Assessing the drought in the state of Ceará - Brazil: the relationship between drought, trophic state index, and anthropogenic pressure

Authors

DOI:

https://doi.org/10.5327/Z2176-94782111

Keywords:

drought index; water quality; land use and occupation; water demand.

Abstract

The present study addressed the effects of water scarcity on the deterioration of water quality in 155 reservoirs located in the state of Ceará, Brazil, using the drought index SPI (standardized precipitation index) calculated for the accumulation time scales of 3, 6, and 12 months. Based on this, a comparison was made with the variations in the trophic state index of these reservoirs, between 2008 and 2021. The study pointed to the occurrence of an intense series of dry events between 2012 and 2018, highlighting the year 2013, when the SPI assumed a value of -2.43 identifying an extremely dry year. Also, during this period, the amount of water stored by the state’s reservoirs achieved only 8% of the total storage capacity, with the existence of eutrophic and hyper-eutrophic dams accounting for 68% of the total in 2016. In this context, it was observed that, during the transition from a dry to a wet period, the average trophic state index of the reservoirs tended to increase, rising from 62.1 (2008–2012) to 65.1 (2013–2017), before decreasing to 61.5 with the return of the wet period (2018–2021). In addition, to assess the influence of human activities on water quality, land use and occupation data from three basins in Ceará were analyzed. It was observed that the basin with the largest area occupied by agriculture experienced the most significant increases in total phosphorus and chlorophyll-a concentrations.

Downloads

Download data is not yet available.

References

Abedin, M.A.; Collins, A.E.; Habiba, U.; Shaw, R., 2019. Climate change, water scarcity, and health adaptation in southwestern coastal Bangladesh. International Journal of Disaster Risk Science, v. 10, 28-42. https://doi.org/10.1007/s13753-018-0211-8.

Agência Nacional de Águas e Saneamento Básico (ANA). Catálogo de Metadados da ANA. 2019 (Accessed September 08, 2021) at:. https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/home.

Ahmadi, B.; Moradkhani, H., 2019. Revisiting hydrological drought propagation and recovery considering water quantity and quality. Hydrological Processes, v. 33 (10), 1492-1505. https://doi.org/10.1002/hyp.13417.

Araújo, F.; Becker, V.; Attayde, J.L., 2016. Shallow lake restoration and water quality management by the combined effects of polyaluminium chloride addition and benthivorous fish removal: a field mesocosm experiment. Hydrobiologia, v. 778 (1), 243-252. https://doi.org/10.1007/s10750-015-2606-5.

Araújo, G.M.; Lima Neto, I.E.; Becker, H., 2019. Phosphorus dynamics in a highly polluted urban drainage channel-shallow reservoir system in the Brazilian semiarid. Anais da Academia Brasileira de Ciências, v. 91 (3), e20180441. https://doi.org/10.1590/0001-376520192018044.

Araújo, J.C.; Landwehr, T.; Alencar, P.H.L.; Paulino, W.D., 2023. Water Management causes increment of reservoir silting and reduction of water yield in the semiarid State of Ceará, Brazil. Journal of South American Earth Sciences, v. 121, 104102. https://doi.org/10.1016/j.jsames.2022.104102.

Araújo, J.C.; Medeiros, P.H.A., 2013. Impact of dense reservoir networks on water resources in semiarid environments. Australasian Journal of Water Resources, v. 17 (1), 87-100. https://doi.org/10.7158/13241583.2013.11465422.

Badruzzaman, Mohammad; Pinzon, Jimena; Oppenheimer, Joan; Jacangelo, Joseph G., 2012. Sources of nutrients impacting surface waters in Florida: a review. Journal of Environmental Management, v. 109, 80-92. https://doi.org/10.1016/j.jenvman.2012.04.040.

