Trend analysis of precipitation extremes in Brazil: the role of atmospheric temperature

Authors

DOI:

https://doi.org/10.5327/Z2176-94782123

Keywords:

heavy rainfall; trends; correlations; climate change.

Abstract

There is evidence that the climate on the planet has been undergoing variations over the years, resulting in climate events that are becoming increasingly extreme, such as heavy raining. The objective of this study was to verify the behavior and tendency of heavy rain in Brazil, and possible correlations with atmospheric temperature. The methodology utilizes Climate Extremes Indices (CEI), and the Mann-Kendall Test (MKT) and Sen’s Slope (SS) were applied in each of them to evaluate the statistical significance of the trends in climate extremes, as well as to measure the magnitudes, respectively. Then, Pearson’s Correlate Coefficient (PCC) between indexes was calculated. The total period of analysis was between 1991 to 2022. The MKT and SS results presented tendencies of extreme rain increase in the South, North, parts of the Northeast and Southeast coastline, and the decrease trend in the Midwest, Southeast and North. There are, too, increase trends in the maximum (TX) and minimum temperature (TN) in the whole country. PCCs were significant, between total/extreme rainfall and temperature, as follows: Northeast and Southeast (negative PCCs for TX); North and South (positive PCCs for TN). There are some areas where the SS and PCCs presented non-linear interdependence between these climatic variables. Therefore, the changes in the climate pattern can contribute to the increase trend in extreme precipitation events in different areas of Brazil.

Downloads

Download data is not yet available.

References

Adler, J.; Parmryd, I., 2010. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry Part A, v. 77 (8), 733-742. https://doi.org/10.1002/cyto.a.20896.

Agência Nacional de Águas (ANA), 2018. Conjuntura dos recursos hídricos no Brasil 2018: informe anual. ANA, Brasília.

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22 (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Alves, J.M.B.; Silva, E.M.D.; Sombra, S.S.; Barbosa, A.C.B.; Santos, A.C.S.D.; Lira, M. A.T., 2017. Eventos extremos diários de chuva no nordeste do Brasil e características atmosféricas. Revista Brasileira de Meteorologia, v. 32, 227-233. https://doi.org/10.1590/0102-77863220012.

Back, Á.J.; Cadorin, S.B., 2020. Chuvas extremas e equações intensidade-duração-frequência para o estado do Acre. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 55 (2), 159-170. https://doi.org/10.5327/Z2176-947820200597.

Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B., 2020. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environmental Systems Research, v. 9, 1-20. https://doi.org/10.1186/s40068-020-00165-6.

Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Lou, D.; Ullah, I., 2020. Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water, v. 12 (3), 797. https://doi.org/10.3390/w12030797.

Bonfim, O.E.T.; Silva, D.F.D.; Kayano, M.T.; Rocha, L.H.D.S., 2020. Análise dos eventos climáticos extremos e de suas causas climáticas para redução de riscos nas bacias hidrográficas Aguapeí e Peixe, São Paulo, Brasil. Revista Brasileira de Meteorologia, v. 35 (spe), 755-768. https://doi.org/10.1590/0102-7786355000004.

Brasil, 2022. Ministério das Relações Exteriores. Geografia (Accessed May 12, 2024) at:. https://www.gov.br/mre/pt-br/embaixada-bogota/o-brasil/geografia.

Brown, O.L., 1951. The clausius-clapeyron equation. Journal of Chemical Education, v. 28 (8), 428. https://doi.org/10.1021/ed028p428.

Caetano, A.L.; da Silva Barbosa, F., 2019. Probabilidade de ocorrência de chuvas extremas para região de Inconfidentes–MG. Revista Brasileira de Climatologia, v. 25. https://doi.org/10.5380/abclima.v25i0.62338.

Cardoso, C.D.S.; Quadro, M.F.L.D.; Bonetti, C., 2020. Persistência e abrangência dos eventos extremos de precipitação no Sul do Brasil: Variabilidade espacial e padrões atmosféricos. Revista Brasileira de Meteorologia, v. 35, 219-231. https://doi.org/10.1590/0102-7786352031.

Carvalho, A.A.D.; Montenegro, A.A.D.A.; Silva, H.P.D.; Lopes, I.; Morais, J.E.D.; Silva, T.G.D., 2019. Trends of rainfall and temperature in Northeast Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 24 (1), 15-23. https://doi.org/10.1590/1807-1929/agriambi.v24n1p15-23.

