Flow variability in the Araguaia River Hydrographic Basin influenced by precipitation in extreme years and deforestation





ocean-atmosphere interactions; hydroclimatic variability; land use and cover.


The climatic extremes and the dynamics of land use and cover can cause changes in river flow. The objective of this work was to analyze the flow of the Araguaia River under the effects of extreme years associated with the dynamics of land use in the Araguaia Watershed (AW) from 1981 to 2019. The land use and land cover product were based on the MapBiomas Project classification, imported from the Google Earth Engine. The measured rainfall and flow data were obtained from the National Water Agency. In contrast, the estimated rainfall was based on the data Climate Hazards Group InfraRed Precipitation with Stations. The precipitation climatology showed the lowest values (1,464.9–1,720.4 mm) in the south-central sector, and the highest (1,720.4–2,014.6 mm) rainfall amounts were observed in the north sector. However, it was identified in the five pluviometric stations with a high variability of precipitation, with an emphasis on the extreme years. Such wet and dry years were marked by a large difference in water availability. There was an intense reduction of the Amazon and Cerrado biomes by 31,641.8 and 42,618.9 km², respectively, mainly due to the expansion of 18,936.1 km² of agricultural activities and 47,494 km² of pasture. The fluviometric variability showed a decreasing trend, mainly in the past 15 years. Public actions, such as the intensification of environmental policies, monitoring focusing on the most compromised and strategic areas such as the headwaters of the Araguaia River, can minimize the impacts caused by climate extremes and deforestation.


Download data is not yet available.


Agência Nacional de Águas e Saneamento Básico (ANA). As regiões hidrográficas. (Accessed Sept 15, 2021a) at:. https://www.gov.br/ana/pt-br/assuntos/gestao-das-aguas/panorama-das-aguas/regioes-hidrograficas.

Agência Nacional de Águas e Saneamento Básico (ANA), 2015. Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras. Brasília: ANA, 162 pp.

Agência Nacional de Águas e Saneamento Básico (ANA). Região Hidrográfica Tocantins-Araguaia. (Accessed Sept 15, 2021b) at:. https://www.gov.br/ana/pt-br/assuntos/gestao-das-aguas/panorama-das-aguas/regioes-hidrograficas/regiao-hidrografica-tocantins-araguaia.

Agência Nacional de Águas e Saneamento Básico (ANA). Sistema de Informações sobre Recursos Hídricos. (Accessed Sept 15, 2021c) at:. http://www.snirh.gov.br/hidroweb/apresentacao.

Alemu, M.M., 2016. Integrated watershed management and sedimentation. Journal of Environmental Protectio, v. 7, (4), 490-494. https://doi.org/10.4236/jep.2016.74043.

Alves, E.D.L.; Lara, J.S.; Silva, S.T.; Lima, E.A.; Dias, V.R.M., 2011. Estudo climatológico da variabilidade temporal da precipitação em Iporá, Goiás. Enciclopédia Biosfera, v. 7, (12), 1-9.

Anache, J.A.A.; Wendland, E.; Rosalem, L.M.P.; Youlton, C.; Oliveira, P.T.S., 2019. Hydrological trade-offs due to different land covers and land in the Brazilian cerrado. Hydrology and Earth System Sciences, v. 23, (3), 1263-1279. https://doi.org/10.5194/hess-23-1263-2019.

Assis, P.C.; Bayer, M., 2020. Análise multitemporal do sistema fluvial do rio Araguaia, Aruanã – Goiás, Brasil. Revista da Geografia da UEG, v. 9, (2), 2-18.

Baddoo, T.D.; Guan, Y.; Zhang, D.; Andam-Akorful, S.A., 2015. Rainfall variability in the Huangfuchang watershed and it’s relationship with ENSO. Water, v. 7, (7), 3243-3262. https://doi.org/10.3390/w7073243.

Balbinot, R.; Oliveira, N.K.; Vanzetto, S.C.; Pedroso, K., 2008. O papel da floresta no ciclo hidrológico em bacias hidrográficas. Revista Ambiência, v. 4, (1), 131-149.

