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Archives of Biochemistry and Biophysics, v. 33, (2), 186-190. https://doi.org/10.1016/0003-9861(51)90096-3

Lenhart, A.; Chey, W.D., 2017. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Advances in Nutrition, v. 8, (4), 587-596. https://doi.org/10.3945/an.117.015560

Li, M.; Schneider, K.; Kristensen, M.; Borodina, I.; Nielsen, J., 2016. Engineering yeast for high-level production of stilbenoid antioxidants. Scientific Reports, v. 6, 36827. https://doi.org/10.1038/srep36827

Lima, C.A.; Bento, H.B.S.; Picheli, F.P.; Paz-Cedeno, F.R.; Mussagy, C.U.; Masarin, F.; Torres Acosta, M.A.; Santos-Ebinuma, V. C., 2023. Process development and techno-economic analysis of co-production of colorants and enzymes valuing agro-industrial citrus waste. Sustainable Chemistry and Pharmacy, v. 35, 101204. https://doi.org/10.1016/j.scp.2023.101204

Liu, H.; Wang, X.; Liu, Y.; Kang, Z.; Lu, J.; Ye, Y.; Wang, Z.; Zhuang, X.; Tian, S., 2022. An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation. Bioresources and Bioprocessing, v. 9, 101. https://doi.org/10.1186/s40643-022-00585-5

Liu, J.; Li, J.; Shin, H.; Liu, L.; Du, G.; Chen, J., 2017. Protein and metabolic engineering for the production of organic acids. Bioresource Technology, v. 239, 412-421. https://doi.org/10.1016/j.biortech.2017.04.052

Macêdo, E.L.C.; Pimentel, T.C.; Melo, D.S.; de Souza, A.C.; de Morais, J.S.; Lima, M.S.; Dias, D.R., Schwan, R.F.; Magnani, M., 2023. Yeasts from fermented Brazilian fruits as biotechnological tools for increasing phenolics bioaccessibility and improving the volatile profile in derived pulps. Food Chemistry, v. 401, 134200. https://doi.org/10.1016/j.foodchem.2022.134200

Madeira, J.V.; Macedo, G.A., 2015. Simultaneous extraction and biotransformation process to obtain high bioactivity phenolic compounds from Brazilian citrus residues. Biotechnology Progress, v. 31, 1273-1279. https://doi.org/10.1002/btpr.2126

Makopa, T.P.; Modikwe, G.; Vrhovsek, U.; Lotti, C.; Sampaio, J.P.; Zhou, N., 2023. The marula and elephant intoxication myth: assessing the biodiversity of fermenting yeasts associated with marula fruits (Sclerocarya birrea). FEMS Microbes, v. 4. https://doi.org/10.1093/femsmc/xtad018

Mari, M.; Martini, C.; Guidarelli, M.; Neri, F., 2012. Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biological Control, v. 60, 132-140. https://doi.org/10.1016/j.biocontrol.2011.10.013

Martins, L.C.; Monteiro, C.C.; Semedo, P.M.; Sá-Correia, I., 2020. Valorization of pectin-rich agro-industrial residues by yeasts: potential and challenges. Applied Microbiology and Biotechnology, v.104, 6527-6547. https://doi.org/10.1007/s00253-020-10697-7

Martins, M.; Goldbeck, R., 2023. Integrated biorefinery for xylooligosaccharides, pectin, and bioenergy production from orange waste. Biofuels, Bioproducts and Biorefining, v. 17, 1775-1788. https://doi.org/10.1002/bbb.2555

Mathew, A.K.; Abraham, A.; Mallapureddy, K.K.; Sukumaran, R.K., 2018. Lignocellulosic biorefinery wastes, or resources?. In: Autores. Waste biorefinery. Elsevier, cidade, pp. 267-297. https://doi.org/10.1016/B978-0-444-63992-9.00009-4

Meiyanto, E.; Hermawan, A.; Anindyajati, A., 2012. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pacific Journal of Cancer Prevention, v. 13, 427-436. https://doi.org/10.7314/APJCP.2012.13.2.427

