Effects of changes in use and soil cover on real evapotranspiration from the creation of a remote sensing product in the Xingu basin

Authors

DOI:

https://doi.org/10.5327/Z2176-94781658

Keywords:

MapBiomas; Cerrado; Amazon.

Abstract

Several studies have shown that changes in land cover within a given watershed significantly affect the hydrological cycle and its variables. In the Xingu basin, many areas had their vegetation replaced by agricultural crops and pastures, while deforestation has been particularly prevalent in the region known as the Arch of Deforestation. Using remote sensing techniques enable the estimation of biophysical variable ETr for extensive areas, as exemplified in the study basin. Evapotranspiration data used in this work were obtained by creating a product that returns the combined median of the MOD16A2, PML_V2, Terra Climate, GLEAM_v3.3a, FLUXCOM, SSEBop, FLDAS, and ERA5-Land models, with subsequent application of the data provided by Collection 6 of the MapBiomas network, allowing the integration of land use and land cover information with real evapotranspiration estimates for the transition ranges: Forest to Pasture; Forest to Agricultural Land; Cerrado to Pasture; Cerrado to Agricultural Land. The interval defined for the study corresponds to the years 1985 to 2020, according to the historical series available on MapBiomas. After applying programming languages to filter the data, the results underwent statistical analysis to elucidate the effects of soil changes on evapotranspiration. Over the total data period (1985-2020), there was a decrease in forest areas (-16.23%), with conversion to pasture areas, in the order of +12.51%, and agricultural areas, reaching +5.5%. In the same timeframe, evapotranspiration in conversion bands underwent minimal changes, notably from 2009 to 2020, where a decreasing trend was reported of 0.095 mm/month for the “forest to pasture” substitution, and 0.090 mm/month in “Cerrado for pasture".

Downloads

Download data is not yet available.

References

Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C., 2018. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, v. 5, 170191. https://doi.org/10.1038/sdata.2017.191

Alves, E.S.; Rodrigues, L.N.; Cunha, F.F.; Farias, D.B.S., 2021. Evaluation of models to estimate the actual evapotranspiration of soybean crop subjected to different water deficit conditions. Annals of the Brazilian Academy of Sciences, v. 93, (4), 1-16. https://doi.org/10.1590/0001-3765202120201801