Barichivich, J.; Gloor, E.; Brienen, R.J.W.; Shongart, J.; Espinoza, J.C.; Pattnayak, K.C., 2018. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, v. 4, (9), 1-7. https://doi.org/10.1126/sciadv.aat8785.

Bayer, M.; Assis, P.C.; Suizu, T.M.; Gomes, M.C., 2020. Changement dans l'utilisation et la couverture terrestre au niveau du bassin hydrographique du fleuve Araguaia et son impact sur les ressources en eau, la partie moyenne du fleuve Araguaia à Goiás. Revue Franco-Brésilienne de Géographie, (48). https://doi.org/10.4000/confins.33972.

Belay, A.S.; Fenta, A.A.; Yenehun, A.; Nigate, F.; Tilahun, S.A.; Moges, M.M.; Dessie, M.; Adgo, E.; Nyssen, J.; Chen, M.; Van Griensven, A.; Walraevens, K., 2019. Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian highlands. Remote Sensing, v. 11, (22), 2688. https://doi.org/10.3390/rs11222688.

Brasil, 2006. Ministério do Meio Ambiente. Caderno da Região Hidrográfica do Tocantins - Araguaia. Brasília: Secretaria de Recursos Hídricos, 132 p.

Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; England, M.H.; Wang, G.; Guilyardi, E.; Jin, F., 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, v. 4, 111-116. https://doi.org/10.1038/nclimate2100.

Calegario, A.T.; Pereira, L.F.; Pereira, S.B.; Silva, L.N.O.; Araújo, U.L.; Fernandes Filho, E.I., 2019. Mapping and characterization of intensity in land use by pasture using remote sensing. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 23, (5), 352-258. https://doi.org/10.1590/1807-1929/agriambi.v23n5p352-358.

Campos, J.O.; Chaves, H.M.L., 2020. Tendências e variabilidade nas séries históricas de precipitação mensal e anual no bioma cerrado no período 1977-2010. Revista Brasileira de Meteorologia, v. 35, (1), 157-169. https://doi.org/10.1590/0102-7786351019.

Capotondi, A.; Sardeshmukh, P.D., 2017. Is El Niño really changing? Geophysical Research Letters, v. 44, (16), 8548-8556. https://doi.org/10.1002/2017GL074515.

Carpenedo, C.B.; Silva, C.B., 2022. Influência de teleconexões na precipitação do cerrado brasileiro. Revista Brasileira de Climatologia, v. 30, 26-46. https://doi.org/10.55761/abclima.v30i18.14607.

Casaroli, D.; Rodrigues, T.R.; Martins, A.P.B.; Evangelista, A.W.P.; Alves Júnior, J., 2018. Padrões de chuva e de evapotranspiração em Goiânia, GO. Revista Brasileira de Meteorologia, v. 33, (2), 247-256. https://doi.org/10.1590/0102-7786332004.

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS). Climate Hazard Center – UC Santa Bárbara. (Accessed Oct. 11, 2021) at:. https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs/.

Correia Filho, W.L.F.; Oliveira-Júnior, J.F.; Silva Junior, C.A.; Santiago, D.B., 2022. Influence of the El Niño-Southern Oscillation and the sypnotic systems on tthe rainfall variability over the Brazilian Cerrado via Climate Hazard Group InfraRed Precipitation with Station data. International Journal of Climatology, v. 42, (6), 3308-3322. https://doi.org/10.1002/joc.7417.

Costa, J.; Pereira, G.; Siqueira, M.E.; Cardozo, F.; Silva, V.V., 2019. Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. Revista Brasileira de Climatologia, v. 24, (15), 228-243. https://doi.org/10.5380/abclima.v24i0.60237.

Coulibaly, N.; Coulibaly, T.J.H.; Mpakama, Z.; Savané, I., 2018. The impact of climate change on water resource availability in a Trans-Boundary basin in West Africa: the case of Sassandra. Hydrology, v. 5, (1), 12. https://doi.org/10.3390/hydrology5010012.

