A Review of Anthocyanin Extraction and Bioethanol Production from Fruit Residues
DOI:
https://doi.org/10.5327/Z2176-94781933Keywords:
value-added products, phenolic compounds, reducing sugars, biofuels, integrated biorefinery.Abstract
The growth in fruit consumption worldwide has generated an increase in waste. One way to value this residue and reduce future environmental problems is by using some of the available bioactive compounds. Among the compounds found in this kind of waste are cellulose, hemicellulose, soluble sugars, reducing sugars, organic acids, and polyphenols, that is, biocompounds with potential industrial applications. Conventional or unconventional extraction techniques can recover these added-value compounds, such as anthocyanins, that act as natural dyes. Other processes can be applied to this residue, such as hydrolysis and fermentation, to obtain reducing sugars and produce biofuels. In this context, this review provides information about using fruit waste through anthocyanin extraction techniques and reducing sugars in bioethanol production, considering the importance of using biorefinery integrated into constructing a circular economy.
Downloads
References
Ahmadiani, N.; Sigurdson, G.T.; Robbins, RJ; Collins, T.M.; Giusti, M.M., 2019. Solid phase fractionation techniques for segregation of red cabbage anthocyanins with different colorimetric and stability properties. Food Research International, v. 120, 688-696. https://doi.org/10.1016/j.foodres.2018.11.026
Alara, O.R.; Abdurahman, N.H., 2019. Microwave-assisted extraction of phenolics from hibiscus sabdariffa calyces: kinetic modelling and process intensification. Industrial Crops and Products, v. 137, 528-535. https://doi.org/10.1016/j.indcrop.2019.05.053
Alara, O.R.; Abdurahman, N.H.; Mudalip, S.K.A., 2019. Optimizing microwave‐assisted extraction conditions to obtain phenolic‐rich extract from Chromolaena odorata leaves. Chemical Engineering & Technology, v. 42, (9), 1733-1740. https://doi.org/10.1002/ceat.201800462
Albuquerque, B.R.; Pinela, J.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R., 2020. Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chemistry, v. 316, 126364. https://doi.org/10.1016/j.foodchem.2020.126364
Allison, B.J.; Simmons, C.W., 2018. Obtaining multiple coproducts from red grape pomace via anthocyanin extraction and biogas production. Journal of Agricultural and Food Chemistry, v. 66, (30), 8045-8053. https://doi.org/10.1021/acs.jafc.8b02250
Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C.F.R., 2018. Recovery of bioactive anthocyanin pigments from ficus carica l. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, v. 113, 197-209. https://doi.org/10.1016/j.foodres.2018.07.016
Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V., 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends in Food Science & Technology, v. 49, 96-109. https://doi.org/10.1016/j.tifs.2016.01.006
Barroso, T.L.C.T.; Castro, L.E.N.; Barbero, G.F.; Palma, M.; Carrera, C.; Rostagno, M.A.; Carneiro, T.F., 2023. Optimization of a microwave-assisted extraction method for the recovery of the anthocyanins from jabuticaba by-products. Agronomy, v. 13, (2), 556. https://doi.org/10.3390/agronomy13020556
Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P., 2018. A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends in Analytical Chemistry, v. 100, 82-102. https://doi.org/10.1016/j.trac.2017.12.018
Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H.; Luo, Z., 2019. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from pyrus communis ‘starkrimson’ fruit peel.” Food Chemistry, v. 297, 124993. https://doi.org/10.1016/j.foodchem.2019.124993
