Sustainable reduction of sulfate contained in gypsum waste: perspectives and applications for agroforestry waste and sanitary sewage

Authors

DOI:

https://doi.org/10.5327/Z2176-94781752

Keywords:

sulfate reduction; SRB; effluent treatment; valorization of lignocellulosic waste; sustainable bioeconomy; waste pretreatment

Abstract

This review article explores sustainable biotechnological strategies for converting sulfate compounds and lignocellulosic waste, focusing on using sulfate-reducing bacteria (SRB) and the valorization of agroforestry residues and sanitary sewage. SRB show potential in effluent treatment, mine drainage, and the removal of sulfate and heavy metals from wastewater, with their metabolic activity being influenced by factors such as pH, temperature, and chemical oxygen demand/sulfate (COD/SO4=) ratio. In the context of a sustainable bioeconomy, the challenge of converting lignocellulosic waste into value-added products is addressed through physical pretreatment techniques such as milling, extrusion, microwave irradiation, and ultrasound, which are efficient in valorizing waste from urban tree pruning. The article highlights the importance of bioreactors in transforming raw materials into desirable biochemical products, discussing different types of bioreactors, such as batch, continuous stirred tank, airlift, fluidized bed, upflow anaerobic sludge blanket (UASB), and bubble column, and their specific advantages and disadvantages. Sustainable sulfate reduction is the central focus, integrating the application of SRB and the conversion of lignocellulosic waste in a way that complements the objectives of the work and promotes a more cohesive flow in the summary. Thus, the interrelationship between effluent treatment strategies and waste valorization is emphasized from an environmental sustainability perspective, highlighting the relevance of this study in the broader context of a sustainable bioeconomy.

Downloads

Download data is not yet available.

References

Alexander, P.; Arnneth, A.; Henry, R.; Maire, J.; Rabim, S.; Rounsevell, M.D.A., 2023. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nature Food, v. 4, 84-95. https://doi.org/10.1038/s43016-022-00659-9

Asif, M.; Aziz, A.; Ashraf, G.; Iftikhar, T.; Sun, Y.; Liu, H., 2021. Turning the page: advancing detection platforms for sulfate reducing bacteria and their perks. The Chemical Record, v. 22, 1-15. https://doi.org/10.1002/tcr.202100166

Ayangbenro, A.S.; Olanrewaju, O.S.; Babalola, O.O., 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology, v. 9, 1-10. https://doi.org/10.3389/fmicb.2018.01986

Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E., 2018. Recent Trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, v. 6, 1-19. https://doi.org/10.3389/fenrg.2018.00141

Bayrakdar, A.; Sahinkaya, E.; Gungor, M.; Uyanik, S. and Atasoy, A.D., 2009. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bioresource Technology, v. 100, (19), 4354-4360. https://doi.org/10.1016/j.biortech.2009.04.028

Bertolino, S.M.; Silva, L.A.M.; Aquino, S.F.; Leão, V.A., 2015. Comparison of uasb and fluidized-bed reactors for sulfate reduction. Brazilian Journal of Chemical Engineering, v. 32, (1), 59-71. https://doi.org/10.1590/0104-6632.20150321s00003158

Brahmacharimayum, B.; Mohanty, M.P.; Ghosh, P.K., 2019. Theoretical and practical aspects of biological sulfate reduction: a review. Global Nest Journal, v. 2, (2), 222-244. https://doi.org/10.30955/gnj.002577

Camani, P.H.; Anholon, B.F.; Toder, R.R.; Rosa, D.S., 2020. Microwave-assisted pretreatment of eucalyptus waste to obtain cellulose fibers. Cellulose, v. 27, 3591-3609. https://doi.org/10.1007/s10570-020-03019-7

Camarini, G.; Pinheiro, S.M.M., 2014. Microstructure of recycled gypsum plaster by SEM. Advanced Materials Research, v. 912-914, 243-246. https://doi.org/10.4028/www.scientific.net/amr.912-914.243

Chang, V.S.; Burr, B.; Holtzapple, M.T., 1997. Lime pretreatment of switchgrass. Appl Biochem Biotechnol, v. 63, 3-19. https://doi.org/10.1007/BF02920408

