Fire regime in Goiás - Brazil and Mozambique between 2010 and 2019: frequency, recurrence, and most affected cover classes

Authors

DOI:

https://doi.org/10.5327/Z2176-94781303

Keywords:

fire; recurrence; savannas; land use and cover; biomass burning.

Abstract

Over the last few years, the world has experienced extreme events related to the occurrence of fire, which has caused a great deal of damage to people and ecosystems. In 2020 fires raged in Australia, Brazil, the United States, and other nations. Thus, the forest fire issue becomes a matter of global relevance and urgency and requires a better understanding and monitoring of these events. This study sought to identify similarities and differences between the fire regime, specifically the frequency and recurrence, in Mozambique and the state of Goiás, Brazil, between 2010 and 2019. Both focuses are located in the same bioclimatic zone, where savannas are present. Savannas, considered the most fire-resilient ecosystems, are not immune to the consequences of intense and frequent fires. Therefore, monitoring such events in these ecosystems is important, especially to identify characteristics that can guide decisionmaking. The methodological steps for developing this study involved database organization and using cloud-based geospatial processing platforms, which resulted in fire event characterization products. In both of the studied focuses, fire occurs annually in significant extensions, especially in Mozambique, where the burnt area percentage is higher than in Goiás. Such dynamics may be related to each region’s specificities. These results allow for a better understanding of how fires and burning occur in different savannas. and may motivate further research aimed at further clarification.

Downloads

Download data is not yet available.

References

Akhtar, A.; Sarmah, A.K.S., 2018. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, v. 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085.

Akinade, O.O.; Oyedele, L.O.; Bilal, M.; Ajayi, S.O.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A., 2015. Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and Recycling (Online), v. 105, (part A), 167-176. https://doi.org/10.1016/j.resconrec.2015.10.018.

Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE), 2020. Panorama dos Resíduos Sólidos no Brasil 2018/2019 (Accessed October, 2021) at:. https://abrelpe.org.br/panorama-2020/.

Associação Brasileira de Normas Técnicas (ABNT), 2013. NBR 15575: Edificações habitacionais - Desempenho. Rio de Janeiro: ABNT.

Barreto, L.P.G.L., 2015. O estudo da água real e virtual no concreto usinado. Master's dissertation, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Pará (Accessed October, 2021) at:. https://ppgec.propesp.ufpa.br/ARQUIVOS/dissertacoes/2015/lidiannegomes.pdf.

Cai, J.H.; Wu, X.M.; Gu, S., 2012. Anti-collapse drilling fluids for the cretaceous scientific drilling in Songliao Basin, China: a case study. Applied Mechanics and Materials, v. 170, 1196-1201. https://doi.org/10.4028/www.scientific.net/AMM.170-173.1196.

Camillato, A.C., 2018. Contribuições do "Design for Disassembly" para sustentabilidade na construção civil. Doctoral Thesis, Universidade Federal de Minas Gerais, Escola de Arquitetura (Accessed October 6, 2021) at:. http://hdl.handle.net/1843/MMMD-BALKVZ

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), 2016. Scopus: Guia de referência rápida (Accessed October, 2021) at:. https://www.periodicos.capes.gov.br/images/documents/Scopus_Guia%20de%20refer%C3%AAncia%20r%C3%A1pida_10.08.2016.pdf.

Costa, P.O.; Qualharini, E.L., 2018. O papel da desconstrução na sustentabilidade das edificações. In: 6ª Conferência sobre Patologia e Reabilitação de Edifícios (Accessed October, 2021) at:. http://www.nppg.org.br/patorreb/files/artigos/80490.pdf.

Crawford, R.; Treloar, G., 2005. An assessment of the energy and water embodied in commercial building construction. In: Australian Life Cycle Assessment Conference (4th: 2005: Novotel, Sydney, NSW) (pp. 1-10). Australian Life Cycle Assessment Society (Accessed October 13, 2021) at:. https://www.researchgate.net/publication/242296069_An_assessment_of_the_energy_and_water_embodied_in_commercial_building_construction.

Crowther, P., 2001. Developing an inclusive model for design for deconstruction. In: Proceedings of the CIB Task Group 39-Deconstruction Meeting (Accessed October 6, 2021) at:. https://eprints.qut.edu.au/2884/1/Crowther-TG39-2001.PDF.

Crowther, P., 2005. Design for disassembly: themes and principles. RAIA/BDP Environment Design Guide (Accessed October 6, 2021) at:. https://eprints.qut.edu.au/2888/.

da Paz, D.H.F.; Lafayette, K.P.V.; Holanda, M.J.; Sobral, M.C.M.; Costa, L.A.R.C., 2020. Assessment of environmental impact risks arising from the illegal dumping of construction waste in Brazil. Environment, Development and Sustainability, v. 22, 2289-2304. https://doi.org/10.1007/s10668-018-0289-6.

