Tilapia viscera wastewater: an innovative substrate for sustainable biosurfactant production by Penicillium citrinum UCP 1183

Autores

DOI:

https://doi.org/10.5327/Z2176-94782524

Palavras-chave:

resíduos do processamento de pescado; surfactante fúngico; propriedades emulsificantes.

Resumo

A gestão sustentável dos resíduos de pescado é uma questão crítica vinculada aos Objetivos de Desenvolvimento Sustentável das Nações Unidas, especialmente ao ODS 12 (Consumo e Produção Sustentáveis). O descarte inadequado dos resíduos do processamento de pescado, incluindo as vísceras, causa problemas ambientais significativos ao contribuir para a poluição e o desperdício de recursos biotecnológicos valiosos. Com o intuito de colaborar para a solução desse desafio econômico e ambiental, este estudo buscou utilizar a água residual do processamento de vísceras da tilápia-do-nilo (Oreochromis niloticus) como matéria-prima para a produção de biossurfactante por Penicillium citrinum UCP 1183. Esta cepa foi cultivada em meios alternativos compostos por água residual de vísceras de tilápia e óleo de soja pós-fritura, conforme as concentrações estabelecidas por um planejamento fatorial completo 2². A produção de biossurfactante foi verificada na condição 4 do planejamento fatorial completo, obtendo-se uma tensão superficial de 36 mN/m. O biossurfactante apresentou natureza aniônica e lipopeptídica, potencial zeta moderado e excelente estabilidade e capacidade emulsificante. Assim, a água residual de vísceras de tilápia demonstrou ser um excelente substrato para a produção sustentável de biossurfactante, minimizando o impacto ambiental dos resíduos do processamento de pescado e promovendo a economia circular.

Downloads

Não há dados estatísticos.

Referências

Alexandre, A.C.S.; Albergaria, F.C.; Fernandes, L.A.C.; de Sousa Gomes, M.E.; Pimenta, C.J., 2022. Effect of natural and synthetic antioxidants on oxidation and storage stability of mechanically separated tilapia meat. LWT, v. 154, 112679. https://doi.org/10.1016/j.lwt.2021.112679.

Arias, L.; Marquez, D.M.; Zapata, J.E., 2022. Quality of red tilapia viscera oil (Oreochromis sp.) as a function of extraction methods. Heliyon, v. 8 (5), e09546. https://doi.org/10.1016/j.heliyon.2022.e09546.

Barbosa, J.C.; Gonçalves, S.; Makowski, M.; Silva, I.C.; Caetano, T.; Schneider, T.; Mösker, E.; Süssmuth, R.D.; Santos, N.C.; Mendo, S., 2022. Insights into the mode of action of the two-peptide lantibiotic lichenicidin. Colloids and Surfaces B: Biointerfaces, v. 211, 112308. https://doi.org/10.1016/j.colsurfb.2021.112308.

Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B., 2021. Biosurfactants: properties and applications in drug delivery, biotechnology, ecotoxicology. Bioengineering, v. 8 (8), 115. https://doi.org/10.3390/bioengineering8080115.

Borges, S.; Odila, J.; Voss, G.; Martins, R.; Rosa, A.; Couto, J.A.; Almeida, A.; Pintado, M., 2023. Fish by-products: a source of enzymes to generate circular bioactive hydrolysates. Molecules, v. 28 (3), 1155. https://doi.org/10.3390/molecules28031155.

Camargo-de-Morais, M.M.; Ramos, S.A.F.; Pimentel, M.C.B.; de Morais Jr, M.A.; Lima Filho, J.L., 2003. Production of an extracellular polysaccharide with emulsifier properties by Penicillium citrinum. World Journal of Microbiology and Biotechnology, v. 19, 191-194. https://doi.org/10.1023/A:1023299111663.

Castor, R.B.; do Nascimento, M.H.; Gorlach-Lira, K., 2024. Exploring fungal bioemulsifiers: insights into chemical composition, microbial sources, and cross-field applications. World Journal of Microbiology and Biotechnology, v. 40 (4), 127. https://doi.org/10.1007/s11274-024-03883-6.

Cavenaghi-Altemio, A.D.; Zitkoski, J.L.; Fonseca, G.G., 2022. Development and characterisation of cooked inlaid sausages with fillet and mechanically separated meat of Nile tilapia (Oreochromis niloticus). Journal of Fisheries, v. 10 (2), 102207. https://doi.org/10.17017/j.fish.437.