Menegon, Y.A.; Gross, J.; Jacobus, A.P., 2022. How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Current Genetics, v. 68, 319-342. https://doi.org/10.1007/s00294-022-01237-z

Ministério do Meio Ambiente, 2022. National Solid Waste Plan. (Accessed November 20, 2023) at:. https://www.gov. br/mma/pt-br/acesso-a-informacao/acoes-e-programas/agendaambientalurbana/lixao-zero/plano_nacional_de_residuos_solidos-1.pdf

Minzanova, S.; Mironov, V.; Arkhipova, D.; Khabibullina, A.; Mironova, L.; Zakirova, Y.; Milyukov, V., 2018. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel), v. 10, 1407. https://doi.org/10.3390/polym10121407

Mishra, P.; Panda, B., 2023. Polyhydroxybutyrate (PHB) accumulation by a mangrove isolated cyanobacteria Limnothrix planktonica using fruit waste. International Journal of Biological Macromolecules, v. 252, 126503. https://doi.org/10.1016/j.ijbiomac.2023.126503

Moharib, S.A.; El-Sayed, S.T.; Jwanny, E.W., 2000. Evaluation of enzymes produced from yeast. Nahrung/Food, v. 44, 47-51. https://doi.org/10.1002/(SICI)1521-3803(20000101)44:1<47::AID-FOOD47>3.0.CO;2-K

Montilla, A.; Muñoz-Almagro, N.; Villamiel, M., 2022. A new approach of functional pectin and pectic oligosaccharides: role as antioxidant and antiinflammatory compounds. In: Hernández-Ledesma, B.; Martínez-Villaluenga, C. Current advances for development of functional foods modulating inflammation and oxidative stress. Elsevier, Cambridge, pp. 105-120. https://doi.org/10.1016/B978-0-12-823482-2.00026-1

Moysés, D.; Reis, V.; Almeida, J.; Moraes, L.; Torres, F., 2016. Xylose Fermentation by Saccharomyces cerevisiae: challenges and Prospects. International Journal of Molecular Sciences, v. 17, (3), 207. https://doi.org/10.3390/ijms17030207

Nakagawa, T.; Nagaoka, T.; Miyaji, T.; Tomizuka, N., 2005. A cold‐active pectin lyase from the psychrophilic and basidiomycetous yeast Cystofilobasidium capitatum strain PPY‐1. Biotechnology and Applied Biochemistry, v. 42, 193-196. https://doi.org/10.1042/BA20040190

Nandal, P.; Sharma, S.; Arora, A., 2020. Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renew Energy, v. 147, 1694-1703. https://doi.org/10.1016/j.renene.2019.09.067

Neitzel, T.; Lima, C.S.; Hafemann, E.; Paixão, D.A.A.; Junior, J.M.; Persinoti, G.F.; dos Santos, L.V.; Ienczak, J.L., 2022. RNA-seq based transcriptomic analysis of the non-conventional yeast Spathaspora passalidarum during Melle-boinot cell recycle in xylose-glucose mixtures. Renewable Energy, v. 201, 486-498. https://doi.org/10.1016/j.renene.2022.10.108

Noori, S.D.; Kadhi, M.S.; Najm, M.A.A.; Oudah, K.H.; Qasim, Q.A.; Al-Salman, H.N.K., 2022. In-vitro evaluation of anticancer activity of natural flavonoids, apigenin and hesperidin. Materials Today: Proceedings, v. 60, 1840-1843. https://doi.org/10.1016/j.matpr.2021.12.506

Normand, J.; Bonnin, E.; Delavault, P., 2012. Cloning and expression in Pichia pastoris of an Irpex lacteus rhamnogalacturonan hydrolase tolerant to acetylated rhamnogalacturonan. Applied Microbiology and Biotechnology, v. 94, 1543-1552. https://doi.org/10.1007/s00253-011-3705-5

