Heterogeneous Fenton process optimization with Ni0.5Zn0.5Fe2O4 nanocatalyst in stabilized landfill leachate treatment
DOI:
https://doi.org/10.5327/Z2176-94782311Palavras-chave:
ferrita, descoloração, número de cor, metodologia de superfície de resposta (MSR), processo oxidativo avançado (POA)Resumo
Lixiviados de aterros sanitários são efluentes de elevada complexidade e recalcitrância, apresentando alto potencial poluidor quando não submetidos a tratamentos adequados. O processo Fenton heterogêneo com nanocatalisador Ni0,5Zn0,5Fe2O4 foi aplicado para otimizar a descoloração de lixiviado estabilizado in natura de aterro sanitário, considerando-se o número de cor em termos do coeficiente de absorção espectral. Para isso, foram utilizados o delineamento composto central rotacional (DCCR) e a metodologia de superfície de resposta (MSR) para a otimização dos parâmetros operacionais: pH, concentração de catalisador e fator de H2O2. O catalisador Ni0,5Zn0,5Fe2O4 foi caracterizado por difração de raios X (DRX), espectroscopia no infravermelho por transformada de Fourier (FTIR), análise textural pelo método BET-BJH, microscopia eletrônica de varredura (MEV) e espalhamento dinâmico de luz (DLS). De acordo com a análise de variância (ANOVA), o modelo gerado pela regressão dos dados experimentais foi estatisticamente significativo, com coeficiente de determinação (R2) de 0,96. O ponto ótimo definido pelas superfícies de resposta correspondeu aos valores de 1,14 de fator de H2O2, 8,02 de pH e 0,66 g L-1 de concentração de catalisador, cuja combinação de valores resultou na resposta teórica de 89,70% de descoloração do lixiviado. Os testes de validação revelaram excelente ajuste entre o valor predito pelo modelo e os valores obtidos experimentalmente. A reprodutibilidade da condição otimizada limita-se aos lixiviados estabilizados. Na condição otimizada, o processo Fenton heterogêneo, quando comparado aos processos isolados H2O2 e Ni0,5Zn0,5Fe2O4, proporcionou maiores remoções de absorbância de compostos aromáticos simples e conjugados, como também de área espectral integrada de 200 a 800 nm, revelando, portanto, sua efetividade no tratamento de lixiviado de aterro sanitário, considerando-se os parâmetros analisados e sua contribuição para o alcance dos Objetivos de Desenvolvimento Sustentável (ODS).
Downloads
Referências
APHA; AWWA; WEF, 2012. Standard Methods for the Examination of Water and Wastewater. 22 ed. APHA, Washington, D.C.
Bogacki, J.; Marcinowski, P.; El‐Khozondar, B., 2019. Treatment of Landfill Leachates with Combined Acidification/Coagulation and The Fe0/H2O2 Process. Water, v. 11 (2), 194. https://doi.org/10.3390/w11020194
Chelladurai, S.J.S.; Murugan, K.; Ray, A.P.; Upadhyaya, M.; Narasimharaj, V.; Gnanasekaran, S., 2021. Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings, v. 37 (2), 1301-1304. https://doi.org/10.1016/j.matpr.2020.06.466
Chen, W.; Zhang, A.; Gu, Z.; Li, Q., 2018. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chemical Engineering Journal, v. 354, 680-691. https://doi.org/10.1016/j.cej.2018.08.012
Colombo, A.; Módenes, A.N.; Trigueros, D.E.G.; Medeiros, B.L.; Marin, P.; Monte Blanco, S.P.D.; Hinterholz, C.L., 2018. Toxicity evaluation of the landfill leachate after treatment with photo-Fenton, biological and photo-Fenton followed by biological processes. Journal of Environmental Science and Health, Part A, v. 54 (4), 269-276. https://doi.org/10.1080/10934529.2018.1544475
Correa, J.S.; Campos, M.; Montanhez, B.E.; Gonçalves, F.V.; Ide, C.N., 2020. Uso de Resposta Espectral em comprimentos de onda (230~290) nm como parâmetro indireto quantitativo de COD e DQO. Revista DAE, v. 68 (225), 51-62. https://doi.org/10.36659/dae.2020.052
Dantas, J.; Leal, E.; Costa, A.C.F.M., 2021a. A reação de combustão: uma abordagem técnica das principais generalidades. In: Costa, A.C.F.M.; Dantas, J. (Eds.), Nanomateriais cerâmicos por reação de combustão. Poisson, Belo Horizonte, pp. 8-37. https://doi.org/10.36229/978-65-5866-149-8
