Sustainable reduction of sulfate contained in gypsum waste: perspectives and applications for agroforestry waste and sanitary sewage
DOI:
https://doi.org/10.5327/Z2176-94781752Keywords:
sulfate reduction; SRB; effluent treatment; valorization of lignocellulosic waste; sustainable bioeconomy; waste pretreatmentAbstract
This review article explores sustainable biotechnological strategies for converting sulfate compounds and lignocellulosic waste, focusing on using sulfate-reducing bacteria (SRB) and the valorization of agroforestry residues and sanitary sewage. SRB show potential in effluent treatment, mine drainage, and the removal of sulfate and heavy metals from wastewater, with their metabolic activity being influenced by factors such as pH, temperature, and chemical oxygen demand/sulfate (COD/SO4=) ratio. In the context of a sustainable bioeconomy, the challenge of converting lignocellulosic waste into value-added products is addressed through physical pretreatment techniques such as milling, extrusion, microwave irradiation, and ultrasound, which are efficient in valorizing waste from urban tree pruning. The article highlights the importance of bioreactors in transforming raw materials into desirable biochemical products, discussing different types of bioreactors, such as batch, continuous stirred tank, airlift, fluidized bed, upflow anaerobic sludge blanket (UASB), and bubble column, and their specific advantages and disadvantages. Sustainable sulfate reduction is the central focus, integrating the application of SRB and the conversion of lignocellulosic waste in a way that complements the objectives of the work and promotes a more cohesive flow in the summary. Thus, the interrelationship between effluent treatment strategies and waste valorization is emphasized from an environmental sustainability perspective, highlighting the relevance of this study in the broader context of a sustainable bioeconomy.
Downloads
References
Alexander, P.; Arnneth, A.; Henry, R.; Maire, J.; Rabim, S.; Rounsevell, M.D.A., 2023. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nature Food, v. 4, 84-95. https://doi.org/10.1038/s43016-022-00659-9
Asif, M.; Aziz, A.; Ashraf, G.; Iftikhar, T.; Sun, Y.; Liu, H., 2021. Turning the page: advancing detection platforms for sulfate reducing bacteria and their perks. The Chemical Record, v. 22, 1-15. https://doi.org/10.1002/tcr.202100166
Ayangbenro, A.S.; Olanrewaju, O.S.; Babalola, O.O., 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology, v. 9, 1-10. https://doi.org/10.3389/fmicb.2018.01986
Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E., 2018. Recent Trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, v. 6, 1-19. https://doi.org/10.3389/fenrg.2018.00141
Bayrakdar, A.; Sahinkaya, E.; Gungor, M.; Uyanik, S. and Atasoy, A.D., 2009. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bioresource Technology, v. 100, (19), 4354-4360. https://doi.org/10.1016/j.biortech.2009.04.028
Bertolino, S.M.; Silva, L.A.M.; Aquino, S.F.; Leão, V.A., 2015. Comparison of uasb and fluidized-bed reactors for sulfate reduction. Brazilian Journal of Chemical Engineering, v. 32, (1), 59-71. https://doi.org/10.1590/0104-6632.20150321s00003158
Brahmacharimayum, B.; Mohanty, M.P.; Ghosh, P.K., 2019. Theoretical and practical aspects of biological sulfate reduction: a review. Global Nest Journal, v. 2, (2), 222-244. https://doi.org/10.30955/gnj.002577