Oberoi, H.S.; Vadlani, P.V.; Madl, R.L.; Saida, L.; Abeykoon, J.P., 2010. Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. Journal of Agricultural and Food Chemistry, v. 58, (6), 3422-3429. https://doi.org/10.1021/jf903163t

Oloche, J.; Atooshi, M.Z.; Tyokase, M.U., 2019. Growth performance and blood profile of West African Dwarf (WAD) goats fed varying levels of treated sweet orange peels. Tropical Animal Health and Production, v. 51, 131-136. https://doi.org/10.1007/s11250-018-1667-7

Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F., 2014. Biocontrol of postharvest brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 strains. Postharvest Biology and Technology, v. 96, 64-68. https://doi.org/10.1016/j.postharvbio.2014.05.011

Oro, L.; Feliziani, E.; Ciani, M.; Romanazzi, G.; Comitini, F., 2018. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, v. 265, 18-22. https://doi.org/10.1016/j.ijfoodmicro.2017.10.027

Ortiz-Sanchez, M.; Omarini, A.B.; González-Aguirre, J.-A.; Baglioni, M.; Zygadlo, J.A.; Breccia, J.; D’Souza, R.; Lemesoff, L.; Bodeain, M.; Cardona-Alzate, C.A.; Pejchinovski, I.; Fernandez-Lahore, M.H., 2023. Valorization routes of citrus waste in the orange value chain through the biorefinery concept: The Argentina case study. Chemical Engineering and Processing - Process Intensification, v. 189, 109407. https://doi.org/10.1016/j.cep.2023.109407

Paliga, L.R.; Warken, A.J.; Dalastra, C.; Rodrigues Soares, M.L.; Kubeneck, S.; Correia Souza, T.R.; Alves Júnior, S.L., Treichel, H., 2022. Feedstock for Second-Generation Bioethanol Production. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (Eds). Liquid biofuels: bioethanol. biofuel and biorefinery technologies. Springer, Cham, pp.165-186. https://doi.org/10.1007/978-3-031-01241-9_8

Panda, S.K.; Maiti, S.K., 2024. Novel cyclic shifting of temperature strategy for simultaneous saccharification and fermentation for lignocellulosic bioethanol production. Bioresource Technology, v. 391, (Part A), 129975. https://doi.org/10.1016/j.biortech.2023.129975

Panda, S.K.; Mishra, S.S.; Kayitesi, E.; Ray, R.C., 2016. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environmental Research, v. 146, 161-172. https://doi.org/10.1016/j.envres.2015.12.035

Patsalou, M.; Chrysargyris, A.; Tzortzakis, N.; Koutinas, M., 2020. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies. Waste Management, v. 113, 469-477. https://doi.org/10.1016/j.wasman.2020.06.020

Pereira, R.; Wei, Y.; Mohamed, E.; Radi, M.; Malina, C.; Herrgård, M.J.; Feist, A.M.; Nielsen, J.; Chen, Y., 2019. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metabolic Engineering, v. 56, 130-141. https://doi.org/10.1016/j.ymben.2019.09.008

Pereyra, M.M.; Díaz, M.A.; Soliz-Santander, F.F.; Poehlein, A.; Meinhardt, F.; Daniel, R.; Dib, J.R., 2021. Screening Methods for Isolation of Biocontrol Epiphytic Yeasts against Penicillium digitatum in Lemons. Journal of Fungi, v. 7, 166. https://doi.org/10.3390/jof7030166

Pereyra, M.M.; Garmendia, G.; Rossini, C.; Meinhardt, F.; Vero, S.; Dib, J.R., 2022. Volatile organic compounds of Clavispora lusitaniae AgL21 restrain citrus postharvest pathogens. Biological Control, v. 174, 105025. https://doi.org/10.1016/j.biocontrol.2022.105025

Perpelea, A.; Wijaya, A.W.; Martins, L.C.; Rippert, D.; Klein, M.; Angelov, A.; Peltonen, K.; Teleki, A.; Liebl, W.; Richard, P.; Thevelein, J.M.; Takors, R.; Sá-Correia, I.; Nevoigt, E., 2022. Towards valorization of pectin-rich agro-industrial residues: engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metabolic Engineering, v. 69, 1-14. https://doi.org/10.1016/j.ymben.2021.10.001

