Analysis of hydrological extremes in the Guaíba hydrographic region: an application of extreme values theory
DOI:
https://doi.org/10.5327/Z2176-94781317Keywords:
intense events; generalized extreme value; probability; projections.Abstract
Knowing the behavior of extreme hydrological phenomena is essential so that the impacts resulting from these natural events are minimized. Rio Grande do Sul has frequently been hit by extreme events such as droughts and floods, and these events are associated with several consequences, such as energy or water rationing, urban flooding and damage to hydraulic structures. In this context, the analysis of historical series extremes of hydrometeorological data through the Extreme Values Theory (EVT) is one of the ways to determine the variability due to climate change, enabling the modeling of extreme events. EVT makes it possible to know the frequency with which extreme events occur, allowing extrapolation beyond the historical series, generating occurrence probabilities of such an event. Therefore, the purpose of this work was to apply the Extreme Values Theory in hydrological the data historical series of flow and precipitation in the Guaíba hydrographic region and to carry out occurrence probabilities of intense events return, helping in the planning of the hydrographic watersheds that are in this region, as well as to verify whether the EVT has return periods similar to the climate projections of CMIP5 models. The results demonstrate that the values of flow and precipitation, in the historical series used, have already presented changes regarding the volume and frequency of extreme events occurrence and, in the future, for some stations, values can be expected both above and below the extremes already observed in the historical series.
Downloads
References
Affonso, V.; Faria, G.A.; Lopes, B.G.; Tsutsumoto, N.; Fonseca, A.; Felizardo, L., 2020. Análise dos dados de precipitação máxima no noroeste paulista pela teoria dos valores extremos. Research, Society and Development, v. 9, (10), e9709109396. https://doi.org/10.33448/rsd-v9i10.9396.
Alam, A.; Emura, K.; Farnham, C.; Yuan, J., 2018. Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh. Climate, v. 6, (1), 9. https://doi.org/10.3390/cli6010009.
Back, A.J.; Wildner, L.P.; Pereira, J.R., 2021. Chuvas intensas para projetos de conservação do solo e da água no estado de Santa Catarina. Agropecuária Catarinense, v. 34, (2), 65-72. http://doi.org/10.52945/rac.v34i2.1140.
Beijo, L.A.; Avelar, F.G., 2011. Distribuição generalizada de valores extremos no estudo de dados climáticos uma breve revisão e aplicação. Revista da Estatística da Universidade Federal de Ouro Preto, v. 1, (1), 10-16.
Blöschl, G. et al., 2019. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, v. 64, (10), 1141-1158. https://doi.org/10.1080/02626667.2019.1620507.
Bork, C.K.; Castro, A.S.; Leandro, D.; Corrêa, L.B.; Siqueira, T.M., 2017. Índices de precipitação extrema para os períodos atual (1961-1990) e futuro (2011-2100) na bacia do rio Taquari-antas, RS. Brazilian Journal of Environmental Sciences, (46), 29-45. https://doi.org/10.5327/Z2176-947820170233.
Cheng, L.; Aghakouchak, A.; Gilleland, E.; Katz, R.W., 2014. Non-stationary extreme value analysis in a changing climate. Climatic Change, v. 127, 353-369. https://doi.org/10.1007/s10584-014-1254-5.
Coles, S., 2001. An introduction to statistical modeling of extreme values. Springer, Londres.
Dalagnol, R.; Borma, L. de S.; Mateus, P.; Rodriguez, D.A., 2017. Assessment of climate change impacts on water resources of the Purus Basin in the southwestern Amazon. Acta Amazonica, v. 47, (3), 213-226. https://doi.org/10.1590/1809-4392201601993.
Do, H.X.; Westra, S.; Leonard, M., 2017. A global-scale investigation of trends in annual maximum streamflow. Journal of Hydrology, v. 552, 28-43. https://doi.org/10.1016/j.jhydrol.2017.06.015.
Dusen, P.V.; Rajagopalan, B.; Lawrence, D.J.; Condon, L.; Smillie, G.; Gangopadhyay, S.; Pruitt, T., 2020. 21st Century flood risk projections at select sites for the U.S. National Park Service. Climate Risk Management, v. 28, 100211. https://doi.org/10.1016/j.crm.2020.100211.
Fisher, R.A.; Tippett, L.H.C., 1928. Limiting forms of the frequency distribution of the largerst or smallest menber of a sample. Proceedings of the Cambridge Philosophical Society, v. 24, (2), 180-190. https://doi.org/10.1017/S0305004100015681.
Fundação Estadual de Proteção Ambiental (FEPAM), 2018. Guaíba hydrographic region (Accessed November 15, 2020) at:. http://www.fepam.rs.gov.br/qualidade/guaiba.asp.
Guedes, H.A.S.; Priebe, P.S.; Manke, E.B., 2019. Tendências em Séries Temporais de Precipitação no Norte do Estado do Rio Grande do Sul, Brasil. Revista Brasileira de Meteorologia, v. 34, (2), 283-291. https://doi.org/10.1590/0102-77863340238.
Grimm, A.M.; Almeira, A.S.; Beneti, A.A.; Leite, E.A., 2020. The combined effect of climate oscillations in producing extremes: the 2020 drought in southern Brazil. Revista Brasileira de Recursos Hídricos, v. 25, e48. https://doi.org/10.1590/2318-0331.252020200116.
Isensee, L.J.; Pinheiro, A.; Detzel, D.H.M., 2021. Estimação da vazão de projeto de barragens utilizando séries temporais não estacionárias. Revista Brasileira de Geografia Física, v. 14, (5), 2975-2987. https://doi.org/10.26848/rbgf.v14.5.p2975-2987.