Camani, P.H.; Anholon, B.F.; Toder, R.R.; Rosa, D.S., 2020. Microwave-assisted pretreatment of eucalyptus waste to obtain cellulose fibers. Cellulose, v. 27, 3591-3609. https://doi.org/10.1007/s10570-020-03019-7
Camarini, G.; Pinheiro, S.M.M., 2014. Microstructure of recycled gypsum plaster by SEM. Advanced Materials Research, v. 912-914, 243-246. https://doi.org/10.4028/www.scientific.net/amr.912-914.243
Chang, V.S.; Burr, B.; Holtzapple, M.T., 1997. Lime pretreatment of switchgrass. Appl Biochem Biotechnol, v. 63, 3-19. https://doi.org/10.1007/BF02920408
Cordon, H.C.F.; Cagnoni, F.C.; Ferreira, F.F., 2019. Comparison of physical and mechanical properties of civil construction plaster and recycled waste gypsum from São Paulo, Brazil. Journal of Building Engineering, v. 22, 504-512. https://doi.org/10.1016/j.jobe.2019.01.010
Dong, Y.; Wang, J.; Gao, Z.; Di, J.; Wang, D.; Guo, X.; Hu, Z.; Gao, X.; Wang, Y., 2023. Study on growth influencing factors and desulfurization performance of sulfate reducing bacteria based on the response surface methodology. ACS OMEGA, v. 8, (4), 4046-4059. https://doi.org/10.1021/acsomega.2c06931
Dordević, D.; Jančíková, S.; Vítězová, M.; Kushkevych, I., 2020. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. Journal of Advanced Research, v. 27, 55-69. https://doi.org/10.1016/j.jare.2020.03.003
Finke, N.; Vandieken, V.; Jerjensen, B.B., 2007. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, v. 59, (1), 10-22. https://doi.org/10.1111/j.1574-6941.2006.00214.x
Galić, M.; Stajić, M.; Vukojević, J. and Ćilerdžić, J., 2021. Obtaining cellulose available raw materials by pretreatment of common agroforestry residues with Pleurotus spp. Frontiers in Bioengineering and Biotechnology, v. 9, 720473. https://doi.org/10.3389/fbioe.2021.720473
Ghaffar, S.H.; Burman, M.; Braimah, N., 2019. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, v. 244, 1-8. https://doi.org/10.1016/j.jclepro.2019.118710
Guedri, A.; Yahya, K.; Hamdi, N.; Baeza-Urrea, O.; Wagner, J.F.; Zagrarni, M.F., 2023. Properties evaluation of composite materials based on gypsum plaster and posidonia oceanica fibers. Buildings, v. 13, (1), 1-15. https://doi.org/10.3390/buildings13010177
Guo, Q.; Yin, Q.; Du, J.; Zuo, J. and Wu, G., 2022. New insights into the r/K selection theory achieved in methanogenic systems through continuous-flow and sequencing batch operational modes. Science of the Total Environment, v. 807, (Part 1), 150732. https://doi.org/10.1016/j.scitotenv.2021.150732
Kanda, М.; Malovanyy, M.; Tymchuk, I.; Оdnorih, Z., 2019. Evaluation of the degree of environmental hazard from environmental pollution in the area of poultry farms impact. Environmental Problems, v. 4, (3), 161-166. https://doi.org/10.23939/ep2019.03.161
Karnachuk, O.V.; Rusanov, I.I.; Panova, I.A.; Grigoriev, M.A.; Zyusman, V.S.; Latygolets, E.A.; Kadyrbaev, M.K.; Gruzdev, E.V.; Beletsky, A.V.; Mardanov, A.V.; Pimenov, N.V.; Ravin, N.V., 2021. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Scientific Reports, v. 11, (1), 10720. https://doi.org/10.1038/s41598-021-90256-w
Kijjanapanich, P.; Do, A.T.; Annachhatre, A.P.; Esposito, E.G.; Yeh, D.H.; Lens, P.N.L., 2014. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration. Journal of Hazardous Materials, v. 269, 38-44. https://doi.org/10.1016/j.jhazmat.2013.10.015
Kushkevych, I.; Hýžová, B.; Vítězová, M.; Rittmann, S.K.M.R., 2021. Microscopic methods for identification of sulfate-reducing bacteria from various habitats. International Journal of Molecular Sciences, v. 22, (8), 1-27. https://doi.org/10.3390/ijms22084007