Phyo, P.; Wang, T.; Xiao, C.; Anderson, C.T.; Hong, M., 2017. Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of Arabidopsis thaliana: insights from solid-state NMR. Biomacromolecules, v. 18, 2937-2950. https://doi.org/10.1021/acs.biomac.7b00888

Pimentel, T.C.; Oliveira, L.I.G; Macêdo, E.L.C; Costa, G.N.; Dias, D.R.; Schwan, R.F; Magnani, M., 2021. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends in Food Science & Technology, v. 114, 25-59. https://doi.org/10.1016/j.tifs.2021.05.024

Protzko, R.J.; Latimer, L.N.; Martinho, Z.; de Reus, E.; Seibert, T.; Benz, J.P.; Dueber, J.E., 2018. Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nature Communications, v. 9, 5059. https://doi.org/10.1038/s41467-018-07589-w

Protzko, R.J.; Hach, C.A.; Coradetti, S.T.; Hackhofer, M.A.; Magosch, S.,;Thieme, N.; Geiselman, G.M.; Arkin, A.P.; Skerker, J.M.; Dueber, J.E.; Benz, J.P., 2019. Genomewide and enzymatic analysis reveals efficient d-galacturonic acid metabolism in the basidiomycete yeast Rhodosporidium toruloides. mSystems, v. 4. https://doi.org/10.1128/mSystems.00389-19

Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A., 2014. Fractionation of apple by-products as source of new ingredients: current situation and perspectives. Trends in Food Science & Technology, v. 40, (1), 99-114. https://doi.org/10.1016/j.tifs.2014.08.004

Rêgo, E.S.B.; Rosa, C.A.; Freire, A.L.; Machado, A.M.R.; Gomes, F.C.O.; Costa, A.S.P.; Mendonça, M.C.; Hernández-Macedo, M.L.; Padilha, F.F., 2020. Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. LWT, v. 126, 109291. https://doi.org/10.1016/j.lwt.2020.109291

Richard, P.; Hilditch, S., 2009. d-Galacturonic acid catabolism in microorganisms and its biotechnological relevance. Applied Microbiology and Biotechnology, v. 82, 597-604. https://doi.org/10.1007/s00253-009-1870-6

Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.M.; Matias, A.A.; Bronze, M.R., 2018. Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food Chemistry, v. 259, 188-195. https://doi.org/10.1016/j.foodchem.2018.03.119

Ruiz, B.; Flotats, X., 2014. Citrus essential oils and their influence on the anaerobic digestion process: An overview. Waste Management, v. 34, (11), 2063-2079. https://doi.org/10.1016/j.wasman.2014.06.026

Saadatinavaz, F.; Karimi, K.; Denayer, J.F.M., 2021. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. Bioresource Technology, v. 341, 125834. https://doi.org/10.1016/j.biortech.2021.125834

Sáez-Sáez, J.; Wang, G.; Marella, E.R.; Sudarsan, S.; Cernuda Pastor, M.; Borodina, I., 2020. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metabolic Engineering, v. 62, 51-61. https://doi.org/10.1016/j.ymben.2020.08.009

Santos, L.B.; Silva, R.D.; Alonso, J.D.; Brienzo, M.; Silva, N.C.; Perotto, G.; Otoni, C.G.; Azeredo, H.M.C., 2023. Bioplastics from orange processing byproducts by an ecoefficient hydrothermal approach. Food Packaging and Shelf Life, v. 38, 101114. https://doi.org/10.1016/j.fpsl.2023.101114

Satapathy, S.; Rout, J.R.; Kerry, R.G.; Thatoi, H.; Sahoo, S.L., 2020. Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Frontiers in Nutrition, v. 7. https://doi.org/10.3389/fnut.2020.00117