Chabhadiya, S.; Acharya, D.K.; Mangrola, A.; Shah, R.; Pithawala, E.A., 2024. Unlocking the potential of biosurfactants: innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions. Biotechnology Notes. https://doi.org/10.1016/j.biotno.2024.07.001.

Chauhan, S.; Mohanty, A.; Meena, S.S., 2025. Unlocking the potential of rhamnolipids: production via agro-industrial waste valorization, market insights, recent advances, and applications. Biomass Conversion and Biorefinery, 1-30. https://doi.org/10.1007/s13399-025-06671-w

Cooper, D.G.; Goldenberg, B.G., 1987. Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, v. 53 (2), 224-229. https://doi.org/10.1128/aem.53.2.224-229.1987.

Costa, E.R.C.; Souza, A.F.; de Campos Takaki, G.M.; da Silva Andrade, R.F., 2023. Bioemulsifier production by Penicillium citrinum UCP 1183 and microstructural characterization of emulsion droplets. Seven Editora,São José dos Pinhais. https://doi.org/10.56238/Connnexpemultidisdevolpfut-168.

Dabaghi, S.; Ataei, S.A.; Taheri, A., 2023. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. BMC Biotechnology, v. 23 (1), 2. https://doi.org/10.1186/s12896-022-00772-4.

D'Almeida, A.P.; de Albuquerque, T.L.; Rocha, M.V.P., 2024. Recent advances in Emulsan production, purification, and application: exploring bioemulsifiers unique potentials. International Journal of Biological Macromolecules, v. 278 (Part 1), 133672. https://doi.org/10.1016/j.ijbiomac.2024.133672.

Dini, S.; Bekhit, A.E.D.A.; Roohinejad, S.; Vale, J.M.; Agyei, D., 2024. The physicochemical and functional properties of biosurfactants: a review. Molecules, v. 29 (11), 2544. https://doi.org/10.3390/molecules29112544.

Gautam, G.; Mishra, V.; Verma, P.; Pandey, A.K.; Negi, S., 2014. A cost effective strategy for production of bio-surfactant from locally isolated Penicillium chrysogenum SNP5 and its applications. Journal of Bioprocessing and Biotechniques, v. 4 (6), 1-7. https://doi.org/10.4172/2155-9821.1000177.

Gautam, K.; Sharma, P.; Gaur, V.K.; Gupta, P.; Pandey, U.; Varjani, S.; Pandey, A.; Wong, J.W.C.; Chang, J.S., 2023. Oily waste to biosurfactant: a path towards carbon neutrality and environmental sustainability. Environmental Technology Innovation, v. 30, 103095. https://doi.org/10.1016/j.eti.2023.103095.

Gayathiri, E.; Prakash, P.; Karmegam, N.; Varjani, S.; Awasthi, M.K.; Ravindran, B., 2022. Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safety - a review. Agronomy, v. 12 (3), 662. https://doi.org/10.3390/agronomy12030662.

He, H.; Cao, M.; Zhan, D.; Xia, W.; Chen, S.; Tao, X.; Huang, Z., 2023. Preliminary study on the surface modification of lignite and bioflotation by white-rot fungi Hypocrea lixii AH. Minerals, v. 13 (12), 1492. https://doi.org/10.3390/min13121492.

Jasrotia, R.; Langer, S.; Dhar, M., 2024. Fish Waste and By-Product Utilization: a circular economy. In: Maqsood, S.; Naseer, M.N.; Benjakul, S.; Zaidi, A.A. Fish waste to valuable products. Springer Nature Singapore, Singapore, pp. 461-477. https://doi.org/10.1007/978-981-99-8593-7_22

Jimenez-Champi, D.; Romero-Orejon, F.L.; Muñoz, A.M.; Ramos-Escudero, F., 2024. The revalorization of fishery by‐products: types, bioactive compounds, and food applications. International Journal of Food Science, v. 2024 (1), 6624083. https://doi.org/10.1155/2024/6624083.