Blunden, J.; Arndt, D.S.; Achberger, C.; Ackerman, S.; Albanil, A.; Alexander, P.; Alfaro, E.; Allan, R.; Alves, L.M.; Amador, J.A.; Ambenje, P.; Andrianjafinirina, S.; Antonov, J.; Aravéquia, J.A.; Arendt, A.; Arevalo, J.; Ashik, I.; Atheru, Z.; Banzon, V.; Baringer, M.O.; Barreira, S.; Barriopedro, D.; Beard, G.; Becker, A.; Behrenfeld, M.J.; Bell, G.D.; Benedetti, A.; Bernhard, G.; Berrisford, P.; Berry, D.I.; Bhatt, U.S.; Bidegain, M.; Bindoff, N.L.; Bissolli, P.; Blake, E.S.; Booneeady, R.; Bosilovich, M.; Box, J.E.; Boyer, T.; Braathen, G.; Bromwich, D.H.; Brown, R.; Bruhwiler, L.; Bulygina, O.N.; Burgess, D.; Burrows, J.; Calderon, B.; Camargo, S.J.; Campbell, J.; Cao, Y.; Cappelen, J.; Carrasco, G.; Chambers, D.P.; Chang'a, L.; Pearce, P.; Chehade, W.; Chelliah, M.; Christiansen, H.H.; Christy, J R.; Ciais, P.; Coelho, C.A.S.; Cogley, J.G.; Colwell, S.; Cross, J.N.; Crouch, J.; Cunningham, S.; Dacic, M.; de Jeu, R.; Dekaa Francis, S.; Demircan, M.; Derksen, C.; Diamond, H.J.; Dlugokencky, E.J.; Dohan, K.; Dolman, H.; Domingues, C.M.; Dong, S.; Dorigo, W.A.; Drozdov, D.S.; Duguay, C.; Dunn, R.J.H.; Durán‐Quesada, A.M.; Dutton, G.S.; Ehmann, C.; Elkins, J.W.; Euscategui, C.; Famiglietti, J.S.; Fan, F.; Fauchereau, N.; Feely, R.; Fekete, B.M.; Fenimore, C.; Fioletov, V.E.; Fogarty, C.; Fogt, R.L.; Folland, C.K.; Foster, M.J.; Frajka-Williams, E.; Franz, B.A.; Frith, S.; Frolov, I.Y.; Ganter, C.; Garzoli, S.L.; Geai, M.-L.; Gerland, S.; Gitau, W.; Gleason, K.L.; Gobron, N.; Goldenberg, S.B.; Goni, G.; Good, S.A.; Gottschalck, J.; Gregg, M.C.; Griffiths, G.; Grooss, J.-U.; Guard, C.; Gupta, S.K.; Hall, B.D.; Halpert, M.S.; Harada, Y.; Hauri, C.; Heidinger, A.K.; Heikkilä, A.; Heim, R.R.; Heimbach, P.; Hidalgo, H.; Hilburn, K.; Ho, S.-P.; Hobbs, W.; Holgate, S.; Hovsepyan, A.; Hu, Z.-Z.; Hughes, P.; Hurst, D.F.; Ingvaldsen, R.B.; Inness, A.; Jaimes, E.; Jakobsson, M.; Adamu, J.; Jeffries, M.O.; Johns, W.E.; Johnsen, B.; Johnson, G.C.; Johnson, B.; Jones, L.T.; Jumaux, G.; Kabidi, K.; Kaiser, J.W.; Kamga, A.; Kang, K.-K.; Kanzow, T.; Kao, H.-Y.; Keller, L.M.; Kennedy, J.J.; Key, J.R.; Khatiwala, S.; Kheyrollah Pour, H.; Kholodov, A.; Khoshkam, M.; Kijazi, A.L.; Kikuchi, T.; Kim, B.M.; Kim, S.-J.; Kimberlain, T.B.; Knaff, J.A.; Korshunova, N.N.; Koskela, T.; Kousky, V.E.; Kramarova, N.; Kratz, D.P.; Krishfield, R.; Kruger, A.C.; Kruk, M.C.; Kumar, A.; Lagerloef, G.S.E.; Lakkala, K.; Lander, M.A.; Landsea, C.W.; Lankhorst, M.; Laurila, T.; Lazzara, M.A.; Lee, C.; Leuliette, E.; Levitus, S.; L'Heureux, M.; Lieser, J.; Lin, I.-I.; Liu, Y.Y.; Liu, Y.; Lobato-Sánchez, R.; Locarnini, R.; Loeb, N.G.; Loeng, H.; Long, C.S.; Lorrey, A.; Luhunga, P.M.; Lumpkin, R.; Luo, J.-J.; Lyman, J.M.; Macdonald, A.M.; Maddux, B.C.; Malekela, C.; Manney, G.L.; Marchenko, S.; Marengo, J.A.; Marotzke, J.; Marra, J.J.; Martinez-Gueingla, R.; Massom, R.; Mathis, J.T.; Mcbride, C.; McCarthy, G.D.; McVicar, T.; Mears, C.; Meier, W.; Meinen, C.S.; Menendez, M.; Merrifield, M.A.; Mitchard, E.; Mitchum, G.; Montzka, S.A.; Morcrette, J.-J.; Mote, T.; Mühle, J.; Mühr, B.; Mullan, B.; Müller, R.; Nash, E.R.; Nerem, R.S.; Newlin, M.L.; Newman, P.; Ng'ongolo, H.; Nieto, J.J.; Nishino, S.; Nitsche, H.; Noetzli, J.; Oberman, N.G.; Obregon, A.; Ogalo, L.; Oludhe, C.S.; Omar, M.I.; Overland, J.E.; Oyunjargal, L.; Parinussa, R.; Park, G.-H.; Park, E.-H.; Parker, D.; Pasch, R.J.; Pascual-Ramirez, R.; Pelto, M.; Penalba, O.; Peng, L.; Perovich, D.K.; Pezza, A.B.; Phillips, D.; Pickart, R.; Pinty, B.; Pitts, M.C.; Purkey, S.G.; Quegan, S.; Quintana, J.; Rabe, B.; Rahimzadeh, F.; Raholijao, N.; Raiva, I.; Rajeevan, M.; Ramiandrisoa, V.; Ramos, A.M.; Ranivoarissoa, S.; Rayner, N.A.; Rayner, D.; Razuveav, V.N.; Reagan, J.; Reid, P.A.; Renwick, J.A.; Revedekar, J.; Richter-Menge, J.; Rivera, I.L.; Robinson, D.; Rodell, M.; Romanovsky, V.E.; Ronchail, J.; Rosenlof, K.H.; Sabine, C.L.; Salvador, M.A.; Sanchez-Lugo, A.; Santee, M.L.; Sasgen, I.; Sawaengphokhai, P.; Sayouri, A.; Scambos, T.; Schauer, U.; Schemm, J.; Schlosser, P.; Schmid, C.; Schreck, C.J.III; Semiletov, I.P.; Send, U.; Sensoy, S.; Setzer, A.W.; Severinghaus, J.; Shakhova, N.; Sharp, M.J.; Shiklomanov, N.; Siegel, D.A.; Silva, V.C.B.; Silva, F.D.S.; Sima, F.; Simeonov, P.; Simmonds, I.; Simmons, A.; Skansi, M.M.; Smeed, D.; Smethie, W.M.; Smith, A.; Smith, C.; Smith, S.L.; Smith, T.M.; Sokolov, V.; Srivastava, A.K.; Stackhouse Jr, P.W.; Stammerjohn, S.; Steele, M.; Steffen, K.; Steinbrecht, W.; Stephenson, T.S.; Su, J.; Svendby, T.M.; Sweet, W.V.; Takahashi, T.; Tanabe, R.M.; Taylor, M.A.; Tedesco, M.; Teng, W.; Thépaut, J.-N.; Thiaw, W.M.; Thoman, R.; Thompson, P.R.; Thorne, P.W.; Timmermans, M.-L.; Tobin, S.; Toole, J.; Trewin, B.C.; Trigo, R.M.; Trotman, A.; Tschudi, M.A.; Van de Wal, R.S.W.; Van der Werf, G.R.; Vazquez, J.L.; Vieira, G.; Vincent, L.; Vose, R.S.; Wagner, W.; Wahr, J.; Walsh, J.; Wang, J.; Wang, C.; Wang, M.; Wang, S.-H.; Wang, L.; Wanninkhof, R.; Weaver, S.; Weber, M.; Werdell, J.; Whitewood, R.; Wijffels, S.; Wilber, A.; Wild, J.; Willett, K.M.; Williams, W.; Willis, J.; Wolken, G.J.; Wong, T.; Woodgate, R.; Worthy, D.E.J.; Wouters, B.; Wovrosh, A.J.; Yan, X.; Yamada, R.; Zungang, Y.; Yu, L.; Zhang, P.; Zhao, L.; Zhong, W.; Ziemke, J.R.; Zimmermann, S., 2013. State of the Climate in 2012. Bulletin of the American Meteorological Society, v. 94, (8), S1-S238. https://dx.doi.org/10.1175/2013BAMSStateoftheClimate.1