Ding, Z.; Wang, Y.; Zou, P.X.W., 2016. An agent based environmental impact assessment of building demolition waste management: Conventional versus green management. Journal of Cleaner Production (Online), v. 133, 1136-1153. https://doi.org/10.1016/j.jclepro.2016.06.054.

Fisk, P.; Faulkner, B.M., 2019. Green building/infrastructure system with manufacturing/distribution strategy. Sustainable Mediterranean Construction (Accessed October 06, 2021) at:. http://www.sustainablemediterraneanconstruction.eu/SMC/The%20Magazine%20n.9_files/0906_Fisk_Faulkner.pdf.

IOP Conference Series: Earth and Environmental Science, 2018. International Conference on Eco Engineering Development 2017, ICEED 2017, Yogyakarta, Indonesia: 14 November 2017, 1001 (Accessed October 6, 2021) at:. https://iopscience.iop.org/issue/1755-1315/109/1.

Kanters, J., 2018. Design for deconstruction in the design process: state of the art. Buildings (Online), v. 8, (11), 150. https://doi.org/10.3390/buildings8110150.

Lehmann, D.S., 2011. Resource recovery and materials flow in the city: Zero waste and sustainable consumption as paradigm in urban development. Journal of Green Building, v. 6, (3), 88-105. https://doi.org/10.3992/jgb.6.3.88.

Lehmann, S., 2011. Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption. Sustainability, v. 3, (1), 155-183. https://doi.org/10.3390/su3010155.

Lehmann, S., 2012. Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption. Sustainability, v. 3, (1), 1-29 (Accessed October 6, 2021) at:. https://ideas.repec.org/a/gam/jsusta/v3y2011i1p155-183d10895.html.

Lehmann, S., 2013. The metabolism of the city: optimizing urban material flow through principles of zero waste and sustainable consumption: Steffen Lehmann. In: Lehmann, S., ed. Designing for zero waste. Routledge (pp. 332-366) (Accessed October 6, 2021) at:. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203146057-29/metabolism-city-optimizing-urban-material-flow-principles-zero-waste-sustainable-consumption-steffen-lehmann-steffen-lehmann.

Li, W., Zhang, C.; Wang, H.-P. Ben; Awoniyi, S. A., 1995. Design for disassembly analysis for environmentally conscious design and manufacturing. Manufacturing Science and Engineering, 969-976.

Li, Y.; Li, M.; Sang, P., 2022. A bibliometric review of studies on construction and demolition waste management by using CiteSpace. Energy and Buildings, v. 258, 111822. https://doi.org/10.1016/j.enbuild.2021.111822.

Longo, L.F.M., 2020. Projeto para desmontagem e BIM: ferramentas projetuais para aperfeiçoar a reutilização de materiais. Doctoral Thesis, Programa de Pós-graduação em Arquitetura e Urbanismo, Instituto de Arquitetura e Urbanismo, Universidade de São Paulo, São Carlos. https://doi.org/10.11606/T.102.2020.tde-23112020-223721.

Marques, C.T.; Gomes, B.M.F.; Brandli, L.L., 2017. Consumo de água e energia em canteiros de obra: um estudo de caso do diagnóstico a ações visando à sustentabilidade. Ambiente Construído (Online), v. 17, (4), 79-90. https://doi.org/10.1590/s1678-86212017000400186.

Martins, A.S.M., 2017. Diretrizes para o planejamento de uma demolição sustentável em edifícios. Master’s Dissertation, Instituto de Arquitetura e Urbanismo, Universidade de São Paulo, São Carlos. https://doi.org/10.11606/D.102.2017.tde-11042017-110726.

McGrail, D.M., 2004. Do we really need to do that every time? Fire Engineering, v. 157, 169-176, (Accessed October 6, 2021) at:. https://www.researchgate.net/publication/291664591_Do_we_really_need_to_do_that_every_time.

Metin, B.; Aydin İpekçi, C., 2015. An approach for sustainable buildings: architectural deconstruction design. ARCHDESIGN, v. 15, 519-527 (Accessed October 6, 2021) at:. https://www.researchgate.net/publication/279853225_An_Approach_for_Sustainable_Buildings_Architectural_Deconstruction_Design.

Morgan, C.; Stevenson, F., 2005. Design for deconstruction. SEDA Design Guides for Scotland, (1) (Accessed October 6, 2021) at:. https://static1.squarespace.com/static/5978a800bf629a80c569eef0/t/5aa999f7652deaa430532afd/1530223259684/Design+%26+Detailing+for+Deconstruction.pdf.

Napomuceno, S.C.B.; da Paz, D.H.F., 2016. Desenvolvimento de um programa de gestão da água pro canteiro de obras de uma institução de ensino. In: VII Congreso Brasileiro de Gestão Ambiental (Accessed October 13, 2021) at:. https://www.ibeas.org.br/congresso/Trabalhos2016/I-037.pdf.