Kazemzadeh, S.; Emami‐Karvani, Z.; Naghavi, N.S.; Emtiazi, G., 2022. Production of surface‐active sophorolipid biosurfactant and crude oil degradability by novel Rhodotorula mucilaginosa strain SKF2. Journal of Surfactants and Detergents, v. 25 (4), 439-454. https://doi.org/10.1002/jsde.12572.

Klahan, R.; Yuangsoi, B.; Whangchai, N.; Ramaraj, R.; Unpaprom, Y.; Khoo, K.S.; Deepanraj, B. Pimpimol, T., 2023. Biorefining and biotechnology prospects of low-cost fish feed on Red tilapia production with different feeding regime. Chemosphere, v. 311, 137098. https://doi.org/10.1016/j.chemosphere.2022.137098.

Kuley, E.; Özyurt, G.; Özogul, I.; Boga, M.; Akyol, I.; Rocha, J.M.; Özogul, F., 2020. The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability. Microorganisms, v. 8 (2), 172. https://doi.org/10.3390/microorganisms8020172.

Kumar, V.; Kumar, H.; Vishal, V.; Lal, S., 2023. Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Archives of Microbiology, v. 205 (1), 50. https://doi.org/10.1007/s00203-022-03383-x.

Kupikowska-Stobba, B.; Domagała, J.; Kasprzak, M.M., 2024. Critical review of techniques for food emulsion characterization. Applied Sciences, v. 14(3), 1069. https://doi.org/10.3390/app14031069.

Kuyukina, M.S.; Ivshina, I.B.; Makarov, S.O.; Litvinenko, L.V.; Cunningham, C.J.; Philp, J.C., 2005. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environment International, v. 31 (2), 155-161. https://doi.org/10.3390/microorganisms8020172.

Landa-Faz, A.; Rodríguez-Vázquez, R.; Roldán-Carrillo, T.G.; Hidalgo-Lara, M.E.; Aguilar-López, R.; Cebrián-García, M.E., 2022. Bioremediation of an agricultural saline soil contaminated with endosulfan and Escherichia coli by an active surface agent induced in a Penicillium crustosum culture. Preparative Biochemistry Biotechnology, v. 52 (3), 292-301. https://doi.org/10.1080/10826068.2021.1941104

Lee, T.C.; Pu'ad, N.M.; Alipal, J.; Muhamad, M.S.; Basri, H.; Idris, M.I.; Abdullah, H.Z., 2022. Tilapia wastes to valuable materials: a brief review of biomedical, wastewater treatment, and biofuel applications. Materials Today: Proceedings, v. 57, 1389-1395. https://doi.org/10.1016/j.matpr.2022.03.174.

Liepins, J.; Balina, K.; Soloha, R.; Berzina, I.; Lukasa, L.K.; Dace, E., 2021. Glycolipid biosurfactant production from waste cooking oils by yeast: review of substrates, producers and products. Fermentation, v. 7 (3), 136. https://doi.org/10.3390/fermentation7030136.

Lima, R.A.; Andrade, R.F.; Rodríguez, D.M.; Araujo, H.W.; Santos, V.P.; Campos-Takaki, G.M., 2017. Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African Journal of Microbiology Research, v. 11, 237-244. https://doi.org/10.5897/AJMR2016.8341.

Lima, B.G.; Santos, J.C.; Silva, R.R.; Caldas, M.C.F.; Meira, H.M.; Rufino, R.D.; Sarubbo, L.A. Luna, J.M., 2024. Sustainable production of biosurfactant grown in medium with industrial waste and use for removal of oil from soil and seawater. Surfaces, v. 7 (3), 537-549. https://doi.org/10.3390/surfaces7030036.

Luft, L.; Confortin, T.C.; Todero, I.; Zabot, G.L.; Mazutti, M.A., 2020. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Critical Reviews in Biotechnology, v. 40 (8), 1059-1080. https://doi.org/10.1080/07388551.2020.1805405.

Maksimenko, A.; Belyi, L.; Podvolotskaya, A.; Son, O.; Tekutyeva, L., 2024. Exploring sustainable aquafeed alternatives with a specific focus on the ensilaging technology of fish waste. Fermentation, v. 10 (5), 258. https://doi.org/10.3390/fermentation10050258.

Montoya, J.E.Z.; Sanchez, A.F., 2022. The hydrolysates from fish by-product, an opportunity increasing. Hydrolases, v. 77, 95149. https://doi.org/10.5772intechopen.95149.