Brown, F.; Santos, G.P.; Pires, F.F.; Costa, C.B., 2011. Brazil: Drought and Fire Response in the Amazon. World Resources Report Case Study, Washington DC.

Cabral Júnior, J.B.; da Silva, H.J.F.; dos Reis, J.S., 2022. Características da Cobertura do Solo em Anos de Contrastes Climáticos (chuvoso e seco) no Oeste da Amazônia, Rio Branco – Acre. Revista Brasileira De Geografia Física, v. 15, (6), 2704-2714. https://doi.org/10.26848/rbgf.v15.6.p2704-2714

Caioni, C., 2021. Efeito da seca sobre o balanço hídrico na bacia do rio Xingu. Agrarian Academy, v. 8, (15), 40-53.

Calder, I.R., 1998. Water-resource and land-use issues. SWIM Paper 3. International Water Management Institute, Colombo, Sri Lanka.

Costa, M.H.; Foley, J.A., 2000. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. Journal of Climate, v.13, (1), 18-34. https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2

Costa, M.H.; Biajoli, M.C.; Sanches, L.; Malhado, A.C.M.; Hutyra, L.R.; da Rocha, H.R.; Aguiar, R.G.; de Araújo, A.C., 2010. Atmospheric versus vegetation controls from Amazonian rainforest evapotranspiration: are wet and seasonally dry forests different? Journal of Geophysical Research: Biogeosciences, v. 115, 1-9. https://doi.org/10.1029/2009JG001179

Companhia de Pesquisa de Recursos Minerais (CPRM), 2018. Climatologia da precipitação na bacia hidrográfica do Rio Xingu (Accessed February 23, 2021) at:. http://www.cprm.gov.br/sace/conteudo/xingu_artigos/climatologia_xingu.pdf.