Li, Y.; Kontos, G.A.; Cabrera, D.V.; Avila, N.M.; Parkinson, T.W.; Viswanathan, M.B.; Singh, V.; Altpeter, F.; Labatut, R.A.; Guest, J.S., 2023. Design of a High-Rate Wastewater Treatment Process for Energy and Water Recovery at Biorefineries. ACS Sustainable Chemistry & Engineering, v. 11 (9), 3861-3872. https://doi.org/10.1021/acssuschemeng.2c07139
Liu, Z.; Li, L.; Li, Z.; Tian, X., 2018a. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environmental Technology, v. 39, 1814-1822. https://doi.org/10.1080/09593330.2017.1340347
Liu, Z.; Yin, H.; Lin, Z.; Dang, Z., 2018b. Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. Environmental Technology Reviews, v. 7, (1), 46-72. https://doi.org/10.1080/21622515.2018.1437783
Matheri, A.N.; Ntuli, F.; Ngila, J.C.; Seodigeng, T.; Zvinowanda, C.; Njenga, C.K., 2018. Quantitative characterization of carbonaceous and lignocellulosic biomass for anaerobic digestion. Renewable And Sustainable Energy Reviews, v. 92, 9-16. https://doi.org/10.1016/j.rser.2018.04.070
Michas, A.; Harir, M.; Lucio, M.; Vestergaard, G.; Himmelberg, A.; Schmitt-Kopplin, P.; Lueders, T.; Hatzinikolaou, D.G.; Schöler, A.; Rabus, R.; Schloter, M., 2022. Sulfate alters the competition among microbiome members of sediments chronically exposed to asphalt. Frontiers in Microbiology, v. 29, (11), 556793. https://doi.org/10.3389/fmicb.2020.556793
Muthuvelu, K.S.; Rajarathinam, R.; Kanagaraj, L.P.; Ranganathan, R.V.; Dhanasekaran, K.; Manickam, N.K., 2019. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Management, v. 87, 368-374. https://doi.org/10.1016/j.wasman.2019.02.015
Najib, T. Solgi, M.; Farazmand, A.; Heydarian, S.M.; Nasernejad, B., 2017. Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering, v. 5, (4), 3256-3265. https://doi.org/10.1016/j.jece.2017.06.016
Nguyen, H.T.; Nguyen, H.L.; Nguyen, M.H.; Nguyen, T.K.N.; Dinh, H.T., 2020. Sulfate reduction for bioremediation of AMD facilitated by an indigenous acidand metal-tolerant sulfate-reducer. Journal of Microbiology and Biotechnology, v. 30, (7), 1005-1012. https://doi.org/10.4014/jmb.2001.01012
Oliveira, C.A.; Fuess, L.T.; Soares, L.A.; Damianovic, M.H.R.Z., 2021. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. Journal of Environmental Management, v. 296, 113254. https://doi.org/10.1016/j.jenvman.2021.113254
Ooshima, H.; Aso, K.; Harano, Y.; Yamamoto, T. 1984. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters, v. 6, (5), 289-294. https://doi.org/10.1007/BF00129056
Pererva, Y.; Miller, C.D.; Sims, R.C., 2020. Approaches in Design of Laboratory-Scale UASB Reactors. Processes, v. 8, (6), 1-26. https://doi.org/10.3390/pr8060734
Picchio, R.; Di Marzio, N.; Cozzolino, L.; Venanzi, R.; Stefanoni, W.; Bianchini, L.; Pari, L.; Latterini, F., 2023. Pellet production from pruning and alternative forest biomass: a review of the most recent research findings. Materials, v. 16, (3), 4689. https://doi.org/10.3390/ma16134689
Ranadev, P.; Revanna, A.; Bagyaraj, D.J.; Shinde, A.H., 2023. Sulfur oxidizing bacteria in agro ecosystem and its role in plant productivity — a review. Journal of Applied Microbiology, v. 134, (8), lxad161. https://doi.org/10.1093/jambio/lxad16
Reis, J.M.; Aguiar, A.B.S.; Freitas, G.; Vassoler, V.C.; Barros, G.V.L.; Santos, G.E.; Ramirez, I.; Rodriguez, R.P., 2022. Metals removal techniques from wastewater: a literature review. Research, Society and Development, v. 11, (2), 1-18. https://doi.org/10.33448/rsd-v11i2.26100