Cordon, H.C.F.; Cagnoni, F.C.; Ferreira, F.F., 2019. Comparison of physical and mechanical properties of civil construction plaster and recycled waste gypsum from São Paulo, Brazil. Journal of Building Engineering, v. 22, 504-512. https://doi.org/10.1016/j.jobe.2019.01.010

Dong, Y.; Wang, J.; Gao, Z.; Di, J.; Wang, D.; Guo, X.; Hu, Z.; Gao, X.; Wang, Y., 2023. Study on growth influencing factors and desulfurization performance of sulfate reducing bacteria based on the response surface methodology. ACS OMEGA, v. 8, (4), 4046-4059. https://doi.org/10.1021/acsomega.2c06931

Dordević, D.; Jančíková, S.; Vítězová, M.; Kushkevych, I., 2020. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. Journal of Advanced Research, v. 27, 55-69. https://doi.org/10.1016/j.jare.2020.03.003

Finke, N.; Vandieken, V.; Jerjensen, B.B., 2007. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, v. 59, (1), 10-22. https://doi.org/10.1111/j.1574-6941.2006.00214.x

Galić, M.; Stajić, M.; Vukojević, J. and Ćilerdžić, J., 2021. Obtaining cellulose available raw materials by pretreatment of common agroforestry residues with Pleurotus spp. Frontiers in Bioengineering and Biotechnology, v. 9, 720473. https://doi.org/10.3389/fbioe.2021.720473

Ghaffar, S.H.; Burman, M.; Braimah, N., 2019. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production, v. 244, 1-8. https://doi.org/10.1016/j.jclepro.2019.118710

Guedri, A.; Yahya, K.; Hamdi, N.; Baeza-Urrea, O.; Wagner, J.F.; Zagrarni, M.F., 2023. Properties evaluation of composite materials based on gypsum plaster and posidonia oceanica fibers. Buildings, v. 13, (1), 1-15. https://doi.org/10.3390/buildings13010177

Guo, Q.; Yin, Q.; Du, J.; Zuo, J. and Wu, G., 2022. New insights into the r/K selection theory achieved in methanogenic systems through continuous-flow and sequencing batch operational modes. Science of the Total Environment, v. 807, (Part 1), 150732. https://doi.org/10.1016/j.scitotenv.2021.150732

Kanda, М.; Malovanyy, M.; Tymchuk, I.; Оdnorih, Z., 2019. Evaluation of the degree of environmental hazard from environmental pollution in the area of poultry farms impact. Environmental Problems, v. 4, (3), 161-166. https://doi.org/10.23939/ep2019.03.161

Karnachuk, O.V.; Rusanov, I.I.; Panova, I.A.; Grigoriev, M.A.; Zyusman, V.S.; Latygolets, E.A.; Kadyrbaev, M.K.; Gruzdev, E.V.; Beletsky, A.V.; Mardanov, A.V.; Pimenov, N.V.; Ravin, N.V., 2021. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Scientific Reports, v. 11, (1), 10720. https://doi.org/10.1038/s41598-021-90256-w

Kijjanapanich, P.; Do, A.T.; Annachhatre, A.P.; Esposito, E.G.; Yeh, D.H.; Lens, P.N.L., 2014. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration. Journal of Hazardous Materials, v. 269, 38-44. https://doi.org/10.1016/j.jhazmat.2013.10.015

Kushkevych, I.; Hýžová, B.; Vítězová, M.; Rittmann, S.K.M.R., 2021. Microscopic methods for identification of sulfate-reducing bacteria from various habitats. International Journal of Molecular Sciences, v. 22, (8), 1-27. https://doi.org/10.3390/ijms22084007

Li, Y.; Kontos, G.A.; Cabrera, D.V.; Avila, N.M.; Parkinson, T.W.; Viswanathan, M.B.; Singh, V.; Altpeter, F.; Labatut, R.A.; Guest, J.S., 2023. Design of a High-Rate Wastewater Treatment Process for Energy and Water Recovery at Biorefineries. ACS Sustainable Chemistry & Engineering, v. 11 (9), 3861-3872. https://doi.org/10.1021/acssuschemeng.2c07139