Mozumder, M. M. H.; Uddin, M. M.; Schneider, P.; Raiyan, M. H. I.; Trisha, M. G. A.; Tahsin, T. H.; Newase, S., 2022. Sustainable utilization of fishery waste in Bangladesh—a qualitative study for a circular bioeconomy initiative. Fishes, v. 7 (2), 84. https://doi.org/10.3390/fishes7020084

Naumann, D., 2000. Infrared spectroscopy in microbiology, In: Meyers, R.A. (Ed.), Encyclopedia of Analytical Chemistry. John Wiley Sons Ltd, Chichester, U.K., p. 102.

Olivia, R.; Ang, C.H.; Clotilda, P.; Caroline, M.; Rudy, T.; Joe, N., 2023. Corrosion inhibition of mild steel bars by biosurfactant produced by Penicillium citrinum. IOP Conference Series: Earth and Environmental Science, v. 1135 (1), 012057. https://doi.org/10.1088/1755-1315/1135/1/012057.

Othman, A.R. ; Ismail, N.S.; Abdullah, S.R.S.; Hasan, H.A.; Kurniawan, S.B.; Sharuddin, S.S.N.; Ismail, N.‘I., 2022. Potential of indigenous biosurfactant-producing fungi from real crude oil sludge in total petroleum hydrocarbon degradation and its future research prospects. Journal of Environmental Chemical Engineering, v. 10 (3), 107621. https://doi.org/10.1016/j.jece.2022.107621.

Pathania, A.S.; Jana, A.K.; Jana, M.M., 2021. Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation. Brazilian Journal of Chemical Engineering, v. 39, 369-385. https://doi.org/10.1007/s43153-021-00170-x.

Ponsano, E.H.G.; Grassi, T.L.M.; Santo, E.F.E.; de Lima, L.K.F.; Pereira, R.D.C., 2019. Production and use of microbial biomass helping sustainability in tilapia production chain. 3 Biotech, v. 9 (9), 325. https://doi.org/10.1007/s13205-019-1860-z.

Purwasena, I.A.; Amaniyah, M.; Astuti, D.I.; Firmansyah, Y.; Sugai, Y., 2024. Production, characterization, and application of Pseudoxanthomonas taiwanensis biosurfactant: a green chemical for microbial enhanced oil recovery (MEOR). Scientific Reports, v. 14 (1), 10270. https://doi.org/10.1038/s41598-024-61096-1.

Rajabimashhadi, Z.; Gallo, N.; Salvatore, L.; Lionetto, F., 2023. Collagen derived from fish industry waste: progresses and challenges. Polymers, v. 15 (3), 544. https://doi.org/10.3390/polym15030544

Rasmiya Begum, S.L.; Himaya, S.M.M.S.; Imthiyas, M.S.M.; Afreen, S.M.M.S., 2024. Fish waste: understanding the pollution potential and sustainable mitigation strategies. In: Maqsood, S.; Naseer, M.N.; Benjakul, S.; Zaidi, A.A. Fish waste to valuable products. Springer Nature Singapore, Singapore, pp. 427-440. https://doi.org/10.1007/978-981-99-8593-7_20.

Rifna, E J.; Rajauria, G.; Dwivedi, M.; Tiwari, B.K., 2024. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: a review. International Journal of Biological Macromolecules, v. 254, 126887.

Sanches, R.A.; Mendes, F.D.; de Campos Araújo, M.; Issac, M.G., 2024. Textile waste is the raw material for new fashion products. In: Raposo, D.; Neves, J.; Silva, R. Perspectives on Design III: Research, Education and Practice. Springer Nature Switzerland, Cham, pp. 297-310. https://doi.org/10.1007/978-3-031-43516-4_17.

Sankhyan, S.; Kumar, P.; Pandit, S.; Kumar, S.; Ranjan, N.; Ray, S., 2024. Biological machinery for the production of biosurfactant and their potential applications. Microbiological Research, v. 285, 127765. https://doi.org/10.1016/j.micres.2024.127765.

Santana, T.M.; Dantas, F.D.M.; Monteiro Dos Santos, D.K.; Kojima, J.T.; Pastrana, Y. M.; De Jesus, R.S.; Gonçalves, L.U., 2023. Fish viscera silage: production, characterization, and digestibility of nutrients and energy for tambaqui juveniles. Fishes, v. 8 (2), 111. https://doi.org/10.3390/fishes8020111.