Benchikh, Y.; Aissaoui, A.; Allouch, R.; Mohellebi, N., 2021. Optimising anthocyanin extraction from strawberry fruits using response surface methodology and application in yoghurt as natural colorants and antioxidants. Journal of Food Science and Technology, v. 58, (5), 1987-1995. https://doi.org/10.1007/s13197-020-04710-0
Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G., 2015. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, v. 52, (9), 5898-5905. https://doi.org/10.1007/s13197-014-1668-0
Bocker, R.; Silva, E.K., 2022. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chemistry: X, v. 15, 100398. https://doi.org/10.1016/j.fochx.2022.100398
Bortolini, D.G.; Maciel, G.M.; Fernandes, I.A.A.; Rossetto, R.; Brugnari, T.; Ribeiro, V.R.; Haminiuk, C.W.I., 2022. Biological potential and technological applications of red fruits: an overview. Food Chemistry Advances, v. 1, 100014. https://doi.org/10.1016/j.focha.2022.100014
Campos, D.A.; García, R.G.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M., 2020. Management of fruit industrial by-products — a case study on circular economy approach. Molecules, v. 25, (2), 320. https://doi.org/10.3390/molecules25020320
Carpentieri, S.; Ferrari, G.; Pataro, G., 2023. Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace: process optimization using response surface methodology. Frontiers in Nutrition, v. 10, 1158019. https://doi.org/10.3389/fnut.2023.1158019
Casabar, J.T.; Ramaraj, R.; Tipnee, S.; Unpaprom, Y., 2020. Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel, v. 279, 118437. https://doi.org/10.1016/j.fuel.2020.118437
Cefali, L.C.; Franco, J.G.; Nicolini, G.F.; Ataide, J.A.; Mazzola, P.G., 2019. In vitro antioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation. Journal of Cosmetic Dermatology, v. 18, (2), 539-544. https://doi.org/10.1111/jocd.12842
Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P., 2021. Current trends and possibilities for exploitation of grape pomace as a potential source for value addition. Environmental Pollution, v. 278, 116796. https://doi.org/10.1016/j.envpol.2021.116796
Churyumov, G.I., 2021. Microwave heating - electromagnetic fields causing thermal and non-thermal effects. IntechOpen. https://doi.org/10.5772/intechopen.87921
Da Rocha, C.B.; Noreña, C.P.Z., 2020. Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. International Journal of Food Engineering, v. 16, (1-2). https://doi.org/10.1515/ijfe-2019-0191
Demiray, E.; Gerbağa, A.; Karatay, S.E.; Donmez, G., 2024. Sequential anthocyanin extraction and ethanol production from eggplant peel through biorefinery approach. Bioenergy Research, v. 17, 383-391. https://doi.org/10.1007/s12155-023-10631-5
Fakayode, O. A.; Akpabli-Tsigbe, N.D.K.; Wahia, H.; Tu, S.; Ren, M.; Zhou, C.; Ma, H., 2021. Integrated bioprocess for bio-ethanol production from watermelon rind biomass: ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation. Renewable Energy, v. 180, 258-270. https://doi.org/10.1016/j.renene.2021.08.057
Farooq, S.; Shah, M.A.; Siddiqui, M.W.; Dar, B.N.; Mir, S.A.; Ali. A., 2020. Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization, v. 14, (6), 3508-3519. https://doi.org/10.1007/s11694-020-00598-8
Favaretto, D.P.C.; Rempel, A.; Lanzini, J.R.; Silva, A.C.M.; Lazzari, T.; Barbizan, L.D.; Brião, V.B.; Colla, L.M.; Treichel, H., 2023. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology and Biotechnology, v. 39, 144. https://doi.org/10.1007/s11274-023-03588-2
Fernandes, F.A.N.; Fonteles, T.V.; Rodrigues, S.; de Brito, E.S.; Tiwari, B.K., 2020. Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria Cauliflora) peel: kinetics and mathematical modeling. Journal of Food Science and Technology, v. 57, (6), 2321-2328. https://doi.org/10.1007/s13197-020-04270-3