Runtti, H.; Tolonen, E.; Tuomikoski, S.; Luukkonen, T.; Lassi, U., 2018. How to tackle the stringent sulfate removal requirements in mine water treatment – a review of potential methods. Environmental Research, v. 167, 207-222. https://doi.org/10.1016/j.envres.2018.07.018
Schirmer, C.; Eib, R.; Maschke, R.W.; Mozaffari, F.; Junne, S.; Daumke, R.; Ottinger, M.; G ̈hmann, R.; Ott, C.; Wenk, I.; Kubischik, J.; Eib, D., 2022. Single-use technology for the production of cellular agricultural products: Where are we today? Chemie Ingenieur Technik (Chemical Engineering and Technology), v. 94, (12), 2018-2025. https://doi.org/10.1002/cite.202200092
Siddique, M.; Mengal, A.N.; Khan, S.; Ali khan, L.; Kaka, E.K., 2023. Pretreatment of lignocellulosic biomass conversion into biofuel and biochemical: a comprehensive review. MOJ Biology and Medicine, v. 8, (1), 39-43. https://doi.org/10.15406/mojbm.2023.08.00181
Suresh, T.; Sivarajasekar, N.; Balasubramani, K.; Ahamad. T.; Alam, M.; Naushad, M., 2020. Process intensifcation and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass Bioenergy, v. 14, 1-10. https://doi.org/10.1016/j.biombioe.2020.105752
Tang, K.; Baskaran, V.; Nemati, M., 2009. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, v. 44, (1), 73-94. https://doi.org/10.1016/j.bej.2008.12.011
Tao, R., 2019. Nutrient and organic matter removal from wastewaters with microalgae. PhD Thesis, Université Paris-Est, Paris. Retrieved 2024-02-21, from https://www.researchgate.net/publication/337756980
Tian, H.; Gao, P.; Chen, Z.; Li, Y.; Li, Y.; Wang, Y.; Zhou, J.; Li, G.; Ma, T., 2017. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Frontiers In Microbiology, v. 8, 1-14. https: //doi.org/10.3389/fmicb.2017.00143
van den Brand, T.P.; Roest, K.; Chen, G.H.; Brdjanovic, D.; van Loosdrecht, M.C., 2015. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wasewater treatment. World Journal of Microbiology and Biotechnology, v. 31, (11), 1675-1681. https://doi.org/10.1007/s11274-015-1935-x
Wagenfeld, J.G.; Al-Ali, K.; Almheiri, S.; Slavens, A.F.; Calvet, N., 2019. Sustainable applications utilizing sulfur, a by-product from oil and gas industry: a state-of-the-art review. Waste Management, v. 15, 78-89. https://doi.org/10.1016/j.wasman.2019.06.002
Xie, S.; Tran, H-T.; Pu, M.; Zhan, T., 2023. Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends. Materials Science for Energy Technologies, v. 6, 331-342. https://doi.org/10.1016/j.mset.2023.02.006
Yuya, S.; Hamai, T.; Tomo, A.; Tomohiro, I.; Mikio, K.; Hiroshi, H.; Takeshi, S., 2019. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment. Applied Microbiology and Biotechnology, v. 103, 7783-7793. https://doi.org/10.1007/s00253-019-10063-2
Zhang, Y.; Zhen, Y.; Mi, T.; He, H.; Yu, Z., 2016. Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang Estuary. Journal of Ocean University of China, v. 15, 107-116. https://doi.org/10.1007/s11802-016-2781-7
Zhang, Q.; Wang, H.; Lu, C., 2020a. Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model. Environmental Pollution, v. 265, (Part B), 115105. https://doi.org/10.1016/j.envpol.2020.115105
Zhang, Y.; Li, T.; Shen, Y.; Wang, L.; Zhang, H.; Qian, H.; Oi, X., 2020b. Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Industrial Crops and Products, v. 149, 112356-112370. https://doi.org/10.1016/j.indcrop.2020.112356
Zhang, Z.; Zang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z., 2022. A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, v. 376, 134109-134121. https://doi.org/10.1016/j.jclepro.2022.134109
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.