Dagosta, F.C.P.; Pinna, M., 2017. Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units. Neotropical Ichthyology, v. 15, (3), 1-24. https://doi.org/10.1590/1982-0224-20170034.

Delage, F.P.D.; Power, S.B., 2020. The impact of global warming and the El Niño-Southern Oscillation on seasonal precipitation extremes in Australia. Climate Dynamics, v. 54, 4367-4377. https://doi.org/10.1007/s00382-020-05235-0.

Dias, G.F.M.; Lima, A.M.M.; Santos, M.N.S.; Bezerra, P.E.S., 2019. A relação entre as mudanças na paisagem e a vazão da bacia do rio Capim, Pará, Brasil. Boletim do Museu Paraense Emílio Goeldi, v. 14, (2), 255-270. https://doi.org/10.46357/bcnaturais.v14i2.179.

Dubreuil, V.; Fante, K.P.; Planchon, O.; Sant’anna Neto, J.L., 2018. Os tipos de climas anuais no Brasil: uma aplicação da classificação de Koppen de 1961 a 2015. Revista Franco-Brasileira de Geogriafia, (37). https://doi.org/10.4000/confins.15738.

Ekness, P.; Randhir, T.O., 2015. Effect of climate and land cover changes on water runoff: a multivariate assessment for storm water management. Journal of Geophysical Research: Biogeosciences, v. 120, (9), 1785-1796. https://doi.org/10.1002/2015JG002981.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Brasil em relevo. EMBRAPA (ACcessed January 14, 2022) at:. https://www.cnpm.embrapa.br/projetos/relevobr/download/.

Espinoza, J.C.; Marengo, J.A.; Schongart, J.; Jimenez, J.C., 2022. The new historical flood in the Amazon river compared to major floods of the 21st century: atmospheric features in the context of the intensification of floods. Weather and Climate Extremes, v. 35, 100406. https://doi.org/10.1016/j.wace.2021.100406

Faggiani, A.P.S.; Quadro, M.F.L.; Gonçalves, L.G.G.; Herdies, D.L., 2020. Estudo das componentes do balanço hidrológico durante episódios de ZCAS. Ciência & Natura, v. 42, (esp.), e14. https://doi.org/10.5902/2179460X55315.

Faustino, A.B.; Ramos, F.F.; Silva, S.M.P., 2014. Dinâmica temporal do uso e cobertura do solo na Bacia Hidrográfica do Rio Doce (RN) com base em sensoriamento remoto e SIG: uma contribuição aos estudos ambientais. Sociedade e Território, v. 26, (2), 18-30.

França, B.T.; Andrade, M.P.; Ribeiro, C.B.M.; Hippert, H.S., 2021. Dinâmica do uso do solo e alterações na vazão na bacia do Rio São Francisco no início do Séc. XXI. Revista de Gestão de Água da América Latina, v. 18, e11. https://doi.org/10.21168/rega.v18e11.

Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; Michaelsen, J., 2015. The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes. Scientific Data, v. 2, 150066. https://doi.org/10.1038/sdata.2015.66.

Girardi, L.; Pinheiro, A.; Garbossa, L.H.P.; Torres, E., 2016. Water quality change of river during rainy events in a watershed with diferente land uses in Southern Brazil. Revista Brasileira de Recursos Hídricos, v. 21, (3), 514-524. https://doi.org/10.1590/2318-0331.011615179.

Gomes, D.J.C.; Ferreira, N.S.; Lima, A.M.M., 2019a. Tendências de variabilidade espaço-temporal pluviométrica na bacia hidrográfica do rio Araguaia. Enciclopédia Biosfera, v. 16, (29), 1421-1433. https://doi.org/10.18677/EnciBio_2019A126.

Gomes, D.J.C.; Soares, C.S.T.; Lima, I.C.P.; Ferreira, N.S.; Lima, A.M.M., 2021b. Oscilações hidroclimáticas associadas às condições ambientais: bacia hidrográfica do rio Canoas-SC. Ciência & Natura, v. 43, 1-34. https://doi.org/10.5902/2179460X43391.

