Heterogeneous Fenton process optimization with Ni0.5Zn0.5Fe2O4 nanocatalyst in stabilized landfill leachate treatment
DOI:
https://doi.org/10.5327/Z2176-94782311Keywords:
ferrite, decolorization, color number, response surface methodology (RSM), advanced oxidative process (AOP)Abstract
Landfill leachates are highly complex and recalcitrant effluents, exhibiting high pollution potential when not subjected to proper treatment. The heterogeneous Fenton process with Ni0.5Zn0.5Fe2O4nanocatalyst was applied to optimize the decolorization of stabilized raw landfill leachate, considering the color number in terms of the spectral absorption coefficient. For this, the central composite design (CCD) and the response surface methodology (RSM) were used to optimize the operating parameters: pH, catalyst concentration, and H2O2 factor. Ni0.5Zn0.5Fe2O4 catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), textural analysis using the Brunauer–Emmett–Teller and the Barrett–Joyner–Halenda (BET-BJH) method, scanning electron microscopy (SEM), and dynamic light scattering (DLS). According to the analysis of variance (ANOVA), the model generated by experimental data regression was statistically significant, with a coefficient of determination (R2) of 0.96. The optimal point defined by the response surfaces corresponded to the values of H2O2 factor 1.14, pH 8.02, and catalyst concentration 0.66 g L-1, whose combination of values resulted in a theoretical response of 89.70% decolorization of the leachate. The validation tests revealed an excellent fit between the value predicted by the model and the values obtained experimentally. The reproducibility of the optimized condition is limited to stabilized leachates. Under the optimized condition, the heterogeneous Fenton process, when compared to the isolated H2O2 and Ni0.5Zn0.5Fe2O4 processes, provided higher absorbance removals of simple and conjugated aromatic compounds, as well as the integrated spectral area from 200 to 800 nm, thus revealing its effectiveness in the treatment of landfill leachate, considering the parameters analyzed, and its contribution to achieving the Sustainable Development Goals (SDGs).
Downloads
References
APHA; AWWA; WEF, 2012. Standard Methods for the Examination of Water and Wastewater. 22 ed. APHA, Washington, D.C.
Bogacki, J.; Marcinowski, P.; El‐Khozondar, B., 2019. Treatment of Landfill Leachates with Combined Acidification/Coagulation and The Fe0/H2O2 Process. Water, v. 11 (2), 194. https://doi.org/10.3390/w11020194
Chelladurai, S.J.S.; Murugan, K.; Ray, A.P.; Upadhyaya, M.; Narasimharaj, V.; Gnanasekaran, S., 2021. Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings, v. 37 (2), 1301-1304. https://doi.org/10.1016/j.matpr.2020.06.466
Chen, W.; Zhang, A.; Gu, Z.; Li, Q., 2018. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation. Chemical Engineering Journal, v. 354, 680-691. https://doi.org/10.1016/j.cej.2018.08.012
Colombo, A.; Módenes, A.N.; Trigueros, D.E.G.; Medeiros, B.L.; Marin, P.; Monte Blanco, S.P.D.; Hinterholz, C.L., 2018. Toxicity evaluation of the landfill leachate after treatment with photo-Fenton, biological and photo-Fenton followed by biological processes. Journal of Environmental Science and Health, Part A, v. 54 (4), 269-276. https://doi.org/10.1080/10934529.2018.1544475
Correa, J.S.; Campos, M.; Montanhez, B.E.; Gonçalves, F.V.; Ide, C.N., 2020. Uso de Resposta Espectral em comprimentos de onda (230~290) nm como parâmetro indireto quantitativo de COD e DQO. Revista DAE, v. 68 (225), 51-62. https://doi.org/10.36659/dae.2020.052
Dantas, J.; Leal, E.; Costa, A.C.F.M., 2021a. A reação de combustão: uma abordagem técnica das principais generalidades. In: Costa, A.C.F.M.; Dantas, J. (Eds.), Nanomateriais cerâmicos por reação de combustão. Poisson, Belo Horizonte, pp. 8-37. https://doi.org/10.36229/978-65-5866-149-8