Liu, Z.; Li, L.; Li, Z.; Tian, X., 2018a. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environmental Technology, v. 39, 1814-1822. https://doi.org/10.1080/09593330.2017.1340347

Liu, Z.; Yin, H.; Lin, Z.; Dang, Z., 2018b. Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. Environmental Technology Reviews, v. 7, (1), 46-72. https://doi.org/10.1080/21622515.2018.1437783

Matheri, A.N.; Ntuli, F.; Ngila, J.C.; Seodigeng, T.; Zvinowanda, C.; Njenga, C.K., 2018. Quantitative characterization of carbonaceous and lignocellulosic biomass for anaerobic digestion. Renewable And Sustainable Energy Reviews, v. 92, 9-16. https://doi.org/10.1016/j.rser.2018.04.070

Michas, A.; Harir, M.; Lucio, M.; Vestergaard, G.; Himmelberg, A.; Schmitt-Kopplin, P.; Lueders, T.; Hatzinikolaou, D.G.; Schöler, A.; Rabus, R.; Schloter, M., 2022. Sulfate alters the competition among microbiome members of sediments chronically exposed to asphalt. Frontiers in Microbiology, v. 29, (11), 556793. https://doi.org/10.3389/fmicb.2020.556793

Muthuvelu, K.S.; Rajarathinam, R.; Kanagaraj, L.P.; Ranganathan, R.V.; Dhanasekaran, K.; Manickam, N.K., 2019. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Management, v. 87, 368-374. https://doi.org/10.1016/j.wasman.2019.02.015

Najib, T. Solgi, M.; Farazmand, A.; Heydarian, S.M.; Nasernejad, B., 2017. Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering, v. 5, (4), 3256-3265. https://doi.org/10.1016/j.jece.2017.06.016

Nguyen, H.T.; Nguyen, H.L.; Nguyen, M.H.; Nguyen, T.K.N.; Dinh, H.T., 2020. Sulfate reduction for bioremediation of AMD facilitated by an indigenous acidand metal-tolerant sulfate-reducer. Journal of Microbiology and Biotechnology, v. 30, (7), 1005-1012. https://doi.org/10.4014/jmb.2001.01012

Oliveira, C.A.; Fuess, L.T.; Soares, L.A.; Damianovic, M.H.R.Z., 2021. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. Journal of Environmental Management, v. 296, 113254. https://doi.org/10.1016/j.jenvman.2021.113254

Ooshima, H.; Aso, K.; Harano, Y.; Yamamoto, T. 1984. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters, v. 6, (5), 289-294. https://doi.org/10.1007/BF00129056

Pererva, Y.; Miller, C.D.; Sims, R.C., 2020. Approaches in Design of Laboratory-Scale UASB Reactors. Processes, v. 8, (6), 1-26. https://doi.org/10.3390/pr8060734

Picchio, R.; Di Marzio, N.; Cozzolino, L.; Venanzi, R.; Stefanoni, W.; Bianchini, L.; Pari, L.; Latterini, F., 2023. Pellet production from pruning and alternative forest biomass: a review of the most recent research findings. Materials, v. 16, (3), 4689. https://doi.org/10.3390/ma16134689

Ranadev, P.; Revanna, A.; Bagyaraj, D.J.; Shinde, A.H., 2023. Sulfur oxidizing bacteria in agro ecosystem and its role in plant productivity — a review. Journal of Applied Microbiology, v. 134, (8), lxad161. https://doi.org/10.1093/jambio/lxad16

Reis, J.M.; Aguiar, A.B.S.; Freitas, G.; Vassoler, V.C.; Barros, G.V.L.; Santos, G.E.; Ramirez, I.; Rodriguez, R.P., 2022. Metals removal techniques from wastewater: a literature review. Research, Society and Development, v. 11, (2), 1-18. https://doi.org/10.33448/rsd-v11i2.26100

Runtti, H.; Tolonen, E.; Tuomikoski, S.; Luukkonen, T.; Lassi, U., 2018. How to tackle the stringent sulfate removal requirements in mine water treatment – a review of potential methods. Environmental Research, v. 167, 207-222. https://doi.org/10.1016/j.envres.2018.07.018