Cruz, W.J.A.D.; Marimon, B.S.; Marimon Junior, B.H.; Amorim, I.; Morandi, P.S.; Phillips, O.L., 2021. Functional diversity and regeneration traits of tree communities in the Amazon-Cerrado transition. Flora, v. 285. https://doi.org/10.1016/j.flora.2021.151952

Cunha, Z.A.; Mello, C.R.; Beskow, S.; Vargas, M.M.; Guzman, J.A.; Moura, M.M., 2023. A modeling approach for analyzing the hydrological impacts of the agribusiness land-use scenarios in an Amazon Basin. Land, v. 12, (7), 1422. https://doi.org/10.3390/land12071422

D'Acunha, B.; Dalmagro, H.J.; Zanella de Arruda, P.H.; Biudes, M.S.; Lathuillière, M.J.; Uribe, M.; Couto, E.G.; Brando, P.M.; Vourlitis, G.; Johnson, M.S., 2024. Changes in evapotranspiration, transpiration and evaporation across natural and managed landscapes in the Amazon, Cerrado and Pantanal biomes. Agricultural and Forest Meteorology, v. 346, 109875. https://doi.org/10.1016/j.agrformet.2023.109875

Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M. C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; Munger, J. W.; Schroeder, W.; Soares-Filho, B.S.; Souza, C.M.; Wofsy, S.C., 2012. The Amazon basin in transition. Nature, v. 481, 321-328. https://doi.org/10.1038/nature10717

Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C., 2015. Effects of land cover change on evapotranspiration and small basin flow reservoirs in the Upper Xingu River Basin, Brazil Central. Journal of Hydrology Regional Studies 4, Part B(PB), 108-122. https://doi.org/10.1016/j.ejrh.2015.05.010

Environmental Protection Agency (EPA), 2015. ProUCL Version 5.1.002: Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. Publication nº EPA/600/R-07/041. Office of Research and Development, Washington, DC.

Paranhos Filho, A.C.; Moreira, E.S.; Oliveira, A.K.M. de; Pagotto, T.C.S.; Mioto, C.L., 2014. Análise da variação da cobertura do solo no Pantanal de 2003 a 2010 através de sensoriamento remoto. Engenharia Sanitaria e Ambiental, v. 19, (spe), 69-76. https://doi.org/10.1590/S1413-41522014019010000305

Fohrer, N.; Haverkamp, S.; Eckhardt, K.; Frede, H.-G., 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, v. 26, (7-8), 577-582. https://doi.org/10.1016/S1464-1909(01)00052-1

Forman, R.T., 1999. Land Mosaics: the ecology of landscapes and regions. 5. ed. Cambridge University Press, Cambridge.

Fu, R.; Yin, L.; Li, W.; Myneni, R.B., 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate. Proceedings of the National Academy of Sciences of the United States of America, v. 110, (45), 18110-18115. https://doi.org/10.1073/pnas.1302584110

Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; Michaelsen, J., 2015. The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Scientific Data, v. 2, 150066. https://doi.org/10.1038/sdata.2015.66

Galina, A.B.; Ilha, D.B.; Pagotto, M.A., 2022. Dinâmica multitemporal da cobertura e uso do solo do estado de Sergipe. Scientia Plena, v. 18, n. 6. https://doi.org/10.14808/sci.plena.2022.065301

Giambelluca, T.W.; Ziegler, A.D.; Nullet, M.A.; Truong, D.M.; Tran, L.T., 2003. Transpiration in a small tropical forest patch. Agricultural and Forest Meteorology, v. 117, 1-22. https://doi.org/ 10.1016/S0168-1923(03)00041-8

Griffiths, P.; Jakimow, B.; Hostert, P., 2018. Reconstruindo a dinâmica do desmatamento anual de longo prazo no Pará e Mato Grosso usando o arquivo Landsat. Sensoriamento Remoto do Meio Ambiente, v. 216, 497-513. https://doi.org/10.1016/j.rse.2018.07.010

Hayhoe, S.J.; Neill, C.; Porder, S.; Mchorney, R.; Lefebvre, P.; Coe, M.T.; Elsenbeer, H.; Krusche, A.V., 2011. Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Global Change Biology, v. 17, (5), p. 1821-1833. https://doi.org/10.1111/j.1365-2486.2011.02392.x

Hewlett J.D.; Hibbert, E., 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In: Sopper, W.E.; Lull, H.W. (Eds.). International Symposium on Forest Hydrology. Pergamon Press, Oxford, pp. 275-290.

Instituto Socioambiental (ISA), 2012. De olho na Bacia do Xingu (Série Cartô Brasil Socioambiental, v. 5).