Bezerra, L.A.V.; Paulino, W.D.; Garcez, D.S.; Becker, H.; Sánchez-Botero, J.I., 2014. Limnological characteristics of a reservoir in semiarid Northeastern Brazil subject to intensive tilapia farming (Orechromis niloticus Linnaeus, 1758). Acta Limnologica Brasiliensia, v. 26 (1), 47-59. https://doi.org/10.1590/S2179-975X2014000100007.

Braga, G.G.; Becker, V.; Oliveira, J.N.P.; Mendonça Junior, J.R.; Bezerra, A.F.M.; Torres, L.M.; Galvão, A.M.F.; Mattos, A., 2015. Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnologica Brasiliensia, v. 27 (1), 15-23. https://doi.org/10.1590/S2179-975X2214.

Carlson, R.E., 1977. A trophic state index for lakes 1. Limnology and oceanography, v. 22 (2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361.

Carmo, M.V.N.S.; Lima, C.H.R., 2020. Caracterização Espaço-Temporal das Secas no Nordeste a partir da Análise do índice SPI. Revista Brasileira de Meteorologia, v. 35 (2), 233-242. https://doi.org/10.1590/0102-7786352016.

Chaves, F.I.B.; Freitas Lima, P.; Leitão, R.C.; Paulino, W.D.; Santaella, S.T., 2013. Influence of rainfall on the trophic status of a Brazilian semiarid reservoir. Acta Scientiarum. Biological Sciences, v. 35 (4), 505-511. ISSN: 1679-9283.

Cissé, G., 2019. Food-borne and water-borne diseases under climate change in low-and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Tropica, v. 194, 181-188. https://doi.org/10.1016/j.actatropica.2019.03.012.

Companhia de Gestão dos Recursos Hídricos (COGERH). Portal hidrológico do Ceará - Sistema de Qualidades das Águas: Estado Trófico. 2021 (Accessed September 12, 2021) at:. http://www.hidro.ce.gov.br/acude/eutrofizacao.

Cortez, F.; Monicelli, F.; Cavalcante, H.; Becker, V., 2022. Effects of prolonged drought on water quality after drying of a semiarid tropical reservoir, Brazil. Limnologica, v. 93 (2), 125959. https://doi.org/10.1016/j.limno.2022.125959.

Cunha, D.G.F.; Finkler, N.R.; Lamparelli, M.C.; Calijuri, M.C.; Dodds, W.K.; Carlson, R.E., 2021. Characterizing trophic state in tropical/subtropical reservoirs: Deviations among indexes in the lower latitudes. Environmental Management, v. 68 (4), 491-504. https://doi.org/10.1007/s00267-021-01521-7.

Dantas, J.C.; Silva, R.M.; Santos, C.A.G., 2020. Drought impacts, social organization, and public policies in northeastern Brazil: a case study of the upper Paraíba River basin. Environmental Monitoring and Assessment, v. 192, 1-21. https://doi.org/10.1007/s10661-020-8219-0.

DeJarnett, N.; Robb, K.; Castellanos, I.; Dettman, L.; Patel, S.S., 2018. The American Public Health Association’s 2017 year of climate change and health: time for action. American Journal of Public Health, v. 108 (S2), S76-S77. https://doi.org/10.2105/AJPH.2017.304168.

Elliott, J.; Deryng, D.; Muller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Florke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D., 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, v. 111 (9), 3239-3244. https://doi.org/10.1073/pnas.1222474110.

Fernandes, F.A.C.; Santos, L.O.F.; Nunes, N.C.; Machado, N.G.; Biudes, M.S., 2024. Quantifying droughts in Mato Grosso with SPI and SPEI: exploring connections to tropical sea Surface temperatures. Theoretical and Applied Climatology, v. 155 (11), 9751-9766. https://doi.org/10.1007/s00704-024-05212-1.

Fernandez, J.P.R.; Franchito, S.H.; Rao, V.B., 2019. Future changes in the aridity of South America from regional climate model projections. Pure and Applied Geophysics, v. 176 (6), 2719-2728. https://doi.org/10.1007/s00024-019-02108-4.