Ferreira, L.F.; Minuzzi, N.M.; Rodrigues, R.F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V.C., 2020. Citric Acid water-based solution for blueberry bagasse anthocyanins recovery: optimization and comparisons with microwave-assisted extraction (MAE). LWT, v. 133, 110064. https://doi.org/10.1016/j.lwt.2020.110064
Ferri, M.; Vannini, M.; Ehrnell, M.; Eliasson, L.; Xanthakis, E.; Monari, S.; Sisti, L.; Marchese, P.; Celli, A.; Tassoni. A., 2020. From winery waste to bioactive compounds and new polymeric biocomposites: a contribution to the circular economy concept. Journal of Advanced Research, v. 24, 1-11. https://doi.org/10.1016/j.jare.2020.02.015
Flores, F.P.; Singh, R.K.; Kong, F., 2016. Anthocyanin extraction, microencapsulation, and release properties during in vitro digestion. Food Reviews International, v. 32, (1), 46-67. https://doi.org/10.1080/87559129.2015.1041185
Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C.; Olaiz, N., 2019. Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, v. 12, (7), 1102-1109. https://doi.org/10.1007/s11947-019-02283-1
Galvão, A.C.; Souza, P.P.; Robazza, W.S.; França, C.A.L., 2020. Capacity of solutions involving organic acids in the extraction of the anthocyanins present in jabuticaba skins (Myrciaria cauliflora) and red cabbage leaves (Brassica Oleracea). Journal of Food Science and Technology, v. 57, (11), 3995-4002. https://doi.org/10.1007/s13197-020-04430-5
Ganesh, K.S.; Sridhar, A.; Vishali, S., 2022. Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities - a review. Chemosphere, v. 287, Part 3, 132221. https://doi.org/10.1016/j.chemosphere.2021.132221
Guo, N.; Kou, P.; Jiang, Y-W.; Wang, L-T.; Niu, L-J.; Liu, Z-M.; Fu, Y-J., 2019. Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chemistry, v. 296, 78-85. https://doi.org/10.1016/j.foodchem.2019.05.196
Herrera-Ramirez, J.; Meneses-Marentes, N.; Díaz, M.P.T., 2020. Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. Journal of Food Measurement and Characterization, v. 14, (1), 185-193. https://doi.org/10.1007/s11694-019-00280-8
Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M., 2019. Microwave-assisted extraction of phenolics from pomegranate peels: optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, v. 137, 1-11. https://doi.org/10.1016/j.cep.2019.01.006
Kumar, D.; Surya, K.; Verma, R., 2020. Bioethanol production from apple pomace using co-cultures with Saccharomyces cerevisiae in solid-state fermentation. Journal of Microbiology, Biotechnology and Food Sciences, v. 9, 742-745. https://doi.org/10.15414/jmbfs.2020.9.4.742-745
Li, Y.; Tao, F.; Cui, K.; Song, Y.; Nan, L.; Cui, C.; Li, Y.; Yang, J.; Wang, Y.; Jiang, L., 2020. Optimization of ultrasonic extraction of anthocyanin in mulberry residue by response surface methodology. IOP Conference Series: Earth and Environmental Science, v. 559, (1), 012024. https://doi.org/10.1088/1755-1315/559/1/012024
Liao, J.; Xue, H.; Li, J.; Peng, L., 2022. Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit. Food Science and Technology, v. 42, e20922. https://doi.org/10.1590/fst.20922
Liu, C.; Xue, H.; Shen, L.; Liu, C.; Zheng, X.; Shi, J.; Xue, S., 2019. Improvement of Anthocyanins Rate of Blueberry Powder under Variable Power of Microwave Extraction. Separation and Purification Technology, v. 226, 286-298. https://doi.org/10.1016/j.seppur.2019.05.096
Liu, Z., 2023. A Review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. International Journal of Biological Macromolecules, v. 242, 124804. https://doi.org/10.1016/j.ijbiomac.2023.124804
López, C.J.; Caleja, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R., 2018. Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. fruits. Food Chemistry, v. 264, 81-91. https://doi.org/10.1016/j.foodchem.2018.04.103