Cavalcante, R.B.L.; da Silva Ferreira, D.B.; Pontes, P.R.M.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E.B., 2020. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, v. 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879.

Cavalcanti, I.F., 2016. Tempo e clima no Brasil. Oficina de Textos, [S.l.].

Chagas, V.B.; Chaffe, P. L.; Blöschl, G., 2022. Process controls on flood seasonality in Brazil. Geophysical Research Letters, v. 49 (5), e2021GL096754. https://doi.org/10.1029/2021GL096754.

Clement, C.R.; Higuchi, N., 2006. A floresta amazônica e o futuro do Brasil. Ciência e Cultura, v. 58 (3), 44-49. ISSN: 2317-6660.

Costa, A.C.; Gomes, T.F.; Moreira, R.P.; Cavalcante, T.F.; Mamede, G.L., 2022. Influence of hydroclimatic variability on dengue incidence in a tropical dryland area. Acta Tropica, v. 235, 106657. https://doi.org/10.1016/j.actatropica.2022.106657.

Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L., 2020. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather and Climate Extremes, v. 28, 100254. https://doi.org/10.1016/j.wace.2020.100254.

da Costa, J.M.F.; Junior, A.D.M.; da Silva Silveira, C.; Júnior, F.D.C.V., 2018. Influência das mudanças climáticas, projetadas pelo IPCC, na aridez do Brasil. Revista AIDIS de Ingeniería y Ciencias Ambientales. Investigación, Desarrollo y Práctica,v. 11 (3), 429-442.

da Silva, D.F.; Lima, M.J.D.S.; Souza Neto, P.F.; Gomes, H.B.; Silva, F.D.D.S.; Almeida, H.R.R.C.; Costa, R.L.; Pereira, M.P.S., 2020. Caracterização de eventos extremos e de suas causas climáticas com base no índice Padronizado de Precipitação Para o Leste do Nordeste. Revista Brasileira de Geografia Física, v. 13 (2), 449-464.

da Silva, P.E.; Silva, C.M.S.; Spyrides, M.H.C.; Andrade, L.D.M.B., 2019. Precipitation and air temperature extremes in the Amazon and northeast Brazil. International Journal of Climatology, v. 39 (2), 579-595. https://doi.org/10.1002/joc.5829.

Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; Hewitson, B.; Jack, C.; KleinTank, A.M.G.; Kruger, A.C.; Marengo, J.; Peterson, T.C.; Renom, M.; OriaRojas, C.; Rusticucci, M.; Salinger, J.; Elrayah, A.S.; Sekele, S.S.; Srivastava, A.K.; Trewin, B.; Villarroel, C.; Vincent, L.A.; Zhai, P.; Zhang, X.; Kitching, S., 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, v. 118 (5), 2098-2118. https://doi.org/10.1002/jgrd.50150.

Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, v. 6 (5), 508-513. https://doi.org/10.1038/nclimate2941.

Duarte, T.L.S.; Santos, G.C.; Castelhano, F.J., 2021. Eventos de chuvas extremas associados aos riscos de inundações e de alagamentos em Aracaju, Sergipe. GEOSABERES: Revista de Estudos Geoeducacionais, v. 12, 256-273. https://doi.org/10.26895/geosaberes.v12i0.1089.

Fisch, G.; Marengo, J.A.; Nobre, C.A., 1998. Uma revisão geral sobre o clima da Amazônia. Acta Amazônica, v. 28, 101-101. https://doi.org/10.1590/1809-43921998282126.

Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; Nobre, C.A.; Oliveira, R.S.; Borma, L.S.; Nian, D.; Boers, N.; Hecht, S.B.; TerSteege, H.; Arieira, J.; Lucas, I.L.; Berenguer, E.; Marengo, J.A.; Gatti, L.V.; Mattos, C.R.C.; Hirota, M., 2024. Critical transitions in the Amazon forest system. Nature, v. 626 (7999), 555-564. https://doi.org/10.1038/s41586-023-06970-0.

Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; Guerreiro, S.; Haerter, J.O.; Kendon, E.J.; Lewis, E.; Schaer, C.; Sharma, A.; Villarini, G.; Wasko, C.; Zhang, X., 2021. Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, v. 2 (2), 107-122. https://doi.org/10.1038/s43017-020-00128-6.

Freire, L.L.; Costa, A.C.; Neto, I.E.L., 2023. Effects of rainfall and land use on nutrient responses in rivers in the Brazilian semiarid region. Environmental Monitoring and Assessment, v. 195 (6), 652. https://doi.org/10.1007/s10661-023-11281-y.