Scapini, T.; Camargo, A.F.; Mulinari, J.; Hollas, C.E.; Bonatto, C.; Venturin, B.; Rempel, A.; Alves Júnior, S.L.; Treichel, H., 2022. Spathaspora and Scheffersomyces: promising roles in biorefineries. In: Alves Júnior, S.L.; Treichel, H.; Basso, T.O.; Stambuk, B.U. Yeasts: From Nature to Bioprocesses. Bentham Science Publisher, Singapore, pp. 216-242. https://doi.org/10.2174/9789815051063122020010

Scapini, T.; Alves Júnior, S.L.; Viancelli, A.; Michelon, W.; Camargo, A.F.; Santos, A.A.; Santos, L.H.; Treichel, H., 2023a. Bioenergy and beyond. In: Shah, M.P. Green approach to alternative fuel for a sustainable future. Elsevier, Amsterdam, pp.335-347. https://doi.org/10.1016/B978-0-12-824318-3.00015-1

Scapini, T.; Bonatto, C.; Dalastra, C.; Bazoti, S.F.; Camargo, A.F.; Alves Júnior, S.L.; Venturin, B.; Steinmetz, R.L.R.; Kunz, A.; Fongaro, G.; Treichel, H., 2023b. Bioethanol and biomethane production from watermelon waste: a circular economy strategy. Biomass Bioenergy, v. 170, 106719. https://doi.org/10.1016/j.biombioe.2023.106719

Scapini, T.; Dalastra, C.; Zanivan, J.; Mulinari, J.; Alves Júnior, S.L.; Fongaro, G.; Treichel, H., 2023c. Microbial Enzymes in Action with Bioethanol. In: Molina, G.; Usmani, Z.; Sharma, M.; Benhida, R.; Kuhad, R.C.; Gupta, V.K. Microbial Bioprocessing of Agri-Food Wastes. CRC Press, Boca Raton, pp. 23-47. https://doi.org/10.1201/9781003341017-2

Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Koceva Komlenić, D.; Bucić-Kojić, A., 2021. A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods, v. 10, (5), 927. https://doi.org/10.3390/foods10050927

Singh, B.; Singh, J.P.; Kaur, A.; Singh, N., 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, v. 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114

Singh, R.P.; Prakash, S.; Bhatia, R.; Negi, M.; Singh, J.; Bishnoi, M.; Kondepudi, K.K., 2020. Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocolloid, v. 108, 105988. https://doi.org/10.1016/j.foodhyd.2020.105988

Soong, Y.-Y.; Barlow, P.J., 2004. Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, v. 88, (3), 411-417. https://doi.org/10.1016/j.foodchem.2004.02.003

Stambuk, B.U.; Eleutherio, E. C. A.; Florez-pardo, L. M.; Souto-maior, A. M.; Bom, E. P. S., 2008. Brazilian potential for biomass ethanol: Challenge of using hexose and pentose cofermenting yeast strains. Journal of Scientific and Industrial Research, v. 67, 918-926 (Accessed November 28, 2023) at:. https://nopr.niscpr.res.in/handle/123456789/2420

Stinco, C.M.; Sentandreu, E.; Mapelli-Brahm, P.; Navarro, J.L.; Vicario, I.M.; Meléndez-Martínez, A.J., 2020. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, v. 331, 127259. https://doi.org/10.1016/j.foodchem.2020.127259

Stovicek, V.; Dato, L.; Almqvist, H.; Schöpping, M.; Chekina, K.; Pedersen, L.E.; Koza, A.; Figueira, D.; Tjosås, F.; Ferreira, B.S.; Forster, J.; Lidén, G.; Borodina, I., 2022. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. Biotechnology for Biofuels and Bioproducts, v. 15, 22. https://doi.org/10.1186/s13068-022-02121-1