Luo, X.; Wang, R.; Wang, J.; Li, Y.; Luo, H.; Chen, S.; Zeng, X.; Han, Z., 2022. Acylation of anthocyanins and their applications in the food industry: mechanisms and recent research advances. Foods, v. 11, 2166. https://doi.org/10.3390/foods11142166
Magama, P.; Chiyanzu, I.; Mulopo, J., 2022. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresource Technology Reports, v. 18, 101031. https://doi.org/10.1016/j.biteb.2022.101031
Martin, J.; Navas, M.J.; Jimenez-Moreno, A.M.; Asuero, A.G., 2017. Anthocyanin pigments: importance, sample preparation and extraction. Phenolic Compounds - Natural Sources, Importance and Applications. InTech. https://doi.org/10.5772/66892
Martinsen, B.K.; Aaby, K.; Skrede, G., 2020. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, v. 316, 126297. https://doi.org/10.1016/j.foodchem.2020.126297
Mazaheri, D.; Orooji, Y.; Mazaheri, M.; Moghaddam, M.S.; Karimi-Maleh, H., 2021. Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Conversion and Biorefinary. https://doi.org/10.1007/s13399-021-01562-2
Mishra, K.; Rathore, M.; Tickoo, J.; Singh, A.K., 2022. Production of bioethanol from fruit waste. Materials Today: Proceedings, v. 68, 1167-1171. https://doi.org/10.1016/j.matpr.2022.09.324
Mortensen, A., 2006. Carotenoids and other pigments as natural colourants. Pure and Applied Chemistry, v. 78, (8), 1477-1491. https://doi.org/10.1351/pac200678081477
Nguyen, T.V.T.; Unpaprom, Y.; Manmai, N.; Whangchai, K.; Ramaraj, R., 2022. Impact and significance of pretreatment on the fermentable sugar production from low-grade longan fruit wastes for bioethanol production. Biomass Conversion and Biorefinery, v. 12, (5), 1605-1617. https://doi.org/10.1007/s13399-020-00977-7
Ongkowijoyo, P.; Luna-Vital, D.A.; de Mejia, E.G., 2018. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: an update. Food Chemistry, v. 250, 113-126. https://doi.org/10.1016/j.foodchem.2018.01.055
Paini, J.; Benedetti, V.; Ail, S.S.; Castaldi, M.J.; Baratieri, M.; Patuzzi, F., 2022. Valorization of wastes from the food production industry: a review towards an integrated agri-food processing biorefinery. Waste and Biomass Valorization, v. 13, (1), 31-50. https://doi.org/10.1007/s12649-021-01467-1
Panahi, H.K.S.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M., 2022. Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science, v. 43, 71-81. https://doi.org/10.1016/j.cofs.2021.11.001
Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J., 2019. Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering, v. 240, 105-113. https://doi.org/10.1016/j.jfoodeng.2018.07.019
Pinela, J.; Prieto, M.A.; Pereira, E.; Jabeur, I.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R., 2019. Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry, v. 275, 309-321. https://doi.org/10.1016/j.foodchem.2018.09.118
Puértolas, E.; Cregenzán, O.; Luengo, E.; Álvarez, I.; Raso, J., 2013. Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, v. 136, (3-4), 1330-1336. https://doi.org/10.1016/j.foodchem.2012.09.080
Ratnadewi, A.A.I.; Anggita, I.D.; Safitri, R.; Safitri, F.M.; Fachri, B.A., 2023. Cellulose hydrolysis process of red dragon fruit pell (Hylocereus costaricensis) as candidate for bioethanol production. AIP Conference Proceedings, v. 2818, 030006. https://doi.org/10.1063/5.0131387
Roukas, T.; Kotzekidou, P., 2022. From food industry wastes to second generation bioethanol: a review. Reviews in Environmental Science and Bio/Technology, v. 21, (1), 299-329. https://doi.org/10.1007/s11157-021-09606-9
Sabino, L.B.S.; Alves Filho, E.G.; Fernandes, F.A.N.; de Brito, E.S.; da Silva Júnior, I.J., 2021. Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). Food and Bioproducts Processing, v. 127, 77-89. https://doi.org/10.1016/j.fbp.2021.02.012