Dantas, J.; Leal, E.; Mapossa, A.B.; Pontes, J.R.M.; Freitas, N.L.; Fernandes, P.C.R.; Costa, A.C.F.M., 2021b. Biodiesel production on bench scale from different sources of waste oils by using NiZn magnetic heterogeneous nanocatalyst. International Journal of Energy Research, v. 45, 10924-10945. https://doi.org/10.1002/er.6577
Ertugay, N.; Kocakaplan, N.; Malkoç, E., 2017. Investigation of pH effect by Fenton-like oxidation with ZVI in treatment of the landfill leachate. International Journal of Mining, Reclamation and Environment, v. 31 (6), 404-411. https://doi.org/10.1080/17480930.2017.1336608
Guo, C.; Qin, X.; Guo, R.; Lv, Y.; Li, M.; Wang, Z.; Li, T., 2021. Optimization of heterogeneous Fenton-like process with Cu-Fe@CTS as catalyst for degradation of organic matter in leachate concentrate and degradation mechanism research. Waste Management, v. 134, 220-230. https://doi.org/10.1016/j.wasman.2021.08.021
Guo, Y.; Wang, S.; Chi, C.; Wang, Y.; Gao, X.; Li, P.; Wang, Y.; Wan, C.; Wu, S., 2024. Treatment of mature landfill leachate using chemical and electrical Fenton with novel Fe-loaded GAC heterogeneous catalysts. Journal of Water Process Engineering, v. 60, 105169. https://doi.org/10.1016/j.jwpe.2024.105169
Gutberlet, J.; Bramryd, T., 2025. Reimagining urban waste management: Addressing social, climate, and resource challenges in modern cities. Cities, v. 156, 105553. https://doi.org/10.1016/j.cities.2024.105553
Harzali, H.; Azizi, M., 2024. Investigating the adsorption of Malachite green and Methyl green onto synthesized Ni0.5Zn0.5Fe2O4 spinel ferrites. Journal of Environmental Chemical Engineering, v. 12 (5), 113413. https://doi.org/10.1016/j.jece.2024.113413
He, J.; Yang, X.; Men, B.; Wang, D., 2016. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences, v. 39, 97-109. https://doi.org/10.1016/j.jes.2015.12.003
Klung, H.; Alexander, L., 1962. X-ray diffraction procedures. Wiley, New York.
Li, P.; Yin, Z.; Chi, C.; Wang, Y.; Wang, Y.; Liu, H.; Lv, Y.; Jiang, N.; Wu, S., 2024. Treatment of membrane-concentrated landfill leachate by heterogeneous chemical and electrical Fenton processes with Iron-loaded granular activated carbon catalysts. Journal of Environmental Chemical Engineering, v. 12 (2), 112337. https://doi.org/10.1016/j.jece.2024.112337
Lucena, L.G.; Rocha, E.M.R.; Porto, C.A.; Carvalho, N.A.; Silva, F.L.H., 2019. Multi-response optimisation of the solar photo-Fenton process for landfill leachate post-treatment. Desalination and Water Treatment, v. 151, 106-116. https://doi.org/10.5004/dwt.2019.23754
Ma, C.; He, Z.; Jia, S.; Zhang, X.; Hou, S., 2018. Treatment of stabilized landfill leachate by Fenton-like process using Fe3O4 particles decorated Zr-pillared bentonite. Ecotoxicology and Environmental Safety, v. 161, 489-496. https://doi.org/10.1016/j.ecoenv.2018.06.031
Mapossa, A.B.; Dantas, J.; Costa, A.C.F.M., 2020. Transesterification reaction for biodiesel production from soybean oil using Ni0.5Zn0.5Fe2O4 nanomagnetic catalyst: Kinetic study. International Journal of Energy Research, v. 44, 6674-6684. https://doi.org/10.1002/er.5403
Metcalf; Eddy, 2016. Tratamento de Efluentes e Recuperação de Recursos. Tradução de Ivanildo Hespanhol e José Carlos Mierzwa. AMGH, Porto Alegre.
Moravia, W.G., 2010. Avaliação do tratamento de lixiviado de aterro sanitário através de processo oxidativo avançado conjugado com sistema de separação por membranas. Tese de Doutorado, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. Retrieved 2025-08-12, from http://hdl.handle.net/1843/ENGD-89WPAG
Moretti, A.C.L.; Santos, M.G.G.; Soares, M.E.; Freitas, J.V.R.; Rios, L.; Silva, F.S.; Gimenes, R.; Kondo, M.M.; Silva, M.R.A., 2023. Degradation of Municipal Solid Waste Landfill Leachate Using Ferrites from Spent Batteries as Heterogeneous Solar Photo-Fenton Catalyst. International Journal of Environmental Research, v. 17, 33. https://doi.org/10.1007/s41742-023-00519-9
Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M., 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, Hoboken.