Tadioto, V.; Milani, L.M.; Barrilli, É.T.; Baptista, C.W.; Bohn, L.; Dresch, A.; Harakava, R.; Fogolari, O.; Mibielli, G.M.; Bender, J.P.; Treichel, H.; Stambuk, B.U.; Müller, C.; Alves Júnior, S.L., 2022. Analysis of glucose and xylose metabolism in new indigenous Meyerozyma caribbica strains isolated from corn residues. World Journal of Microbiology and Biotechnology, v. 38, (35). https://doi.org/10.1007/s11274-021-03221-0

Tadioto, V.; Giehl, A.; Cadamuro, R.D.; Guterres, I.Z.; Santos, A.A.; Bressan, S.K.; Werlang, L.; Stambuk, B.U.; Fongaro, G.; Silva, I.T., Alves Júnior, S.L., 2023. Bioactive compounds from and against yeasts in the one health context: a comprehensive review. Fermentation, v. 9, (4), 363. https://doi.org/10.3390/fermentation9040363

Talekar, S.; Ekanayake, K.; Holland, B.; Barrow, C., 2023. Food waste biorefinery towards circular economy in Australia. Bioresource Technology, v. 388, 129761. https://doi.org/10.1016/j.biortech.2023.129761

Tran, V. G.; Zhao, H., 2022. Engineering robust microorganisms for organic acid production. Journal of Industrial Microbiology and Biotechnology, v. 49, (2), kuab067. https://doi.org/10.1093/jimb/kuab067

Tsouko, E.; Maina, S.; Ladakis, D.; Kookos, I.K.; Koutinas, A., 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew Energy, v. 160, 944-954. https://doi.org/10.1016/j.renene.2020.05.108

Tsukamoto, J.; Durán, N.; Tasic, L., 2013. Nanocellulose and bioethanol production from orange waste using isolated microorganisms. Journal of the Brazilian Chemical Society. v. 24. https://doi.org/10.5935/0103-5053.20130195

Twerdochlib, A.L.; Pedrosa, F.O.; Funayama, S.; Rigo, L.U., 1994. L-Rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Canadian Journal of Microbiology, v. 40, 896-902. https://doi.org/10.1139/m94-144

United Nations Climate Change, 2023. What is the Paris Agreement? (Accessed November 10, 2023) at:. https://unfccc.int/process-and-meetings/the-paris-agreement.

Vadalà, R.; Lo Vecchio, G.; Rando, R.; Leonardi, M.; Cicero, N.; Costa, R., 2023. A sustainable strategy for the conversion of industrial citrus fruit waste into bioethanol. Sustainability, v. 15, (12), 9647. https://doi.org/10.3390/su15129647

Vaez, S.; Karimi, K.; Mirmohamadsadeghi, S.; Jeihanipour, A., 2021. An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption. Process Safety and Environmental Protection, v. 152, 513-526. https://doi.org/10.1016/j.psep.2021.06.013

van Maris, A.J.A.; Abbott, D.A.; Bellissimi, E.; van den Brink, J.; Kuyper, M.; Luttik, M.A.H.; Wisselink, H.W.; Scheffers, W.A.; van Dijken, J.P.; Pronk, J.T., 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek, v. 90, 391-418. https://doi.org/10.1007/s10482-006-9085-7

Vanmarcke, G.; Demeke, M.M.; Foulquié-Moreno, M.R.; Thevelein, J.M., 2021. Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnology for Biofuels and Bioproducts, v. 14, 92. https://doi.org/10.1186/s13068-021-01935-9

Vargas, A.C.G.; Dresch, A.P.; Schmidt, A.R.; Tadioto, V.; Giehl, A.; Fogolari, O.; Mibielli, G.M.; Alves Júnior, S.L.; Bender, J.P., 2023. Batch fermentation of lignocellulosic elephant grass biomass for 2G ethanol and xylitol production. BioEnergy Research, v. 16, 2219–2228. https://doi.org/10.1007/s12155-022-10559-2

Venkatanagaraju, E.; Bharathi, N.; Hema Sindhuja, R.; Roy Chowdhury, R.; Sreelekha, Y., 2020. Extraction and purification of pectin from agro-industrial wastes. In: Masuelli, M. Pectins - extraction, purification, characterization and applications. IntechOpen, London, pp. 47-62. https://doi.org/10.5772/intechopen.85585