Instituto Socioambiental (ISA), 2016. De olho no Xingu: histórico de desmatamento e tendências atuais. Cartô Brasil Socioambiental, Parte I.

Ivo. I.O.; Biudes, M. S.; Vourlitis, G.L.; Machado, N.G.; Martim, C.C., 2020. Effect of fires on biophysical parameters, energy balance and evapotranspiration in a protected area in the Brazilian Cerrado. Remote Sensing Applications: Society and Environment, v. 19, 100342. https://doi.org/10.1016/j.rsase.2020.100342

Jimenez, J.C.; Barichivich, J.; Mattar, C.; Takahashi, K.; Santamaría-Artigas, A.; Sobrino, J.A.; Malhi, Y., 2018. Spatiotemporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, v. 373, (1760), 20170300. https://doi.org/10.1098/rstb.2017.0300

Jung, H.C.; Getirana, A.; Arsenault, K.R.; Holmes, T.R.H.; McNally, A., 2019. Uncertainties in evapotranspiration estimates over West Africa. Remote Sensing, v. 11, (8), 892. https://doi.org/10.3390/rs11080892

Kendall, M.G., 1975. Rank Correlation Methods. 4. ed. Charles Griffin, London.

Klink, C.A.; Moreira, A.G., 2002. Past and current human occupation, and land use. In: Oliveira, P.S.; Marquis, R.J. The Cerrado of Brazil: ecology and natural history of a neotropical Savanna. Columbia University Press, New York, pp. 69-88.

Kohler, M.R.; Bampi, A.C.; da Silva, C.A.F.; Arantes, A.; Gaspar, W.J., 2021. Desmatamento na Amazônia brasileira sob a ótica da pecuária: a degradação dos recursos hídricos no contexto da região norte do Mato Grosso. Research, Society and Development, v. 10, (11), e66101119252. http://dx.doi.org/10.33448/rsd-v10i11.19252

Kunz, S.H.; Ivanauskas, N.M.; Martins, S.V.; Silva, E.; Stefanello, D., 2009. Análise da semelhança florística entre as florestas do Alto Rio Xingu, da Bacia Amazônica e do Planalto Central. Brazilian Journal of Botany, v. 32, (4), 725-736. https://doi.org/10.1590/S0100-84042009000400011

Liu, J.; Shangguan, D.; Liu, S.; Ding, Y.; Wang, S.; Wang, X., 2019. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981-2015. Atmospheric Research, v. 230, 104634. https://doi.org/10.1016/j.atmosres.2019.104634

Lucas, E.W.M.; Sousa, F.A.S.; Silva, F.D.D.S.; Lucio, P.S., 2009. Variação espacial e temporal da precipitação na bacia hidrográfica do Xingu, Pará. Revista Brasileira de Meteorologia, v. 24, (3), 308-322.

Lucas, E.W.M.; Sousa, F.A.S.; Silva, F.D.D.S.; Rocha Júnior, R.L.D.; Pinto, D.D.C.; Silva, V.P.R., 2021. Trends in climate extreme indices assessed in the Xingu river basin - Brazilian Amazon. Weather and Climate Extremes, v. 31, 100306. https://doi.org/10.1016/j.wace.2021.100306

Maeda, E.E.; Ma, X.; Wagner, F.H.; Kim, H.; Oki, T.; Eamus, D.; Huete, A., 2017. Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, v. 8, (2), 439-454. https://doi.org/10.5194/esd-8-439-2017

Mahrt, L.; Vickers, D.; Nakamura, R.; Soler, M.R.; Sun, J.; Burns, S.P.; Lenschow, D.H., 2001. Shallow drainage flows. Boundary-Layer Meteorology, v. 101, (2), 243-260. https://doi.org/10.1023/A:1019273314378

Mann, H.B., 1945. Non-parametric tests against trend. Econometria, v. 13, (3), 245-259. https://doi.org/10.2307/1907187

MapBiomas (Org.), 2022. MapBiomas General “Handbook”: Algorithm Theoretical Basis Document (ATBD) - Colection 6 (Accessed March 30, 2022) at:. https://mapbiomas-br-site.s3.amazonaws.com/Metodologia/ATBD_Collection_6_v1_January_2022.pdf

Marengo, J.A.; Nobre, C.A.; Tomasella, J.; Oyama, M.D.; Oliveira, G.S.; Oliveira, R.; Camargo, H.; Alves, L.M.; Brown, I.F., 2008. The drought of Amazônia in 2005. Journal of Climate, v. 21, 495-516. https://doi.org/10.1175/2007JCLI1600.1

Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A., 2011. The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters, v. 38, (12), 1-5. https://doi.org/10.1029/2011GL047436

Marinho Junior, J.L.; Lima, D.S.; Dias, J.L.A.; Araújo Filho, R.N., 2020. Análise dos estoques de carbono no solo sob diferentes coberturas vegetais no Brasil. Journal of Biotechnology and Biodiversity, v. 8, (1), 031-040. https://doi.org/10.20873/jbb.uft.cemaf.v8n1.marinhojr

Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C., 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, v. 10, (5), 1903-1925. https://doi.org/10.5194/gmd-10-1903-2017

McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P., 2017. A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, v. 4, 170012. https://doi.org/10.1038/sdata.2017.12

Muñoz-Sabater, J, 2019. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

Nóbrega, R.S., 2014. Impactos do desmatamento e de mudanças climáticas nos recursos hídricos na Amazônia ocidental utilizando o modelo SLURP. Revista Brasileira de Meteorologia, v. 29, (spe), 111-120. https://doi.org/10.1590/0102-778620130024

O'Connor, J.; Santos, M.J.; Rebel, K.T.; Dekker, S.C., 2019. The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrology and Earth System Sciences, v. 23, (9), 3917-3931. https://doi.org/10.5194/hess-23-3917-2019

Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Rao, J.; Sternberg, M.; dos Santos, T.V.; dos Santos, C.A.C., 2020. Evapotranspiration and Precipitation over Pasture and Soybean Areas in the Xingu River Basin, an Expanding Amazonian Agricultural Frontier. Agronomy, v. 10, (8), 1112. https://doi.org/10.3390/agronomy10081112

Paiva, K.; Rau, P.; Montesinos, C.; Lavado-Casimiro, W.; Bourrel, L.; Frappart, F., 2023. Hydrological response assessment of land cover change in a Peruvian Amazonian Basin impacted by deforestation using the SWAT model. Remote Sensing, v. 15, (24), 5774. https://doi.org/10.3390/rs15245774

Panday, P.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; Castanho, A.D.A., 2015. Deforestation offsets changes in water balance due to climate variability in the Xingu River in eastern Amazon. Journal of Hydrology, v. 523, (7), 822-829. https://doi.org/10.1016/j.jhydrol.2015.02.018

Papastefanou, P.; Zang, C.S.; Angelov, Z.; de Castro, A.A.; Jimenez, J.C.; De Rezende, L.F.C.; Ruscica, R.; Sakschewski, B.; Sörensson, A.; Thonicke, K.; Vera, C.; Viovy, N.; Von Randow, C.; Rammig, A., 2020. Quantifying the spatial extent and intensity of recent extreme drought events in the Amazon rainforest and their impacts on the carbon cycle. Biogeosciences Discussions, p. 1-37. https://doi.org/10.5194/bg-2020-425

Pongratz, J.; Bounoua, L.; DeFries, R.S.; Morton, D.C.; Anderson, L.O.; Mauser, W.; Klink, C.A., 2006. The Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil. Earth Interactions, v. 10, (19), 1-19. https://doi.org/10.1175/EI176.1

Pritchett, W.L., 1979. Properties and Management of Forest Soils. John Wiley, New York, 500 p.

Rede Xingu+, 2021. Xingu sob Bolsonaro: Análise do desmatamento na Bacia do Rio Xingu (2018-2020) (Accessed May 14, 2021) at:. https://www.socioambiental.org/sites/blog.socioambiental.org/files/nsa/arquivos/nt_xingu_sob_bolsonaro_final.pdf

Rizzo, R.; Garcia, A.S.; Vilela, V.M.F.N.; Ballester, M.V.R.; Neill, C.; Victoria, D.C.; da Rocha, H.R.; Coe, M.T., 2020. Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976–2015. Climatic Change, v. 162, 1419-1436. https://doi.org/10.1007/s10584-020-02736-z

Rodrigues, T.R.; Vourlitis, G.L.; Lobo, F.A.; Oliveira, R.G.; Nogueira, J.S., 2014. Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem in south-central Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences, v. 119, (1), 1-13. https://doi.org/10.1002/2013JG002472