Grusson, Y.; Wesstrom, I.; Svedberg, E.; Joel, A., 2021. Influence of climate change on water partitioning in agricultural watersheds: examples from Sweden. Agricultural Water Management, v. 249, 106766. https://doi.org/10.1016/j.agwat.2021.106766.

Ho, J.T.; Thompson, J.R.; Brierley, C., 2016. Projections of hydrology in the Tocantins-Araguaia Basin, Brazil: uncertainy assessment using the CMIP5 ensemble. Hydrological Sciences Journal, v. 61, (3), 551-567. https://doi.org/10.1080/02626667.2015.1057513.

Instituto Nacional de Meteorologia (INMET). Normais climatológicas. (Accessed Nov 21, 2021) at:. http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas.

Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G., 2016. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Scientific Report, v. 6, 33130. https://doi.org/10.1038/srep33130.

Jorge, R.L.O.; Lucena, D.B, 2018. Eventos extremos anuais de precipitação em Mauriti – CE. Ciência & Natura, v. 40, e65. https://doi.org/10.5902/2179460X34045.

Lee, E.; Livino, A.; Han, S.C.; Zhang, K.; Briscoe, J.; Kelman, J.; Moorcroft, P., 2018. Land cover change explains the increasing discharge of the Paraná river. Refional Envirionmental Change, v. 18, 1871-1881. https://doi.org/10.1007/s10113-018-1321-y.

Lima, C.E.S.; Silva, M.V.M.; Silveira, C.S.; Vasconcelos Junior, F.C., 2022. Wavelet transform for medium-range streamflows projections in national interconnected system. Revista Brasileira de Ciências Ambientais, v. 57, (1), 72-83. https://doi.org/10.5327/Z217694781048.

Liu, Y., 2018. Introduction to land use and rural sustainability in China. Land Use Policy, v. 74, 1-4. https://doi.org/10.1016/j.landusepol.2018.01.032.

Llerena, C.; Hermoza, R. M.; Llerena, L.M., 2007. Plantaciones forestales, agua y gestión de cuencas. Debate Agrario-analisis y Alternativas, v. 1, 79-111.

Long, H.; Qu, Y., 2018. Land use transitions and land management: A mutual feedback perspective. Land Use Policy, v. 74, 111-120. https://doi.org/10.1016/j.landusepol.2017.03.021.

Lopes, E.; Marenzi, R.C.; Almeida, T.C.M., 2018. Comparison of soil use in the infiltration of Rainwater: pasture and forest. Revista Facultad Nacional de Agronomía Medellín, v. 71, (3), 8593-8600. https://doi.org/10.15446/rfnam.v71n3.66134.

Lopes, M.H.; Franco, J.L.A.; Costa, K.S., 2017. Expressões da Natureza no Parque Nacional do Araguaia: Processos geoecológicos e diversidade da vida. Halac, v. 7, (2), 65-100. https://doi.org/10.32991/2237-2717.2017v7i2.p65-100.

Lu, H.; Bryant, R.B.; Buda, A.R.; Collick, A.S.; Folmar, G.J.; Kleinman, P.J.A., 2015. Long-term trends in climate and hydrology in an agricultural, headwater watershed of central Pennsylvania, USA. Journal of Hydrology: Regional Studies, v. 4, (part b), 713-731. https://doi.org/10.1016/j.ejrh.2015.10.004.

Luiz, G.P.; Martins, P.R.; Gomes, L.F.; Couto Junior, A.F., 2019. Variação Intra-Anual da Cobertura da Terra de uma Ottobacia no Médio Curso do Rio Araguaia. Revista Brasileira de Geografia Física, v. 12, (4), 1563-1582. https://doi.org/10.26848/rbgf.v12.4.p1563-1582.

Lulandala, L.; Bargués-Tobella, A.; Masao, C.A.; Nyberg, G.; Ilstedt, U., 2021. Excessive livestock grazing overrides the positive effects of trees on infiltration capacity and modifies preferential flow in dry Miombo woodland. Land Degradation & Development, v. 33, (4), 581-595. https://doi.org/10.1002/ldr.4149.