Dantas, J.; Leal, E.; Mapossa, A.B.; Pontes, J.R.M.; Freitas, N.L.; Fernandes, P.C.R.; Costa, A.C.F.M., 2021b. Biodiesel production on bench scale from different sources of waste oils by using NiZn magnetic heterogeneous nanocatalyst. International Journal of Energy Research, v. 45, 10924-10945. https://doi.org/10.1002/er.6577
Ertugay, N.; Kocakaplan, N.; Malkoç, E., 2017. Investigation of pH effect by Fenton-like oxidation with ZVI in treatment of the landfill leachate. International Journal of Mining, Reclamation and Environment, v. 31 (6), 404-411. https://doi.org/10.1080/17480930.2017.1336608
Guo, C.; Qin, X.; Guo, R.; Lv, Y.; Li, M.; Wang, Z.; Li, T., 2021. Optimization of heterogeneous Fenton-like process with Cu-Fe@CTS as catalyst for degradation of organic matter in leachate concentrate and degradation mechanism research. Waste Management, v. 134, 220-230. https://doi.org/10.1016/j.wasman.2021.08.021
Guo, Y.; Wang, S.; Chi, C.; Wang, Y.; Gao, X.; Li, P.; Wang, Y.; Wan, C.; Wu, S., 2024. Treatment of mature landfill leachate using chemical and electrical Fenton with novel Fe-loaded GAC heterogeneous catalysts. Journal of Water Process Engineering, v. 60, 105169. https://doi.org/10.1016/j.jwpe.2024.105169
Gutberlet, J.; Bramryd, T., 2025. Reimagining urban waste management: Addressing social, climate, and resource challenges in modern cities. Cities, v. 156, 105553. https://doi.org/10.1016/j.cities.2024.105553
Harzali, H.; Azizi, M., 2024. Investigating the adsorption of Malachite green and Methyl green onto synthesized Ni0.5Zn0.5Fe2O4 spinel ferrites. Journal of Environmental Chemical Engineering, v. 12 (5), 113413. https://doi.org/10.1016/j.jece.2024.113413
He, J.; Yang, X.; Men, B.; Wang, D., 2016. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences, v. 39, 97-109. https://doi.org/10.1016/j.jes.2015.12.003
Klung, H.; Alexander, L., 1962. X-ray diffraction procedures. Wiley, New York.
Li, P.; Yin, Z.; Chi, C.; Wang, Y.; Wang, Y.; Liu, H.; Lv, Y.; Jiang, N.; Wu, S., 2024. Treatment of membrane-concentrated landfill leachate by heterogeneous chemical and electrical Fenton processes with Iron-loaded granular activated carbon catalysts. Journal of Environmental Chemical Engineering, v. 12 (2), 112337. https://doi.org/10.1016/j.jece.2024.112337
Lucena, L.G.; Rocha, E.M.R.; Porto, C.A.; Carvalho, N.A.; Silva, F.L.H., 2019. Multi-response optimisation of the solar photo-Fenton process for landfill leachate post-treatment. Desalination and Water Treatment, v. 151, 106-116. https://doi.org/10.5004/dwt.2019.23754
Ma, C.; He, Z.; Jia, S.; Zhang, X.; Hou, S., 2018. Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite. Ecotoxicology and Environmental Safety, v. 161, 489-496. https://doi.org/10.1016/j.ecoenv.2018.06.031
Mapossa, A.B.; Dantas, J.; Costa, A.C.F.M., 2020. Transesterification reaction for biodiesel production from soybean oil using Ni0.5Zn0.5Fe2O4 nanomagnetic catalyst: Kinetic study. International Journal of Energy Research, v. 44, 6674-6684. https://doi.org/10.1002/er.5403
Metcalf; Eddy, 2016. Tratamento de Efluentes e Recuperação de Recursos. Tradução de Ivanildo Hespanhol e José Carlos Mierzwa. AMGH, Porto Alegre.
Moravia, W.G., 2010. Avaliação do tratamento de lixiviado de aterro sanitário através de processo oxidativo avançado conjugado com sistema de separação por membranas. Tese de Doutorado, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. Retrieved 2025-08-12, from http://hdl.handle.net/1843/ENGD-89WPAG
Moretti, A.C.L.; Santos, M.G.G.; Soares, M.E.; Freitas, J.V.R.; Rios, L.; Silva, F.S.; Gimenes, R.; Kondo, M.M.; Silva, M.R.A., 2023. Degradation of Municipal Solid Waste Landfill Leachate Using Ferrites from Spent Batteries as Heterogeneous Solar Photo-Fenton Catalyst. International Journal of Environmental Research, v. 17, 33. https://doi.org/10.1007/s41742-023-00519-9
Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M., 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, Hoboken.