Rodrigues, T.; Sano, E.E.; Almeida, T.; Chaves, J.M.; Doblas, J., 2019. Detecção de mudanças na cobertura vegetal natural do Cerrado por meio de dados de radar (Sentinel1A). Sociedade e Natureza, v. 31, 1-22. https://doi.org/10.14393/SN-v31-2019-46315

Rossatto, A.A.P.; Kirchner, J.H.; Martins, J.D.; Sander, L.S.; Amaral, W.N.B.; Petry, M.T., 2022. Partição da evapotranspiração da cultura da soja em diferentes cultivares em cada estádio fenológico. IRRIGA, v. 27, (3), 477-492. https://doi.org/10.15809/irriga.2022v27n3p477-492

Rothmund, L.D.; Almeida Júnior, E.S.; de Arruda Lima, L.P.; Bodnar Massad, H.A.; Palácios, R.S.; Biudes, M.S.; Machado, N.G.; Nogueira, J.S., 2019. Impacto da alteração da cobertura do solo nos parâmetros biofísicos no sul da Floresta Amazônica por sensoriamento remoto. Revista Brasileira de Climatologia, v. 25, 122-137. https://doi.org/10.5380/abclima.v25i0.62677

Running, S.; Mu, Q.; Zhao, M., 2017. Mod16a2 Modis/Terra Net Evapotranspiration 8-Day L4 Global 500m Sin Grid V006. NASA EOSDIS Land Processes DAAC, 6.

Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Nemani, R., 2013. Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, v. 110, (2), 565-570. https://doi.org/10.1073/pnas.1204651110

Saddique, N.; Mahmood, T.; Bernhofer, C., 2020. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environmental Earth Sciences, v. 79, (19), 448. https://doi.org/10.1007/s12665-020-09206-w

Sala, O.E.; Chapin, F.S. III; Armesto, J.J.; Berlow, E.L.; Bloomfield, J.B.; Dirzo, R.H.; Huber-Sannwald, E.; Huenneke, L.; Jackson, R.B.; Kinzig, A.P.; Leemans, R.; Lodge, D. M.; Mooney, H.A.; Oesterheld, M.I.N.; Poff, N.L.; Sykes, M.T.; Walker, B.; Walker, M.; Wall, D.H., 2000. Global biodiversity scenarios for the year 2100. Science, v. 287, (5459), 1770-1774. https://doi.org/10.1126/science.287.5459.1770

Salati, E.; Shubart, H.; Junk, W., 1983. Amazônia, desenvolvimento, integração, ecologia. Editora Brasiliense, CNPq, São Paulo, 327 p.

Santana, N.C.; Carvalho Júnior, O.A.; Gomes, R A.T.; Guimarães, R.F., 2019. Análise do ângulo de visada no comportamento espectral de imagens MODIS em áreas de Floresta Amazônica e Cerrado. Geografia Ensino & Pesquisa, v. 23, e10. https://doi.org/10.5902/2236499434397

Santos, T.O.; Andrade Filho, V.S.; Rocha, V.M.; Menezes, J.S., 2017. Os impactos do desmatamento e queimadas de origem antrópica sobre o clima da Amazônia brasileira: um estudo de revisão. Revista Geográfica Acadêmica, v. 11, (2), 157-181.

Santos, F.A.A.; Rocha, E.J.P.; Santos, J.S., 2019. Dinâmica da Paisagem e seus Impactos Ambientais na Amazônia. Revista Brasileira de Geografia Física, v. 12, (5), 1794-1815. https://doi.org/10.26848/rbgf.v12.5.p1794-1815

Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P., 2013. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. Journal of the American Water Resources Association, v. 49, (3), 577-591. https://doi.org/10.1111/jawr.12057

Serrão, E.A.O.; Lima, A.M.M.; Sousa, F.A.S.; Ferreira, T.R.; Santos, C.A.; Junior, J.A.S., 2017. Distribuição espacial de intensidade pluviométrica na calha do rio Solimões: estudo de caso da seca de 2010 na Amazônia. ACTA Geográfica, v. 11, (25), 1-16. https://doi.org/10.18227/2177-4307.acta.v11i25.2904

Shapiro, S.S.; Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, v. 52, (3/4), 591-611. https://doi.org/10.2307/2333709

Silva, V.V.C.; Rezende, E.N., 2021. Os rios voadores e as mudanças climáticas ocasionadas pelo desmatamento da Floresta Amazônica: uma perspectiva a partir do constitucionalismo latino-americano. Revista Brasileira de Direito Animal, v. 16, (3), 96-113. https://doi.org/10.9771/rbda.v16i3.47626