MAPBIOMAS, 2021. Coleção 6 da série anual de mapas de cobertura e uso do solo do Brasil. (Accessed Oct. 13, 2021) at:. https://mapbiomas.org/.

Marcuzzo, F.F.N.; Romero, V., 2013. Influência do El Niño e La Niña na precipitação máxima diária do Estado de Goiás. Revista Brasileira de Meteorologia, v. 28, (4), 429-440. https://doi.org/10.1590/S0102-77862013000400009.

Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Leal, K.R.D.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; Baião, C.F.P.; Ângulo, E.C.; Almeida, E.K.; Kazmierczak, M.L.; Mateus, N.P.A.; Silva, R.C.; Bender, F., 2021. Extreme drought in the Brazilian Pantanal in 2019-2020: characterization, causes, and impacts. Frontiers in Water, v. 3, 639204. https://doi.org/10.3389/frwa.2021.639204.

Marengo, J.A.; Jimenez, J.C.; Espinoza, J.; Cunha, A.P.; Aragão, L.E.O., 2022. Increased climate pressure on the agriculture frontier in the Eastern Amazonia-Cerrado transition zone. Scientific Reports, v. 12, 457. https://doi.org/10.1038/s41598-021-04241-4.

Martins, A.P.; Galvani, E., 2020. Performance of the SEBAL algorithm in estimating flow in watershed in the Brazilian Savanna. Sociedade & Natureza, v. 32, 625-636. https://doi.org/10.14393/SN-v32-2020-53169

McGregor, G.R.; Ebi, K., 2018. El Niño Southern Oscillation (ENSO) and health: an overview for climate and health researchers. Atmosphere, v. 9, (7), 282. https://doi.org/10.3390/atmos9070282.

Mendes, A.T.; Zucowski Junior, J.C., 2019. Caracterização do regime pluviométrico do município de Araguaína-TO. Revista Brasileira de Meteorologia, v. 34, (4), 449-458. https://doi.org/10.1590/0102-7786344056.

Morais, R.P., 2006. The alluvial plain of the middle Araguaia river: geomorphological processes and their environmental implications. Tese de Doutorado em Ciências Agrárias, Universidade Federal de Goiás, Goiânia, 178 pp.

Moreira, E.B.F.; Souza, J.C., 2018. Avaliação geoambiental da área de preservação permanente do córrego Mina d’água, Campinaçu, Goiás, Brasil. Elisée: Revista de Geografia da UEG, v. 7, (1), 119-130.

Nascimento, M.B.; Almeida, N.V.; Araújo, L.E., 2020. Análise da variabilidade da precipitação pluviométrica na microrregião de Umbuzeiro, Paraíba. Revista Brasileira de Climatologia, v. 26, (16), 233-248. https://doi.org/10.5380/abclima.v26i0.65498.

National Oceanic Atmospheric and Administration (NOAA). Climate indices: monthly atmospheric and ocean time series. NOAA. (Accessed Sept. 8, 2021) at:. https://psl.noaa.gov/data/climateindices/list.

National Oceanic Atmospheric and Administration (NOAA). Multivariate ENSO index version 2. NOAA. (Accessed Feb. 5, 2022) at:. https://psl.noaa.gov/enso/mei.

Natividade, U.A.; Garcia, S.R.; Torres, R.R., 2017. Tendências dos índices de extremos climáticos observados e projetados no Estado de Minas Gerais. Revista Brasileira de Meteorologia, v. 32, (4), 600-614. https://doi.org/10.1590/0102-7786324008.

Nkhoma, L.; Ngongondo, C.; Dulanya, Z.; Monjerezi, M., 2021. Evaluation of integrated impacts of climate and land use change on the river flow regime in Wamkurumadzi River, Shire Basin in Malawi. Journal of Water and Climate Change, v. 12, (5), 1674-1693. https://doi.org/10.2166/wcc.2020.138.