Gonçalves, S.T.N.; Vasconcelos Júnior, F.C.; Silveira, C.S.; Cid, D.A.C.; Martins, E.S.P.R.; Costa, J.M.F., 2023. Comparative analysis of drought indices in hydrological monitoring in ceará’s semi-arid Basins, Brazil. Water, v. 15 (7), 1259. https://doi.org/10.3390/w15071259.

Guimarães, B.M.D.M; Lima Neto, I.E., 2023. Análise das correlações entre nitrogênio total e clorofila a em reservatórios do Ceará/Brasil. Engenharia Sanitaria e Ambiental, v. 28, e20230015. https://doi.org/10.1590/S1413-415220230015.

Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M., 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, v. 92 (4), 485-488. https://doi.org/10.1175/2010BAMS3103.1.

Instituto de Pesquisa e Estratégia Econômica do Ceará (IPECE), 2022. Informe nº 220, Agricultura familiar e segurança alimentar no Ceará (Accessed April 03, 2025) at:. https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2022/12/ipece_informe_220_20Dez2022_.pdf.

Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P; Lefebvre, A.; Pinay, G., 2019. Eutrophication: a new wine in an old bottle? Science of the Total Environment, v. 651 (Pt 1), 1-11. https://doi.org/10.1016/j.scitotenv.2018.09.139.

Lee, J.; Kim, S.; Jun, H., 2018. A study of the influence of the spatial distribution of rain gauge networks on areal average rainfall calculation. Water, v. 10 (11), 1635. https://doi.org/10.3390/w10111635.

Li, S.; Xiong, L.; Li, H.Y.; Leung, L.R.; Demissie, Y., 2016. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models. Stochastic Environmental Research and Risk Assessment, v. 30, 251-269. https://doi.org/10.1007/s00477-015-1083-8.

Lima, P.F.; Sousa, M.S.R.; Porfírio, A.F.; Almeida, B.S.; Freire, R.H.F.; Santaella, S.T., 2015. Preliminary analysis on the use of Trophic State Indexes in a Brazilian semiarid reservoir. Acta Scientiarum. Biological Sciences, v. 37 (3), 309-318. https://doi.org/10.4025/actascibiolsci.v37i3.27160.

Lira, C.C.S.; Medeiros, P.H.A.; Neto, I.E.L., 2020. Modelling the impact of sediment management on the trophic state of a tropical reservoir with high water storage variations. Anais da Academia Brasileira de Ciencias, v. 92 (1), p. 1-18. https://doi.org/10.1590/0001-3765202020181169.

Lopes, F.B.; Andrade, E.M.; Meireles, A.C.M.; Becker, H.; Batista, A.A., 2014. Assessment of the water quality in a large reservoir in semiarid region of Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18 (4), 437-445. https://doi.org/10.1590/S1415-43662014000400012.

MAPBIOMAS, 2020. Projeto Mapbiomas - Coleção 5.0 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. 2020 (Accessed September 08, 2021) at:. https://plataforma.brasil.mapbiomas.org/.

Marengo, J.A.; Alves, L.M.; Alvala, R.C.; Cunha, A.P.; Brito, S.; Moraes, O.L., 2017. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, v. 90 (2 suppl 1), 1973-1985. https://doi.org/10.1590/0001-3765201720170206.

Marengo, J.A.; Cunha, A.P.M.; Nobre, C.A.; Ribeiro Neto, G.G.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; Deusdará, K.R.L.; Álvala, R.C., 2020. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 C. Natural Hazards, v. 103, 2589-2611. https://doi.org/10.1007/s11069-020-04097-3.