Gonçalves, S.T.N.; Vasconcelos Júnior, F.D.C.; Silveira, C.D.S.; Cid, D.A.C.; Martins, E.S.P.R.; Costa, J.M.F.D., 2023. Comparative analysis of drought indices in hydrological monitoring in ceará’s semi-arid Basins, Brazil. Water, v. 15 (7), 1259. https://doi.org/10.3390/w15071259.

Goudard, G.; Mendonça, F.D.A., 2020. Eventos e episódios pluviais extremos: a configuração de riscos hidrometeorológicos em Curitiba (Paraná-Brasil). IdeAs. Idées d'Amériques, (15). https://doi.org/10.4000/ideas.8082.

Griffiths, G.M.; Salinger, M.J.; Leleu, I., 2003. Trends in extreme daily rainfall across the South Pacific and relationship to the South Pacific Convergence Zone. International Journal of Climatology: A Journal of the Royal Meteorological Society, v. 23 (8), 847-869. https://doi.org/10.1002/joc.923.

Grimm, A.M.; Zilli, M.T., 2009. Interannual variability and seasonal evolution of summer monsoon rainfall in South America. Journal of Climate, v. 22 (9), 2257-2275. https://doi.org/10.1175/2008JCLI2345.1.

Guedes, R.V.S.; do Vale Silva, T.L., 2020. Análise descritiva da precipitação, temperatura, umidade e tendências climáticas no Recife-PE. Revista Brasileira de Geografia Física, v. 13 (7), 3234-3253. https://doi.org/10.26848/rbgf.v13.07.p3234-3253.

Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; Corradi, V.; Garcia, V.J.; Grimm, A.M.; Karoly, D.; Marengo, J.A.; Marino, M.B.; Moncunill, D.F.; Nechet, D.; Quintana, J.; Rebello, E.; Rusticucci, M.; Santos, J.L.; Trebejo, I.; Vincent, L.A., 2006. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. Journal of Climate, v. 19 (8), 1490-1512. https://doi.org/10.1175/JCLI3695.1.

Hinkle, D.E.; Wiersma, W.; Jurs, S.G., 2003. Applied statistics for the behavioral sciences. v. 663. Houghton Mifflin, Boston.

Hirsch, R.M.; Slack, J.R.; Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research, v. 18 (1), 107-121. https://doi.org/10.1029/WR018i001p00107.

Hollins, L.X.; Eisenberg, D.A.; Seager, T.P., 2018. Risk and resilience at the Oroville Dam. Infrastructures, v. 3 (4), 49. https://doi.org/10.3390/infrastructures3040049.

Hountondji, Y.C.; De Longueville, F.; Ozer, P., 2011. Trends in extreme rainfall events in Benin (West Africa), 1960-2000. In: 1st International Conference on Energy, Environment and Climate Change. Ho Chi Minh City, Vietnam, 26-27 August.

Intergovernmental Panel on Climate Change (IPCC), 2023. Climate change 2023: Synthesis report. A report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

Köppen, W., 1936. Das geographische System de Klimate. Handbuch der klimatologie. In: Köppen, W.; Geiger, W. (Eds.), Handbuch der klimatologie. Bd. I. Teil C. Gebrüder Bornträger, Berlin, pp. 1-44.

Lamb, D.; Verlinde, J., 2011. Physics and chemistry of clouds. Cambridge University Press, Cambridge.

Liang, X.Z., 2022. Extreme rainfall slows the global economy. Nature, v. 601. https://doi.org/10.1038/d41586-021-03783-x.

Lima, K.C.; Satyamurty, P.; Fernández, J.P.R., 2010. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theoretical and Applied Climatology, v. 101, 121-135. https://doi.org/10.1007/s00704-009-0207-9.

Loureiro, R.S.D.; Saraiva, J.M.; Saraiva, I.; Senna, R.C.; Fredó, A.S., 2014. Estudo dos eventos extremos de precipitação ocorridos em 2009 no estado do Pará. Revista Brasileira de Meteorologia, v. 29, 83-94. https://doi.org/10.1590/0102-778620130054.

Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; Inape, K.; Isobe, H.; Kestin, T.S.; Lefale, P.; Leyu, C.H.; Lwin, T.; Maitrepierre, L.; Ouprasitwong, N.; Page, C.M.; Pahalad, J.; Plummer, N.; Salinger, M.J.; Suppiah, R.; Tran, V.L.; Trewin, B.; Tibig, I.; Yee, D, 2001. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, v. 21 (3), 269-284. https://doi.org/10.1002/joc.610.

Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J.; Ramos, A.M., 2020. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Annals of the New York Academy of Sciences, v. 1472 (1), 5-20. https://doi.org/10.1111/nyas.14307.

Marengo, J.A.; Cunha, A.P.; Alves, L.M., 2016. A seca de 2012-15 no semiárido do Nordeste do Brasil no contexto histórico. Revista Climanálise, v. 3 (1), 49-54.

Montenegro, S.M.G.L., 2023. Desertificação no Brasil: A exploração não planejada dos recursos naturais e as mudanças climáticas acarretam danos irreversíveis ao meio ambiente. Ciência e Cultura, v. 75 (4), 01-07. http://dx.doi.org/10.5935/2317-6660.20230051.

Moreira, R.P.; Costa, A.C.; Gomes, T.F.; de Oliveira Ferreira, G., 2020. Climate and climate-sensitive diseases in semi-arid regions: a systematic review. International Journal of Public Health, v. 65, 1749-1761. https://doi.org/10.1007/s00038-020-01464-6.

Nobre, C.A., 2001. Mudanças climáticas globais: possíveis impactos nos ecossistemas do país. Parcerias Estratégicas, v. 12, 239-258.

Paiva, D.F.; Prezoto, H.H.S., 2021. Ciclo das chuvas: uma reflexão sobre o tema. Biológica-Caderno do Curso de Ciências Biológicas, v. 3 (1). https://doi.org/10.5281/zenodo.14014333.

Palenzuela, Y.G.; da Silva Texeira, M.; Toledo, D R.; de Fatima Correia, M., 2019. Influência da escala sinótica na evolução de um evento de precipitação extrema na cidade de Pelotas-RS em janeiro de 2009. Revista Brasileira de Geografia Física, v. 12 (05), 1770-1783. https://doi.org/10.26848/rbgf.v12.5.p1770-1783.

Pall, P.; Allen, M.R.; Stone, D.A., 2007. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO 2 warming. Climate Dynamics, v. 28, 351-363. https://doi.org/10.1007/s00382-006-0180-2.

Peel, M.C.; Finlayson, B.L.; McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11 (5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007.

Perez, L.P.; Rodrigues-Filho, S.; Marengo, J.A.; Santos, D.V.; Mikosz, L., 2020. Climate change and disasters: analysis of the Brazilian regional inequality. Sustainability in Debate, v. 11 (3), 260-296. https://doi.org/10.18472/SustDeb.v11n3.2020.33813.

Philander, S.G., 1998. Who is El Niño?. Eos, Transactions American Geophysical Union, v. 79 (13), 170-170. https://doi.org/10.1029/98EO00125.

Portella, D.A.P.D.C.; Blanco, L.D.S.; Mello Filho, M.E.T.D.; Santos, J.L.A.D., 2022. A importância da Amazônia na dinâmica climática do Centro-Sul Brasileiro. Revista Ensaios de Geografia, v. 9 (19).

Regoto, P.; Dereczynski, C.; Chou, S.C.; Bazzanela, A.C., 2021. Observed changes in air temperature and precipitation extremes over Brazil. International Journal of Climatology, v. 4 1(11), 5125-5142. https://doi.org/10.1002/joc.7119.

Rocha, V.M., 2021. Um breve comentário a respeito do IPCC AR6. Entre-Lugar, v. 12 (24), 396-403. https://doi.org/10.30612/rel.v12i24.15253.

Sanches, R.G.; dos Santos, B.C.; de Figueiredo Neves, G.Z.; Silva, M.S.D.; de Souza, P.H., 2022. Análise da tendência pluviométrica na região central do estado de São Paulo. Revista Brasileira De Climatologia, v. 30, 777-797. https://doi.org/10.55761/abclima.v30i18.15668.

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, v. 63 (324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934.

Sena, J.P.O.; Lucena, D.B.; Neto, J.M.M., 2019. Eventos pluviais intensos e seus impactos em Campina Grande-PB. Revista de Geociências do Nordeste, v. 5, 69-77. https://doi.org/10.21680/2447-3359.2019v5n0ID17974.

Silva, A.A.; da Franca, R.R., 2021. Identificação e classificação de episódios de chuva extrema no Distrito Federal – Período 1990-2019. Revista Espaço e Geografia, v. 24 (2), 134-153. https://doi.org/10.26512/2236-56562021e40271.

Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V., 2021. A global, continental, and regional analysis of changes in extreme precipitation. Journal of Climate, v. 34 (1), 243-258. https://doi.org/10.1175/JCLI-D-19-0892.1.

Tavares, C.D.M.G.; Ferreira, C.D.C.M., 2020. A relação entre a orografia e os eventos extremos de precipitação para o município de Petrópolis-RJ. Revista Brasileira de Climatologia, v. 26. https://doi.org/10.5380/abclima.v26i0.71123.

Teixeira, M.D.S.; Prieto, R.B., 2020. Eventos extremos de chuva no Estado do Rio Grande do Sul, Brasil, entre 2004 e 2013. Parte 1: Definição dos eventos e estatísticas. Revista Brasileira de Meteorologia, v. 35, 45-52. https://doi.org/10.1590/0102-7786351027.

Teixeira, M.S.; Satyamurty, P., 2007. Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Monthly Weather Review, v. 135 (2), 598-617. https://doi.org/10.1175/MWR3302.1.

Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; DeCruz, L.; DeVries, H.; Demuth, N.; Ferrone, A.; Fischer, E.M.; Fowler, H.J.; Goergen, K.; Heinrich, D.; Henrichs, Y.; Kaspar, F.; Lenderink, G.; Nilson, E.; Otto, F.E.L.; Ragone, F.; Seneviratne, S.I.; Singh, R.K.; Skålevåg, A.; Termonia, P.; Thalheimer, L.; VanAalst, M.; VandenBergh, J.; VandeVyver, H.; Vannitsem, S.; VanOldenborgh, G.J.; VanSchaeybroeck, B.; Vautard, R.; Vonk, D.; Wanders, N., 2023. Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021. Climatic Change, v. 176 (7), 90. https://doi.org/10.1007/s10584-023-03502-7.

Vahedifard, F.; AghaKouchak, A.; Ragno, E.; Shahrokhabadi, S.; Mallakpour, I., 2017. Lessons from the Oroville dam. Science, v. 355 (6330), 1139-1140. https://doi.org/10.1126/science.aan0171.

Wainwright, C.M.; Finney, D.L.; Kilavi, M.; Black, E.; Marsham, J.H., 2021. Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather, v. 76 (1), 26-31. https://doi.org/10.1002/wea.3824.

Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I., 2022. New improved Brazilian daily weather gridded data (1961–2020). International Journal of Climatology, v. 42 (16), 8390-8404. https://doi.org/10.1002/joc.7731.

Yaduvanshi, A.; Nkemelang, T.; Bendapudi, R.; New, M., 2021. Os extremos de temperatura e precipitação mudam de acordo com os níveis atuais e futuros de aquecimento global nas zonas climáticas indianas. Extremos de Tempo e Clima, v. 31, 100291. https://doi.org/10.1016/j.wace.2020.100291.

Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W., 2021. Intensification of extreme precipitation in arid Central Asia. Journal of Hydrology, v. 598, 125760. https://doi.org/10.1016/j.jhydrol.2020.125760.

Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F., 2009. El Niño in a changing climate. Nature, v. 461 (7263), 511-514. https://doi.org/10.1038/nature08316.

Yue, S.; Wang, C., 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, v. 18 (3), 201-218. https://doi.org/10.1023/B:WARM.0000043140.61082.60.

Zandonadi, L., 2020. Chuvas extremas e o intenso EL Niño de 2015/2016: impactos na rede de coleta e abastecimento de água da cidade de Maringá, Paraná. Brazilian Geographical Journal: Geosciences and Humanities Research Médium, v. 11 (1), 38-69. https://doi.org/10.14393/BGJ-v11n1-a2020-52345.

Zhou, H.; Deng, Z.; Xia, Y.; Fu, M., 2016. A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing, v. 216, 208-215. https://doi.org/10.1016/j.neucom.2016.07.036.

Zhu, W.; Wang, S.; Luo, P.; Zha, X.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D., 2022. A quantitative analysis of the influence of temperature change on the extreme precipitation. Atmosphere, v. 13 (4), 612. https://doi.org/10.3390/atmos13040612

Downloads

Additional Files

Published

2025-06-19

How to Cite

Costa, J. M. F. da, Silveira, C. da S., Costa, A. C., Marcos Junior, A. D., & Gonçalves, S. T. N. (2025). Trend analysis of precipitation extremes in Brazil: the role of atmospheric temperature. Revista Brasileira De Ciências Ambientais, 60, e2123. https://doi.org/10.5327/Z2176-94782123

More articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.