Oliveira-Andreoli, E.Z.; Silva, F.L.; López, F.M.A.; Machado, R.; Teodoro, C.C.; Bianchini Júnior, I.; Cunha-Santino, M.B.; Fushita, A.T.; Crestana, S., 2019. Importância do planejamento regional para a manutenção dos usos múltiplos da água em bacias hidrográficas. Revista Brasileira de Ciências Ambientais, (52), 16-27. https://doi.org/10.5327/Z2176-947820190479.

Oliveira-Júnior, J.F.; Silva Junior, C.A.; Teodoro, P.E.; Rossi, F.S.; Blanco, C.J.C.; Lima, M.; Gois, G.; Correia Filho, W.L.F.; Santiago, D.B.; Vanderley, M.H.G.S., 2021. Confronting CHIRPS dataset and in situ stations in the detection of wet and drought conditions in the Brazilian Midwest. International Journal of Climatology, v. 41, (9), 4478-4493. https://doi.org/10.1002/joc.7080.

Oliveira, N.L.; Marcuzzo, F.F.N.; Barros, R.G., 2015. Influência do El Niño e La Niña no número de dias de precipitação pluviométrica no Estado do Mato Grosso. Ciência & Natura, v. 37, (3), 284-297. https://doi.org/10.5902/2179460X12717.

Oliveira, P.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V., 2014. Trends in water balance components across the Brazilian Cerrado. Water Resources Research, v. 50, (9), 7100-7114. https://doi.org/10.1002/2013WR015202.

Oliveira, R.R.S.; Souza, E.B.; Lima, A.M.M., 2020. Multitemporal analysis of land use and coverage in the low course of the Araguaia river. Journal of Geographic Information System, v. 12, (5), 496-518. https://doi.org/10.4236/jgis.2020.125029.

Pedreira Junior, A.L.; Querino, C.A.S.; Biudes, M.S.; Machado, N.G.; Santos, L.O.F.; Ivo, I.O., 2020. Influence of El Niño and La Niño phenomena on seasonality of the relative frequency of rainfall in Southern Amazonas mesoregion. Revista Brasileira de Recursos Hídricos, v. 25, 1-8. https://doi.org/10.1590/2318-0331.252020190152

Qiu, J.; Shen, Z.; Leng, G.; Xie, H.; Hou, X.; Wei, G., 2019. Impacts of climate change on watershed systems and potential adaptation through BMP’s in a drinking water source area. Journal of Hydrology, v. 573, 123-135. https://doi.org/10.1016/j.jhydrol.2019.03.074.

Queiroz, F.L.L., 2011. Aspectos da Dinâmica Hidrossedimentológica e do Uso e Ocupação do Solo na Bacia do Córrego Arapuá (MS). Dissertation (Mastering in Geography), Programa de Pós-Graduação, Universidade Federal do Mato Grosso do Sul, Três Lagoas.

Raj, E.E.; Kumar, R.R.; Ramesh, K.V., 2020. El Niño-Southern Oscillation (ENSO) impact on tea production and Rainfall in South India. Journal of Applied Meteorology and Climatology, v. 59, (4), 651-664. https://doi.org/10.1175/JAMC-D-19-0065.1.

Rápalo, L.M.C.; Uliana, E.M.; Moreira, M.C.; Silva, D.D.; Ribeiro, C.B.M.; Cruz, I.F.; Pereira, D.R., 2021. Effects of land-use and cover changes on streamflow regime in the Brazilian Savannah. Journal of Hydrology: Regional Studies, v. 38, 100934. https://doi.org/10.1016/j.ejrh.2021.100934.

Raziei, T., 2021. Revisiting the Rainfall Anomaly Index to serve as a simplified Standardized Precipitation Index. Journal of Hydrology, v. 602, 126761. https://doi.org/10.1016/j.jhydrol.2021.126761.