Martins, E.S.P.R.; Coelho, C.A.S.; Haarsma, R.; Otto, F.E.L.; King, A.D.; Van Oldenborgh, G.J.; Kew, S.; Philip, S.; Vasconcelos Júnior, F.C.; Cullen, H., 2018. A multimethod attribution analysis of the prolonged northeast Brazil hydrometeorological drought (2012-16). Bulletin of the American Meteorological Society, v. 99, S65-S69. https://doi.org/10.1175/BAMS-D-17-0102.1.

McKee, T.B.; Doesken, N.J.; Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: American Meteorological Society (Org.), Proceedings of the 8th Conference of Applied Climatology. American Meterological Society, Boston, pp. 179-184.

Medeiros, F.J.; Oliveira, C.P.; Torres, R.R., 2020. Climatic aspects and vertical structure circulation associated with the severe drought in Northeast Brazil (2012–2016). Climate Dynamics, v. 55, 2327-2341. https://doi.org/10.1007/s00382-020-05385-1.

Miserendino, M.L.; Casaux, R.; Archangelsky, M.; Di Prinzio, C.Y.; Brand, C.; Kutschker, A.M., 2011. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Science of the Total Environment, v. 409 (3), 612-624. https://doi.org/10.1016/j.scitotenv.2010.10.034.

Mishra, A.; Alnahit, A.; Campbell, B., 2021. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. Journal of Hydrology, v. 596, 125707. https://doi.org/10.1016/j.jhydrol.2020.125707.

Mosley, L.M., 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews, v. 140, 203-214. https://doi.org/10.1016/j.earscirev.2014.11.010.

Nascimento, F.C.A.; Braga, C.C.; Araújo, F.R C.D., 2017. Análise estatística dos eventos secos e chuvosos de precipitação do Estado do Maranhão. Revista Brasileira de Meteorologia, v. 32 (3), 375-386. https://doi.org/10.1590/0102-77863230005.

Ngouna, R.H.; Ratolojanahary, R.; Medjaher, K.; Dauriac, F.; Sebilo, M.; Junca-Bourié, J., 2020. A data-driven method for detecting and diagnosing causes of water quality contamination in a dataset with a high rate of missing values. Engineering Applications of Artificial Intelligence, v. 95, 103822. https://doi.org/10.ff10.1016/j.engappai.2020.103822.

Paulino, W.D.; Oliveira, R.R.A.; Avelino, F.F., 2013. Classificação do estado trófico para o gerenciamento de reservatórios no semiárido: a experiência da Cogerh no estado do Ceará. 20º Simpósio Brasileiro De Recursos Hídricos. ABRH, Bento Gonçalves, pp. 1-8.

Pontes Filho, J.D.; Souza Filho, F.D.A.; Martins, E.S.P.R.; Studart, T.M.C., 2020. Copula-based multivariate frequency analysis of the 2012–2018 drought in Northeast Brazil. Water, v. 12 (3), 834. https://doi.org/10.3390/w12030834.

Raulino, J.B.; Silveira, C.S.; Lima Neto, I.E., 2021. Assessment of climate change impacts on hydrology and water quality of large semi-arid reservoirs in Brazil. Hydrological Sciences Journal, v. 66 (8), 1321-1336. https://doi.org/10.1080/02626667.2021.1933491.

Santos, C.A.G.; Brasil Neto, R.M.; Silva, R.M.; Costa, S.G F., 2019. Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba state using Tropical Rainfall Measuring Mission (TRMM) data. Remote Sensing, v. 11 (6), 637. https://doi.org/10.3390/rs11060637.

Santos, J.A.; Marins, R.V.; Aguiar, J.E.; Challar, G.; Silva, F.A.T.F.; Lacerda, L.D., 2017. Hydrochemistry and trophic state change in a large reservoir in the Brazilian northeast region under intense drought conditions. Journal of Limnology, v. 76 (1), p. 41-51. https://doi.org/10.4081/jlimnol.2016.1433.