Sar, T.; Ferreira, J.A.; Taherzadeh, M.J., 2021. Conversion of fish processing wastewater into fish feed ingredients through submerged cultivation of Aspergillus oryzae. Systems Microbiology and Biomanufacturing, v. 1, 100-110. https://doi.org/10.1007/s43393-020-00009-5.

Sharma, J.; Kapley, A.; Sundar, D.; Srivastava, P., 2022. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids and Surfaces B: Biointerfaces, v. 214, 112453. https://doi.org/10.1016/j.colsurfb.2022.112453.

Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D., 2021. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess and Biosystems Engineering, v. 44 (10), 2003-2034. https://doi.org/10.1007/s00449-021-02597-5.

Soliman, M.A.; Khedr, A.; Elsawy, M.A., 2023. Peptide and protein emulsifiers. In: Elsawy, M.A. Peptide bionanomaterials: from design to application. Springer International Publishing, Cham, pp. 431-474. https://doi.org/10.1007/978-3-031-29360-3_13

Suseno, S.H.; Rizkon, A.K.; Jacoeb, A.M.; Listiana, D., 2021. Fish oil extraction as a by-product of Tilapia (Oreochromis sp.) fish processing with dry rendering method. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, v. 679 (1), 012009. http://doi.org/ 10.1088/1755-1315/679/1/012009.

Tadros, T.F. (Ed.). Colloids and Interface Science Series. Wiley-VCH-Verlag, 2006.

Vaishnav, A.; Lal, J.; Mehta, N.K.; Mohanty, S.; Yadav, K.K.; Priyadarshini, M.B.; Debbarma, P.; Singh, N.S.; Pai, K.K. Singh, S.K., 2025. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. Environmental Science and Pollution Research, 1-45. https://doi.org/10.1007/s11356-025-36244-3.

Valenzuela‐Ávila, L.; Miliar, Y.; Moya‐Ramírez, I.; Chyhyrynets, O.; García‐Román, M.; Altmajer‐Vaz, D., 2020. Effect of emulsification and hydrolysis pretreatments of waste frying oil on surfactin production. Journal of Chemical Technology Biotechnology, v. 95 (1), 223-231. https://doi.org/10.1002/jctb.6225

Villamil, O.; Váquiro, H.; Solanilla, J.F., 2017. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, v. 224, 160-171. https://doi.org/10.1016/j.foodchem.2016.12.057

Wang, K.W.; Chen, J.X.; Liu, Q.Q.; Deng, X.; Luo, L.; Lin, S.M.; Chen, Y.J., 2022. A comparison between high carbohydrate and high lipid diets reception on the growth, feed utilization and glucose homeostasis of genetically improved farmed tilapia Oreochromis niloticus. Aquaculture Reports, v. 24, 101119. https://doi.org/10.1016/j.aqrep.2022.101119.

Yang, Y.; Gupta, V.K.; Du, Y.; Aghbashlo, M.; Show, P.L.; Pan, J.; Tabatabaei, M.; Rajaei, A., 2023. Potential application of polysaccharide mucilages as a substitute for emulsifiers: a review. International Journal of Biological Macromolecules, v. 242, 124800. https://doi.org/10.1016/j.ijbiomac.2023.124800.

Zhang, L.; Wu, H.X.; Li, W.J.; Qiao, F.; Zhang, W.B.; Du, Z.Y.; Zhang, M.L., 2023. Partial replacement of soybean meal by yellow mealworm (Tenebrio molitor) meal influences the flesh quality of Nile tilapia (Oreochromis niloticus). Animal Nutrition, v. 12, 108-115. https://doi.org/10.1016/j.aninu.2022.09.007.

Downloads

Publicado

05-08-2025

Como Citar

Costa, E. R. C., Rodríguez, D. M., Souza , A. . F. de, Campos-Takaki, G. M. de, & Andrade, R. F. . da S. (2025). Tilapia viscera wastewater: an innovative substrate for sustainable biosurfactant production by Penicillium citrinum UCP 1183. Revista Brasileira De Ciências Ambientais, 60, e2524. https://doi.org/10.5327/Z2176-94782524