Ribeiro Neto, A.; Paz, A.R.; Marengo, J.A.; Chou, S.C., 2016. Hydrological process and climate change in hydrographic regions of Brazil. Journal of Water Resource and Protection, v. 8, 12, 1103-1127. https://doi.org/10.4236/jwarp.2016.812087.

Rizinjirabake, F.; Pilesjo, P.; Tenenbaum, D.E., 2019. Dissoved organic carbono leaching flux in a mixed agriculture and forest watershed in Rwanda. Journal of Hydrology: Regional Studies, v. 26, 100633. https://doi.org/10.1016/j.ejrh.2019.100633.

Rodrigues, J.A.M.; Andrade, A.C.O.; Viola, M.R.; Morais, M.A.V., 2015. Indicadores hidrológicos para a gestão de recursos hídricos na bacia hidrográfica do rio Manuel Alves da Natividade, Tocantins. Revista Scientia Agraria, v. 16, (4), 58-79. https://doi.org/10.5380/rsa.v16i4.47923.

Rooy, M.P.V., 1965. A rainfall anomaly index independent of time and space. Notes. Weather Bureau of South Africa, v. 14, 43-48.

Rosa, D.W.B.; Nascimento, N.O.; Moura, P.M.; Macedo, G.D., 2020. Assessment of the hydrological response of na urban watershed to rainfall-runoff events in diferente land use scenerios – Belo Horizonte, MG, Brazil. Water Science & Technology, v. 81, (4), 679-693. https://doi.org/10.2166/wst.2020.148.

Salame, C.W.; Souza, E.B.; Farias, V.J.C.; Rocha, E.J.P.; Moura, H.P., 2019. Um estudo comparativo dos modelos Box-Jenkins e redes neurais artificiais na previsão de vazões e precipitações pluviométricas da bacia Araguaia, Tocantins, Brasil. Revista Brasileira de Ciências Ambientais, (52), 28-43. https://doi.org/10.5327//Z2176-947820190444.

Santos, F.A.; Mendes, L.M.S.; Cruz, M.L.B., 2020. Avaliação de ocorrências de eventos climáticos extremos na sub-bacia hidrográfica do rio Piracuruca. Revista GEOgrafias, v. 28, (1), 43-61.

Santos, W.P.; Avanzi, J.C.; Viola, M.R.; Chou, S.C.; Guzman-Acuña, S.F.; Pontes, L.M.; Curi, N., 2022. Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, v. 213, 106225. https://doi.org/10.1016/j.catena.2022.106225.

Sazib, N.; Mladenova, L.E.; Bolten, J.D., 2020. Assessing the impacto of ENSO on agriculture over Africa using Earth observation data. Frontiers in Sustainable Food Systems, v. 4, 509914. https://doi.org/10.3389/fsufs.2020.509914.

Schineider, V., 2011. Mapeamento geomorfológico e zoneamento ambiental de fragilidade na Bacia Hidrográfica do Rio Barra Seca – Espírito Santo. Dissertation (Mastering in Geography), Programa de Pós-Graduação e Geografia, Universidade Federal do Espírito Santo, Vitória.

Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J., 2018. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin.Water, v. 10, (6), 814. https://doi.org/10.3390/w10060814.

Shrestha, A.; Kostaschuk, R., 2005. El Niño/Southern Oscillation (ENSO)-related variability in mean-monthly streamflow in Nepal. Journal of Hydrology, v. 308, (1-4), 33-49. https://doi.org/10.1016/j.jhydrol.2004.10.020

Silva, G.M.F.; Zanchi, F.B.; Silva, J.B.L.; Bernardes, M.E.C., 2021a. Disponibilidade hídrica de uma bacia hidrográfica no sul da Bahia. Revista Brasileira de Geografia Física, v. 14, (3), 1597-1611. https://doi.org/10.26848/rbgf.v14.3.p1597-1611.

Silva, I.S.; Evangelista, J.P.; Melo, S.C., 2021b. Fragmentação do cerrado mato-grossense e suas implicações socioambientais: um estudo de caso na bacia hidrográfica do rio Suspiro. Revista Cadernos de Ciência & Tecnologia, v. 2, (4), 28-49.