Silva, A.M.; Silva, R.M.; Santos, C.A.G., 2019. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. International Journal of Applied Earth Observation and Geoinformation, v. 79 (February), 1-11. https://doi.org/10.1016/j.jag.2019.02.012.

Silva, A.S.A.; Cunha Filho, M.; Menezes, R.S.C.; Stosic, T.; Stosic, B., 2020. Trends and persistence of dry–wet conditions in Northeast Brazil. Atmosphere, v. 11 (10), 1134. https://doi.org/10.3390/atmos11101134.

Silva, G.K.D.; Marcos Júnior, A.D.; Lima, C.E.S.; Silva, M. V. M.; Silveira, C. S.; Silva, E.M.; Lima, I.R., 2021. Análise da Variabilidade Espaço-Temporal do SPI: Um Estudo de Caso para a Sub-Bacia Choró, Ceará, Brasil. Revista Brasileira de Meteorologia, v. 36 (3 suppl), 539-549. https://doi.org/10.1590/0102-77863630005.

Souza Filho, F.A., 2018. Ceará 2050: Estudo Setorial Especial-Recursos Hídricos. Governo do Estado do Ceará, Fortaleza.

Teferi, M.; Declerck, S.A.J.; Bie, T.; Lemmens, A.G.; Asmelash, T.; Dejenie, T.; Gebrehiwot, K.; Bauer, H.; Deckers, J.A.; Snoeks, J.; Meester, L., 2014. Strong effects of occasional drying on subsequent water clarity and cyanobacterial blooms in cool tropical reservoirs. Freshwater Biology, v. 59 (4), 870-884. https://doi.org/10.1111/fwb.12312.

Toledo Jr., A.P., 1990. Informe preliminar sobre os estudos para a obtenção de um índice para a avaliação simplificada do estado trófico de reservatórios de regiões quentes tropicais. CETESB, São Paulo.

Torres, R.R.; Lapola, D.M.; Gamarra, N.L.R., 2018. Future climate change in the Caatinga. In: Silva, J.M.C.; Leal, I.R.; Tabarelli, M. (Eds.), Caatinga: the largest tropical dry forest region in South America. Springer, [S.l.], pp. 383-410. https://doi.org/10.1007/978-3-319-68339-3_15.

Wiegand, M.C.; Nascimento, A.T.P.; Costa, A.C.; Neto, I.E.L., 2021. Trophic state changes of semi-arid reservoirs as a function of the hydro-climatic variability. Journal of Arid Environments, v. 184, 104321. https://doi.org/10.1016/j.jaridenv.2020.104321.

Wiegand, M.C.; Piedra, J.I.G.; De Araújo, J.C., 2016. Vulnerabilidade à eutrofização de dois lagos tropicais de climas úmido (Cuba) e semiárido (Brasil). Engenharia Sanitaria e Ambiental, v. 21 (2), 415-424. https://doi.org/10.1590/S1413-41522016139527.

Zargar, A.; Sadiq, R.; Naser, B.; Khan, F., 2011. A review of drought indices. Environmental Reviews, v. 19 (NA), 333-349. https://doi.org/10.1139/a11-013.

Znachor, P.; Nedoma, J.; Hejzlar, J.; Seďa, J.; Komárková, J.; Kolář, V.; Mrkvicka, T.; Boukal, D.S., 2020. Changing environmental conditions underpin long-term patterns of phytoplankton in a freshwater reservoir. Science of the Total Environment, v. 710, 135626. https://doi.org/10.1016/j.scitotenv.2019.135626.

Downloads

Published

2025-05-20

How to Cite

Magalhães, J. H. F., Sousa, F. J. C. de, Lima, C. E. S., & Silveira, C. da S. (2025). Assessing the drought in the state of Ceará - Brazil: the relationship between drought, trophic state index, and anthropogenic pressure. Revista Brasileira De Ciências Ambientais, 60, e2111. https://doi.org/10.5327/Z2176-94782111

More articles by the same author(s)