Schirmer, C.; Eib, R.; Maschke, R.W.; Mozaffari, F.; Junne, S.; Daumke, R.; Ottinger, M.; G ̈hmann, R.; Ott, C.; Wenk, I.; Kubischik, J.; Eib, D., 2022. Single-use technology for the production of cellular agricultural products: Where are we today? Chemie Ingenieur Technik (Chemical Engineering and Technology), v. 94, (12), 2018-2025. https://doi.org/10.1002/cite.202200092

Siddique, M.; Mengal, A.N.; Khan, S.; Ali khan, L.; Kaka, E.K., 2023. Pretreatment of lignocellulosic biomass conversion into biofuel and biochemical: a comprehensive review. MOJ Biology and Medicine, v. 8, (1), 39-43. https://doi.org/10.15406/mojbm.2023.08.00181

Suresh, T.; Sivarajasekar, N.; Balasubramani, K.; Ahamad. T.; Alam, M.; Naushad, M., 2020. Process intensifcation and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass Bioenergy, v. 14, 1-10. https://doi.org/10.1016/j.biombioe.2020.105752

Tang, K.; Baskaran, V.; Nemati, M., 2009. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, v. 44, (1), 73-94. https://doi.org/10.1016/j.bej.2008.12.011

Tao, R., 2019. Nutrient and organic matter removal from wastewaters with microalgae. PhD Thesis, Université Paris-Est, Paris. Retrieved 2024-02-21, from https://www.researchgate.net/publication/337756980

Tian, H.; Gao, P.; Chen, Z.; Li, Y.; Li, Y.; Wang, Y.; Zhou, J.; Li, G.; Ma, T., 2017. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Frontiers In Microbiology, v. 8, 1-14. https: //doi.org/10.3389/fmicb.2017.00143

van den Brand, T.P.; Roest, K.; Chen, G.H.; Brdjanovic, D.; van Loosdrecht, M.C., 2015. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wasewater treatment. World Journal of Microbiology and Biotechnology, v. 31, (11), 1675-1681. https://doi.org/10.1007/s11274-015-1935-x

Wagenfeld, J.G.; Al-Ali, K.; Almheiri, S.; Slavens, A.F.; Calvet, N., 2019. Sustainable applications utilizing sulfur, a by-product from oil and gas industry: a state-of-the-art review. Waste Management, v. 15, 78-89. https://doi.org/10.1016/j.wasman.2019.06.002

Xie, S.; Tran, H-T.; Pu, M.; Zhan, T., 2023. Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends. Materials Science for Energy Technologies, v. 6, 331-342. https://doi.org/10.1016/j.mset.2023.02.006

Yuya, S.; Hamai, T.; Tomo, A.; Tomohiro, I.; Mikio, K.; Hiroshi, H.; Takeshi, S., 2019. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment. Applied Microbiology and Biotechnology, v. 103, 7783-7793. https://doi.org/10.1007/s00253-019-10063-2

Zhang, Y.; Zhen, Y.; Mi, T.; He, H.; Yu, Z., 2016. Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang Estuary. Journal of Ocean University of China, v. 15, 107-116. https://doi.org/10.1007/s11802-016-2781-7

Zhang, Q.; Wang, H.; Lu, C., 2020a. Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model. Environmental Pollution, v. 265, (Part B), 115105. https://doi.org/10.1016/j.envpol.2020.115105

Zhang, Y.; Li, T.; Shen, Y.; Wang, L.; Zhang, H.; Qian, H.; Oi, X., 2020b. Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Industrial Crops and Products, v. 149, 112356-112370. https://doi.org/10.1016/j.indcrop.2020.112356

Zhang, Z.; Zang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z., 2022. A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, v. 376, 134109-134121. https://doi.org/10.1016/j.jclepro.2022.134109

Downloads

Published

2024-03-05

How to Cite

Paiva, G. M. da S., Araujo , G. P. de, Lins, I. X., Cavalcanti, D. de L., Santos, L. B. dos, Benachour, M., & Santos, V. A. dos. (2024). Sustainable reduction of sulfate contained in gypsum waste: perspectives and applications for agroforestry waste and sanitary sewage. Revista Brasileira De Ciências Ambientais, 59, e1752. https://doi.org/10.5327/Z2176-94781752

More articles by the same author(s)