Silva, L.S.; Ferraz, L.L.; Sousa, L.F.; Santos, C.A.S.; Rocha, F.A., 2022. Trend in hydrological series and land use changes in a tropical basin at Northeast Brazil. Revista Brasileira de Ciências Ambientais, v. 57, (1), 137-147. https://doi.org/10.5327/Z2176-94781097.

Silva, T.C.M.; Vieira, I.C.G.; Thalês, M.C., 2021. Spatial-temporal evolution of landscape degradation on the Guamá river basin, Brazil. Revista Brasileira de Ciências Ambientais, v. 56, (3), 480-490. https://doi.org/10.5327/Z21769478942.

Silva Neto, V.L.; Viola, M.R.; Mello, C.R.; Alves, M.V.G.; Silva, D.D.; Pereira, S.B., 2020. Mapeamento de chuvas intensas para o Estado do Tocantins. Revista Brasileira de Meteorologia, v. 35, (1), 1-11. https://doi.org/10.1590/0102-7786351017.

Siqueira, P.P.; Oliveira, P.T.S.; Bressiani, D.; Meira Neto, A.A.; Rodrigues, D.B.B., 2021. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. Journal of Hydrology: Regional Studies, v. 37, 100931. https://doi.org/10.1016/j.ejrh.2021.100931.

Sistema Integrado de Informações sobre Desastres Naturais (S2iD). Secretaria Nacional de Proteção e Defesa Civil. (Accessed January 19, 2022) at:. https://s2id.mi.gov.br/.

Souto, J.; Beltrão, N.; Teodoro, A., 2019. Performance of remotely sensed soil moisture for temporal and spatial analysis of rainfall over São Francisco river basin, Brazil. Geosciences, v. 9, (3), 114. https://doi.org/10.3390/geosciences9030144.

Souza Junior, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; Oliveira, S.W.; Rocha, W.F.; Fonseca, A.V.; Marques, C.B.; Diniz, C.G.; Costa, D.; Monteiro, D.; Rosa, E.R.; Vélez-Martin, E.; Weber, E.J.; Lenti, F.E.B.; Paternost, F.F.; Pareyn, F.G.C.; Siqueira, J.V.; Vieira, J.L.; Ferreira Neto, L.C.; Saraiva, M.M.; Sales, M.H.; Salgado, M.P.G.; Vasconcelos, R.; Galano, S.; Mesquita, V.V.; Azevedo, T., 2020. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and Earth Engine. Remote Sensing, v. 12, (17), 2735. https://doi.org/10.3390/rs12172735.

Speer, M.S.; Leslie, L.M.; MacNamara, S.; Hartigan, J., 2021. From the 1990’s climate change has decreased cool season catchment precipitation reducing river Heights in Australia’s Southern Murray-Darling basin. Scientific Reports, v. 11, 16136. https://doi.org/10.1038/s41598-021-95531-4

Yao, Z.; Wang, B.; Huang, J.; Zhang, Y.; Yang, J.; Deng, R.; Yang, Q., 2021. Analysis of Land Use Changes and Driving Forces in the Yanhe River Basin from 1980 to 2015. Journal of Sensors, v. 2021, 6692333. https://doi.org/10.1155/2021/6692333.

Yun, K.; Lee, J.; Timmermann, A.; Stein, K.; Stuecker, M.F.; Fyfe, J.C.; Chung, E., 2021. Increasing ENSO- rainffall variability due to changes in future tropical temperature-rainfall relationship. Communications Earth & Environmental, v. 2, 43. https://doi.org/10.1038/s43247-021-00108-8.




How to Cite

Gomes, D. J. C., Nascimento, M. M. M., Pereira, F. M., Dias, G. F. de M., Meireles, R. R., Souza, L. G. N. de, Picanço, A. R. S., & Ribeiro, H. M. C. (2022). Flow variability in the Araguaia River Hydrographic Basin influenced by precipitation in extreme years and deforestation. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(3), 451–466. https://doi.org/10.5327/Z2176-94781358