Wang, C.; Li, H.; Xu, L.; Shen, Y.; Hou, J.; Bao, X., 2018. Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae. Chinese Journal of Biotechnology, v. 34, 1543-1555. https://doi.org/10.13345/j.cjb.180031

Widmer, W.; Zhou, W.; Grohmann, K., 2010. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresource Technology, v. 101, (14), 5242-5249. https://doi.org/10.1016/j.biortech.2009.12.038

Xu, A.; Xiao, Y.; He, Z.; Liu, J.; Wang, Y.; Gao, B.; Chang, J.; Zhu, D., 2022. Use of non-saccharomyces yeast co-fermentation with saccharomyces cerevisiae to improve the polyphenol and volatile aroma compound contents in Nanfeng tangerine wines. Journal of Fungi, v. 8, (2), 128. https://doi.org/10.3390/jof8020128

Xu, Y.; Chi, P.; Bilal, M.; Cheng, H., 2019. Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, v. 103, 5143-5160. https://doi.org/10.1007/s00253-019-09881-1

Yadav, K.; Dwivedi, S.; Gupta, S.; Tanveer, A.; Yadav, S.; Yadav, P.K.; Anand, G.; Yadav, D., 2023. Recent insights into microbial pectin lyases: a review. Process Biochemistry, v. 134, 199-217. https://doi.org/10.1016/j.procbio.2023.10.008

Yang, G.; Tan, H.; Li, S.; Zhang, M.; Che, J.; Li, K.; Chen, W.; Yin, H., 2020. Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass. Bioresource Technology, v. 300, 122645. https://doi.org/10.1016/j.biortech.2019.122645

Yang, P.; Wu, Y.; Zheng, Z.; Cao, L.; Zhu, X.; Mu, D.; Jiang, S., 2018. CRISPR-Cas9 approach constructing cellulase sestc-engineered saccharomyces cerevisiae for the production of orange peel ethanol. Frontiers in Microbiology, v. 9. https://doi.org/10.3389/fmicb.2018.02436

Yin, H.; Hu, T.; Zhuang, Y.; Liu, T., 2020. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Microbial Cell Factories, v. 19, 218. https://doi.org/10.1186/s12934-020-01476-0

Yuan, S.-F.; Yi, X.; Johnston, T.G.; Alper, H.S., 2020. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Microbial Cell Factories, v. 19, 143. https://doi.org/10.1186/s12934-020-01401-5

Zaitseva, O.; Khudyakov, A.; Sergushkina, M.; Solomina, O.; Polezhaeva, T., 2020. Pectins as a universal medicine. Fitoterapia, v. 146, 104676. https://doi.org/10.1016/j.fitote.2020.104676

Zdunek, A.; Pieczywek, P.M.; Cybulska, J., 2021. The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety, v. 20, (1), 1101-1117. https://doi.org/10.1111/1541-4337.12689

Zhong, W.; Chen, T.; Yang, H.; Li, E., 2020. Isolation and selection of non-saccharomyces yeasts being capable of degrading citric acid and evaluation its effect on kiwifruit wine fermentation. Fermentation, v. 6, 25. https://doi.org/10.3390/fermentation6010025

Zhu, R.; Wang, C.; Zhang, L.; Wang, Y.; Chen, G.; Fan, J.; Jia, Y.; Yan, F.; Ning, C., 2019. Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydrate Polymers, v. 217, 90-97. https://doi.org/10.1016/j.carbpol.2019.04.032

Downloads

Published

2024-04-10

How to Cite

Minussi, G. do A., dos Santos, A. A., Scapini, T., Bonatto, C., Fenner, E. D., Dresch, A. P., dos Santos, B. C. S., Bender, J. P., & Alves Júnior, S. L. (2024). Transforming orange waste with yeasts: bioprocess prospects. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1859. https://doi.org/10.5327/Z2176-94781859

Issue

Section

Bioprocesses and Sustainability