Neves, L.C.; Souza, J.B.; Vidal, C.M.S.; Herbert, L.T.; Souza, K.V.; Martins, K.G.; Young, B.J., 2020. Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton. Ecotoxicology and Environmental Safety, v. 202, 110939. https://doi.org/10.1016/j.ecoenv.2020.110939
Nguyen, D.-M.T.; Robinson, D.T.; Zurbrügg, C.; Nguyen, T.H.T.; Dang, H.-L.; Pham, V.-M., 2025. Strategic landfill site selection for sustainable waste management in Phu Yen Province, Vietnam using geospatial technologies. Ecological Informatics, v. 89, 103198. https://doi.org/10.1016/j.ecoinf.2025.103198
Niveditha, S.V.; Gandhimathi, R., 2020a. Flyash augmented Fe3O4 as a heterogeneous catalyst for degradation of stabilized landfill leachate in Fenton process. Chemosphere, v. 242, 125189. https://doi.org/10.1016/j.chemosphere.2019.125189
Niveditha, S.V.; Gandhimathi, R., 2020b. Mineralization of stabilized landfill leachate by heterogeneous Fenton process with RSM optimization. Separation Science and Technology, v. 56 (3), 567-576. https://doi.org/10.1080/01496395.2020.1725573
Nouri, B.M.Y.; Al-Khatib, I.A., 2025. Exploring the energy recuperation and economic aspects of the waste stream at the Al-Minyah sanitary landfill in Palestine. Cleaner Waste Systems, v. 11, 100325. https://doi.org/10.1016/j.clwas.2025.100325
Oliveira, D.M.; Andrada, A.S., 2019. Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica, v. 65 (374), 170-179. https://doi.org/10.1590/0366-69132019653742509
Pham, V.L.; Kim, D.G.; Ko, S.O., 2018. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere, v. 191, p. 639-650. https://doi.org/10.1016/j.chemosphere.2017.10.090
Primo, O.; Rivero, M. J.; Ortiz, I., 2008. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, v. 153 (1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053
Quirino, A.G.C.; Rocha, E.M.R.; Cahino, A.M., 2022. Abordagem sistemática para identificação de lacunas no tratamento de lixiviados de aterros sanitários pelos processos Fenton e foto-Fenton heterogêneos. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, v. 15 (3), 1516-1540. https://doi.org/10.22201/iingen.0718378xe.2022.15.3.81747
Reed, J.S., 1996. Principles of ceramics processing. John Wiley & Sons, New York, 2. ed.
Sossou, K.; Prasad, S.B.; Agbotsou, K.E.; Souley, H.S.; Mudigandla, R., 2024. Characteristics of landfill leachate and leachate treatment by biological and advanced coagulation process: Feasibility and effectiveness – An overview. Waste Management Bulletin, v. 2 (2), 181-198. https://doi.org/10.1016/j.wmb.2024.04.009
Sruthi, T.; Gandhimathi, R.; Ramesh, S.T.; Nidheesh, P.V., 2018. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere, v. 210, 38-43. https://doi.org/10.1016/j.chemosphere.2018.06.172
Tahar, L.B.; Abualreish, M.J.A.A.E.; Noubigh, A., 2024. Optimization of reaction variables in the sol-gel synthesis of Ni0.5Zn0.5Fe2O4 nanoparticles as a very fast adsorbent of methylene blue. Desalination and Water Treatment, v. 317, 100052. https://doi.org/10.1016/j.dwt.2024.100052
Taşci, S.; Özgüven, A.; Yildiz, B., 2021. Multi‑response/multi‑step optimization of heterogeneous fenton process with Fe3O4 catalyst for the treatment of landfill leachate. Water, Air, & Soil Pollution, v. 232, 275. https://doi.org/10.1007/s11270-021-05225-w
Tejera, J.; Miranda, R.; Hermosilla, D.; Urra, I.; Negro, C.; Blanco, Á., 2019. Treatment of a mature landfill leachate: comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. Water, v. 11 (9), 1849. https://doi.org/10.3390/w11091849
Tizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A., 2007. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, v. 140 (1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023
Turk, S.; Asci, Y., 2023. Color and chemical oxygen demand removal using homogeneous and heterogeneous Fenton oxidation of sugar industry wastewater. Desalination and Water Treatment, v. 306, 112-121. https://doi.org/10.5004/dwt.2023.29825
Wang, Q.; Hou, X.; Liu, S.; Wang, Y.; Gu, S.; Zhou, G.; Chai, J., 2024. Rambutan-like Ni0.5Zn0.5Fe2O4 nanospheres with tunable N-doped carbon shell as anode materials for high performance lithium-ion batteries. Journal of Alloys and Compounds, v. 978, 173529. https://doi.org/10.1016/j.jallcom.2024.173529
Wijekoon, P.; Koliyabandara, P.A.; Cooray, A.T.; Lam, S.S.; Athapattu, B.C.L.; Vithanage, M., 2022. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, v. 421, 126627. https://doi.org/10.1016/j.jhazmat.2021.126627
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

This work is licensed under a Creative Commons Attribution 4.0 International License.