Olivo, V.; Prietto, P.; Korf, E., 2021. Actions and policy tools for local governments to achieve integrated sustainable waste management. Brazilian Journal of Environmental Sciences (Online), v. 56, (3), 436-444. https://doi.org/10.5327/Z21769478968.

Ortiz, O.; Bonnet, C.; Bruno, J.C.; Castells, F., 2009. Sustainability based on LCM of residential dwellings: A case study in Catalonia, Spain. Building and Environment, v. 44, (3), 584-594. https://doi.org/10.1016/j.buildenv.2008.05.004.

Pineda, N.; Jaimes, E.; Mejias, J.; Mendoza, J., 2004. Systematization process in studies of water well level in areas of geoseismic surveys. Interciencia, v. 29, (1), 19-25 (Accessed October 6, 2021) at:. https://pesquisa.bvsalud.org/portal/resource/pt/lil-399838.

Saint, R. M.; Pomponi, F.; Garnier, C.; Currie, J. I., 2018. Whole-life design and resource reuse of a solar water heater in the UK. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, v. 172, (3), 153-164. https://doi.org/10.1680/jensu.17.00068.

Santos, C.P.; Silva, S.R.; Cerqueira, C.A., 2015. Water consumption in construction sites in the city of Recife/PE. European Journal of Government and Economics, v. 20, (7), 1711-1726 (Accessed October 13, 2021) at:. https://www.researchgate.net/publication/297774249_Water_consumption_in_construction_sites_in_the_city_of_RecifePE.

Saraiva, T.S., 2013. Diretrizes de projeto para possibilitar a desconstrução de edificações e seus componentes. Masters Dissertation, Faculdade de Engenharia, Universidade Federal de Juiz de Fora, Juiz de Fora (Accessed October 6, 2021) at:. https://repositorio.ufjf.br/jspui/handle/ufjf/2385.

Scopus, 2021. Scopus - Banco de dados de resumos e citações organizados por especialistas. Elsevier (Accessed October 6, 2021) at:. https://www-scopus.ez48.periodicos.capes.gov.br/search/form.uri?display=basic&zone=header&origin=#basic

Silva, M.; Martins, D., 2017. A educação ambiental e a sua importância para a implementação de um sistema de gestão ambiental. Brazilian Journal of Environmental Sciences (Online), (44), 40-57. https://doi.org/10.5327/Z2176-947820170125.

Silva, R.C., 2020. Potencial de recuperação de materiais e componentes de edificações: análise crítica em um processo de reabilitação. Doctoral Thesis, Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná, Curitiba (Accessed October 6, 2021) at:. http://repositorio.utfpr.edu.br/jspui/handle/1/5044.

Silva, R.C.; Nagalli, A.; Couto, J.P., 2021. Avaliação do potencial de recuperação de edificações ao fim da vida útil: caso de uma instituição federal de ensino superior. Interações (Campo Grande), v. 22, (3), 731-745. https://doi.org/10.20435/inter.v22i3.2966.

Silva, T.; Cecchin, D.; Azevedo, A.; Alexandre, J.; Valadão, I.; Bernardino, N.; Carmo, D.; Ferraz, P., 2021. Soil-cement blocks: a sustainable alternative for the reuse of industrial solid waste. Brazilian Journal of Environmental Sciences, v. 56, (4), 673-686. https://doi.org/10.5327/Z21769478956.

Su, S.; Li, S.; Ju, J.; Wang, Q.; Xu, Z., 2021. A building information modeling-based tool for estimating building demolition waste and evaluating its environmental impacts. Waste Management, v. 134, 159-169. https://doi.org/10.1016/j.wasman.2021.07.025.

Tatiya, A.; Zhao, D.; Syal, M.; Berghorn, G.H.; LaMore, R., 2018. Cost prediction model for building deconstruction in urban areas. Journal of Cleaner Production (Online), v. 195, 1572-1580. https://doi.org/10.1016/j.jclepro.2017.08.084.

Vasconcelos, F.D.; Mota, F., 2020. Environmental management, legislation and water resources in Fortaleza (Ce), Brazil. Brazilian Journal of Environmental Sciences, v. 55, (3), 313-330. https://doi.org/10.5327/Z2176-947820190579.

Zeule, L.D.O.; Serra, S.M.B.; Teixeira, J.M.C., 2020. Best practices for the rational use of water in construction sites in Brazil. Environmental Quality Management (Online), v. 29, (4), 73-85. https://doi.org/10.1002/tqem.21693.

Downloads

Published

2022-08-17

How to Cite

Santos, S. A. dos, Oliveira, W. N. de, Ribeiro, N. V., & Ferreira, N. C. (2022). Fire regime in Goiás - Brazil and Mozambique between 2010 and 2019: frequency, recurrence, and most affected cover classes. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(3), 375–385. https://doi.org/10.5327/Z2176-94781303