Silva, H.J.F.; Gonçalves, W.A.; Bezerra, B.G.; Silva, C.M.S.; Oliveira, C.P.; Mutti, P.R., 2022. Analysis of the influence of deforestation on the microphysical parameters of clouds in the Amazon. Remote Sensing, v. 14, (21), 1-23. https://doi.org/10.3390/rs14215353

Souza, V.A.S.; Rotunno Filho, O.C.; Moreira, D.M.; Rudke, A.P.; Rocha Tortureli de Sá, M., 2019. Dinâmica do desmatamento na Amazônia e seus impactos na hidrologia: bacia do Rio Machadinho - Rondônia/Brasil. Ciência Florestal, v. 29, (3), 1004-1018. https://doi.org/10.5902/1980509835333

Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F., 2016. Land‐use change affects water recycling in Brazil's last agricultural frontier. Global Change Biology, v. 22, (10), 3405-3413. https://doi.org/10.1111/gcb.13298

Stickler, C.M.; Coe, M.T.; Costa, M.H.; Soares-Filho, B.S., 2013. Dependence on hydroelectric power generation in the forests of the Amazon Basin at local and regional scales. Proceedings of the National Academy of Sciences of the United States of America, v. 110, (23), 9601-9606. https://doi.org/10.1073/pnas.1215331110

Sun, L.; Baker, J. C. A.; Gloor, E.; Spracklen, D.; Boesch, H.; Somkuti, P.; Maeda, E.; Buermann, W., 2019. Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data. Frontiers in Earth Science, v. 7, (32). https://doi.org/10.3389/feart.2019.00032

Tomasella, J.; Marengo, J.A., 2011. A seca de 2010 na Amazônia. Science, v. 331, (6017), 532. https://doi.org/10.1126/science.1200807

Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L.P.H.; Uhlenbrook, S., 2014. Comparison of different evaporation estimates over the African continent. Hydrology and Earth System Sciences, v. 18, (1), 193-212. https://doi.org/10.5194/hess-18-193-2014

Velásquez, C.; Queiroz, H.; Bernascon, P., 2010. Fique por Dentro: a Bacia do Rio Xingu em Mato Grosso. ISA, São Paulo; Instituto Centro de Vida, Cuiabá.

Vendruscolo, J.; Santos Júnior, N.R.F.; Macedo, T.M.; Donegá, M.V.B.; Fulan, J.Â.; Souza, R.F.S.; Cavalheiro, W.C.S., 2022. Características hidrogeomorfométricas e dinâmica da cobertura do solo na microbacia do rio Ariranha, Amazônia Ocidental. Revista Científica Multidisciplinar, v. 3, (1), e311034. https://doi.org/10.47820/recima21.v3i1.1034

Warren, M.S., 2013. Desagregação espacial de estimativas de evapotranspiração real obtidas a partir do sensor MODIS. Revista Brasileira de Meteorologia, v. 28, (2), 153-162. https://doi.org/10.1590/S0102-77862013000200004

Yang, X.; Ren, L.; Singh, V. P.; Liu, X.; Yuan, F.; Jiang, S.; Yong, B., 2012. Impacts of land use land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrology Research, v. 43, (1-2), 23. https://doi.org/10.2166/nh.2011.120

Zelazowski, P.; Malhi, Y.; Huntingford, C.; Sitch, S.; Fisher, J.B., 2011. Changes in the potential distributions of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society of London – Biological Sciences, v. 369, (1934), 137-160. https://doi.org/10.1098/rsta.2010.0238

Zhang, Y.; Kong, D.; Gan, R.; Chiew, F. H. S.; McVicar, T. R.; Zhang, Q.; Yang, Y., 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sensing of Environment, v. 222, (1), 165-182. https://doi.org/10.1016/j.rse.2018.12.031

Zhang, X.; Wang, G.; Xue, B.; Wang, Y.; Wang, L., 2022. Spatiotemporal variation of evapotranspiration on different land use/cover in the inner Mongolia reach of the Yellow River Basin. Remote Sensing, v. 14, (18), 4499. https://doi.org/10.3390/rs14184499

Downloads

Published

2024-03-05

How to Cite

Antunes, S. C. R., Ribeiro , C. B. de M., Lima , R. N. de S., & Getirana , A. (2024). Effects of changes in use and soil cover on real evapotranspiration from the creation of a remote sensing product in the Xingu basin. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1658. https://doi.org/10.5327/Z2176-94781658

Similar Articles

You may also start an advanced similarity search for this article.