Keggenhoff, I.; Elisbarashvil, M.; Amiri-Farahani, A.; King, L., 2014. Trends in daily temperature and precipitation extremes over Georgia, 1971-2010. Weather and Climate Extremes, v. 4, 75-85. https://doi.org/10.1016/j.wace.2014.05.001.
Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Kabat, P.; Jiménez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A., 2007. Freshwater resources and their management. In: Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden. P.J.; Hanson, C.E. (Eds.), Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 173-210.
Lazoglou, G.; Anagnostopoulou, C., 2017. An overview of statistical methods for studying the extreme rainfalls in Mediterranean. Proceedings, v. 1, (5), 681. https://doi.org/10.3390/ecas2017-04132.
Lopes, J.L. de S.; Domingos, L.L., 2020. População em perigo: rios urbanos e áreas vulneráveis a inundações – o caso do município de União dos Palmares, Alagoas, Brasil. PerCursos, v. 21, (46), 113-135. https://doi.org/10.5965/1984724621462020113.
Medeiros, E.; Alves, M.; Souza, S., 2019. Estimação de nível de retorno da precipitação máxima diária no município de Jataí, Goiás. Ciência e Natura, v. 41, e36. https://doi.org/10.5902/2179460X35639.
Mondal, A.; Mujumdar, P.P., 2015. Return levels of hydrologic droughts under climate change, Advances in Water Resources, v. 75, 67-79. https://doi.org/10.1016/j.advwatres.2014.11.005.
Monte, B.E.O.; Goldenfum, J.A.; Valério, E.L.S., 2015. Eventos extremos de vazão por análise de frequência na bacia hidrográfica do Taquari-Antas. In: Anais XXI Simpósio Brasileiro de Recursos Hídricos, Brasília.
Oliveira, D.; Lima, K.; Spyrides, M.H., 2021. Rainfall and streamflow extreme events in the São Francisco Hydrographic Region. International Journal of Climatology, v. 41, (2), 1279-1291. https://doi.org/10.1002/joc.6807.
Oliver, U.; Mung’atu, J., 2018. Modelling extreme maximum rainfall using generalized extreme value distribution: case study Kigali City. International Journal of Science and Research, v. 7, (6), 121-126. https://doi.org/10.21275/ART20183033
Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Dubash, N.K., 2014. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland.
Reiss, R.D.; Thomas, M., 1997. Statistical analysis of extremes values. Springer-Verlag, Birkhäuser.
Rupa, C.; Mujumdar, P.P., 2017. Quantification of uncertainty in spatial return levels of urban precipitation extremes. Journal of Hydrologic Engineering, v. 23, (1). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001583.
Santos, C.; Lima, A.; Farias, M.; Aires, U.; Serrão, E., 2016. Análise estatística da não estacionariedade de séries temporais de vazão máxima anual diária na bacia hidrográfica do Rio Pardo. Holos, v. 7, 179-193. https://doi.org/10.15628/holos.2016.4892.
Teixeira, D.B. de S.; Almeida, L.T.; Ferreira, F.L.V., 2020. Tendências hidrológicas na bacia hidrográfica do rio Juquiá, São Paulo. Brazilian Journal of Animal and Environmental Research, v. 3, (2), 434-446. https://doi.org/10.34188/ bjaerv3n2-003.
Tejadas, B.E.; Bravo, J.M.; Sanagiotto, D.G.; Tassi, R.; Marques, D.M.L.M., 2016. Projeções de vazão afluente à lagoa Mangueira com base em cenários de mudanças climáticas. Revista Brasileira de Meteorologia, v. 31, (3), 262-272. https://doi.org/10.1590/0102-778631320150139.
Thomas, M.; Lemaitre, M.; Wilson, M.L.; Viboud, C.; Yordanov, Y.; Wackernagel, H.; Carrat, F., 2016. Applications of extreme value theory in public health. PLoS One, v. 11, (7), e0159312. https://doi.org/10.1371/journal.pone.0159312.
Umbricht A.; Fukutome S.; Liniger M. A, Frei C.; Appenzeller, C., 2013. Seasonal variation of daily extreme precipitation in Switzerland. Scientific Report MeteoSwiss, (97), 122 pp.
Universidade Federal de Santa Catarina (UFSC), 2012. Centro Universitário de Estudos e Pesquisas sobre Desastres. Atlas brasileiro de desastres naturais 1991 a 2010: volume Brasil. CEPED UFSC, Florianópolis, 94 pp.
Vieira, S.A.; Osorio, D.M.M.; Quevedo, D.M.; Adam, K.N.; Pereira, M.A.F., 2018. Metodologia de imputação de dados hidrometeorológicos para análise de séries históricas – Bacia do rio dos Sinos, RS, Brasil. Revista Brasileira de Climatologia, v. 23, 189-204. https://doi.org/10.5380/abclima.v23i0.56219.
Viana, D.R.; Aquino, F.E.; Muñoz, V.A., 2009. Avaliação de desastres no Rio Grande do Sul associados a Complexos Convectivos de Mesoescala. Sociedade & Natureza, v. 21, (2), 91-105. https://doi.org/10.1590 /S1982-45132009000200007.
Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. Academic Press, San Diego, 668 pp.
Yonus, M.; Hassan, S.A., 2019. Probabilistic flood analysis of indus river flow. Journal of Mathematics, v. 51, (8), 129-140.
Yue, S.; Wang, C.Y., 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, v. 18, 201-218. https://doi.org/10.1023/B:WARM.0000043140.61082.60.
Zandonadi, L.; Acquaotta, F.; Fratianni, S.; Zavattini, J. A., 2016. Changes in precipitation extremes in Brazil (Paraná River Basin). Theoretical and Applied Climatology, v. 123, (3-4), 741-756. https://doi.org/10.1007/s00704-015-1391-4.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.