Neves, L.C.; Souza, J.B.; Vidal, C.M.S.; Herbert, L.T.; Souza, K.V.; Martins, K.G.; Young, B.J., 2020. Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton. Ecotoxicology and Environmental Safety, v. 202, 110939. https://doi.org/10.1016/j.ecoenv.2020.110939
Nguyen, D.-M.T.; Robinson, D.T.; Zurbrügg, C.; Nguyen, T.H.T.; Dang, H.-L.; Pham, V.-M., 2025. Strategic landfill site selection for sustainable waste management in Phu Yen Province, Vietnam using geospatial technologies. Ecological Informatics, v. 89, 103198. https://doi.org/10.1016/j.ecoinf.2025.103198
Niveditha, S.V.; Gandhimathi, R., 2020a. Flyash augmented Fe3O4 as a heterogeneous catalyst for degradation of stabilized landfill leachate in Fenton process. Chemosphere, v. 242, 125189. https://doi.org/10.1016/j.chemosphere.2019.125189
Niveditha, S.V.; Gandhimathi, R., 2020b. Mineralization of stabilized landfill leachate by heterogeneous Fenton process with RSM optimization. Separation Science and Technology, v. 56 (3), 567-576. https://doi.org/10.1080/01496395.2020.1725573
Nouri, B.M.Y.; Al-Khatib, I.A., 2025. Exploring the energy recuperation and economic aspects of the waste stream at the Al-Minyah sanitary landfill in Palestine. Cleaner Waste Systems, v. 11, 100325. https://doi.org/10.1016/j.clwas.2025.100325
Oliveira, D.M.; Andrada, A.S., 2019. Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica, v. 65 (374), 170-179. https://doi.org/10.1590/0366-69132019653742509
Pham, V.L.; Kim, D.G.; Ko, S.O., 2018. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere, v. 191, p. 639-650. https://doi.org/10.1016/j.chemosphere.2017.10.090
Primo, O.; Rivero, M. J.; Ortiz, I., 2008. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, v. 153 (1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053
Quirino, A.G.C.; Rocha, E.M.R.; Cahino, A.M., 2022. Abordagem sistemática para identificação de lacunas no tratamento de lixiviados de aterros sanitários pelos processos Fenton e foto-Fenton heterogêneos. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, v. 15 (3), 1516-1540. https://doi.org/10.22201/iingen.0718378xe.2022.15.3.81747
Reed, J.S., 1996. Principles of ceramics processing. John Wiley & Sons, New York, 2. ed.
Sossou, K.; Prasad, S.B.; Agbotsou, K.E.; Souley, H.S.; Mudigandla, R., 2024. Characteristics of landfill leachate and leachate treatment by biological and advanced coagulation process: Feasibility and effectiveness – An overview. Waste Management Bulletin, v. 2 (2), 181-198. https://doi.org/10.1016/j.wmb.2024.04.009
Sruthi, T.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V., 2018. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere, v. 210, 38-43. https://doi.org/10.1016/j.chemosphere.2018.06.172
Tahar, L.B.; Abualreish, M.J.A.A.E.; Noubigh, A., 2024. Optimization of reaction variables in the sol-gel synthesis of Ni0.5Zn0.5Fe2O4 nanoparticles as a very fast adsorbent of methylene blue. Desalination and Water Treatment, v. 317, 100052. https://doi.org/10.1016/j.dwt.2024.100052
Taşci, S.; Özgüven, A.; Yildiz, B., 2021. Multi‑response/multi‑step optimization of heterogeneous fenton process with Fe3O4 catalyst for the treatment of landfill leachate. Water, Air, & Soil Pollution, v. 232, 275. https://doi.org/10.1007/s11270-021-05225-w
Tejera, J.; Miranda, R.; Hermosilla, D.; Urra, I.; Negro, C.; Blanco, Á., 2019. Treatment of a mature landfill leachate: comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. Water, v. 11 (9), 1849. https://doi.org/10.3390/w11091849
Tizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A., 2007. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, v. 140 (1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023
Turk, S.; Asci, Y., 2023. Color and chemical oxygen demand removal using homogeneous and heterogeneous Fenton oxidation of sugar industry wastewater. Desalination and Water Treatment, v. 306, 112-121. https://doi.org/10.5004/dwt.2023.29825
Wang, Q.; Hou, X.; Liu, S.; Wang, Y.; Gu, S.; Zhou, G.; Chai, J., 2024. Rambutan-like Ni0.5Zn0.5Fe2O4 nanospheres with tunable N-doped carbon shell as anode materials for high performance lithium-ion batteries. Journal of Alloys and Compounds, v. 978, 173529. https://doi.org/10.1016/j.jallcom.2024.173529
Wijekoon, P.; Koliyabandara, P.A.; Cooray, A.T.; Lam, S.S.; Athapattu, B.C.L.; Vithanage, M., 2022. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, v. 421, 126627. https://doi.org/10.1016/j.jhazmat.2021.126627
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.