Şahin, E.K.; Bilgin, M.; Şahin, S., 2021. Recovery of anthocyanins from sour cherry (Prunus cerasus L.) peels via microwave assisted extraction: monitoring the storage stability. Preparative Biochemistry & Biotechnology, v. 51, (7), 686-696. https://doi.org/10.1080/10826068.2020.1852418
Sathendra, E.R.; Baskar, G.; Praveenkumar, R., 2019. Production of bioethanol from lignocellulosic banana peduncle waste using Kluyveromyces marxianus. Journal of Environmental Biology, v. 40, 769-774. https://doi.org/10.22438/jeb/40/4(SI)/JEB-18
Sangkharak.; K.; Chookhun, K.; Numreung, J.; Prasertsan, P., 2020. Utilization of coconut meal, a waste product of milk processing, as a novel substrate for biodiesel and bioethanol production. Biomass Conversion and Biorefinery, v. 10, 651-662. https://doi.org/10.1007/s13399-019-00456-8
Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G., 2016. Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains. Food Chemistry, v. 192, 452-459. https://doi.org/10.1016/j.foodchem.2015.06.102
Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B., 2020. Green processing and biotechnological potential of grape pomace: current trends and opportunities for sustainable biorefinery. Bioresource Technology, v. 314, 123771. https://doi.org/10.1016/j.biortech.2020.123771
Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H., 2022. Extraction and purification of anthocyanins: a review. Journal of Agriculture and Food Research, v. 8, 100306. https://doi.org/10.1016/j.jafr.2022.100306
Teke, G.M.; De Vos, L.; Smith, I.; Kleyn, T.; Mapholi, Z., 2023. Development of an ultrasound assisted pre treatment strategy for the extraction of d Limonene toward the production of bioethanol from citrus peel waste (CPW). Bioprocess and Biosystems Engineering, v. 46, 1627-1637. https://doi.org/10.1007/s00449-023-02924-y
Tena, N.; Asuero, A.G., 2022. Up-to-date analysis of the extraction methods for anthocyanins: principles of the techniques, optimization, technical progress, and industrial application. Antioxidants, v. 11, (2), 286. https://doi.org/10.3390/antiox11020286
Uribe, E.; Pasten, A.; Mejias, N.; Vega-Galvez, A., 2023. Valorization of sweet cherries (prunus avium ) using different drying methods for obtaining a healthy dried product. ACS Food Science & Technology, v. 3, (2), 301-309. https://doi.org/10.1021/acsfoodscitech.2c00328
Walkowiak-Tomczak, D.; Czapski, J., 2007. Colour changes of a preparation from red cabbage during storage in a model system. Food Chemistry, v. 104, (2), 709-714. https://doi.org/10.1016/j.foodchem.2006.10.079
Weber, F.; Boch, K.; Schieber, A., 2017. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT, v. 75, 72-77. https://doi.org/10.1016/j.lwt.2016.08.042
Welch, C.R.; Wu, Q.; Simon, J.E., 2008. Recent advances in anthocyanin analysis and characterization. Current Analytical Chemistry, v. 4, (2), 75-101. https://doi.org/10.2174/157341108784587795
Xu, Z.; Liu, W.; Zhu, L.; Sun, S.; Xin, X.; Chen, L.; Liu, Y., 2022. preparative isolation and purification of three anthocyanins from red raspberry (Rubus Ideaus L.) fruits by high-speed counter-current chromatography based on the optimization of the ultrasound-assisted extraction method. ACS Food Science & Technology, v. 2, (11), 1710-1718. https://doi.org/10.1021/acsfoodscitech.2c00215
Zhang, X.; Wang, S.; Wu, Q.; Battino, M.; Giampieri, F.; Bai, W.; Tian, L., 2022. Recovering high value-added anthocyanins from blueberry pomace with ultrasound-assisted extraction. Food Chemistry: X, v. 16, 100476. https://doi.org/10.1016/j.fochx.2022.100476
Zhao, C-L.; Yu, Y-Q.; Chen, Z-J.; Wen, G-S.; Wei, F-G.; Zheng, Q.; Wang, C-D.; Xiao, X-L., 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry, v. 214, 119-128. https://doi.org/10.1016/j.foodchem.2016.07.073
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.