Spatial and seasonal variation in pollution from pharmaceuticals and personal care products and the ecological risks in the Upper Paraná River Basin – Brazil
DOI:
https://doi.org/10.5327/Z2176-94782466Palavras-chave:
compostos farmacêuticos; análises de risco; contaminantes em rios.Resumo
Tanto os produtos farmacêuticos quanto os de higiene pessoal (PFHP) contaminam as águas dos rios no Brasil. Para determinar a extensão dessa contaminação em rios e seus afluentes em importantes bacias hidrográficas no estado de Mato Grosso do Sul, centro-oeste brasileiro, o presente estudo avaliou a distribuição de PFPHP nesses cursos d’água e analisou os riscos ecológicos (ARE) dessas águas. Para tanto, foram coletadas amostras de água de quatro bacias hidrográficas e suas sub-bacias, todas localizadas na parte sul do estado de Mato Grosso do Sul, Brasil. As concentrações de PFHP foram quantificadas junto com avaliações das características físico-químicas in situ da água. A ARE foi avaliada por meio do quociente de risco (QR) com base na concentração máxima medida de medicamentos nas amostras. A relação entre as concentrações de PFHP em amostras aquosas foi analisada para verificar a distribuição desses medicamentos no meio ambiente. As concentrações mais altas de PFPHP envolveram cafeína, especialmente durante a estação seca, indicando uma rota intensa de contaminação nos locais amostrados. Entre outros compostos, compostos farmacêuticos como diclofenaco, ibuprofeno e naproxeno foram predominantes, especialmente durante a estação seca, embora em concentrações ligeiramente menores. Os resultados de QR mostraram que a maioria dos compostos investigados representa um risco toxicológico moderado a alto para o ecossistema aquático. Esses resultados sugerem que PFHP são amplamente distribuídos na área estudada e fornecem uma referência para comparação, ou seja, um risco de risco elevado.
Downloads
Referências
Aguirre-Martínez, G.V.; DelValls, T.A.; Martín-Díaz, M.L., 2016. Estresse geral, vias de desintoxicação, neurotoxicidade e genotoxicidade avaliadas em Ruditapes philippinarum expostos a produtos farmacêuticos humanos. Ecotoxicology and Environmental Safety, v. 124, 18-31. https://doi.org/10.1016/J.ECOENV.2015.09.031
Arai, F.K.; Pereira, S.B.; Gonçalves, G.G., 2012. Characterization of water availability in a hydrographic basin. Engenharia Agrícola, v. 32, (3), 591-601. https://doi.org/10.1590/S0100-69162012000300018
Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A., 2016. Pharmaceuticals in the environment-Global occurrences and perspectives. Environmental Toxicology and Chemistry, v. 35, (4), 823-835. https://doi.org/10.1002/etc.3339
Beretta, M.; Britto, V.; Tavares, T.M.; da Silva, S.M.T.; Pletsch, A.L., 2014. Occurrence of pharmaceutical and personal care products (PPCPs) in marine sediments in the Todos os Santos Bay and the north coast of Salvador, Bahia, Brazil. Journal of Soils and Sediments, v. 14, (7), 1278-1286. https://doi.org/10.1007/s11368-014-0884-6
Bisognin, R.P.; Wolff, D.B.; Carissimi, E.R., 2018. Revisão sobre fármacos no ambiente. Revista DAE, v. 66 (210), 78-95. https://doi.org/10.4322/dae.2018.009
Bouzas-Monroy, A.; Wilkinson, J.L.; Melling, M.; Boxall, A.B.A., 2022. Assessment of the potential ecotoxicological effects of pharmaceuticals in the world's rivers. Environmental Toxicology and Chemistry, v. 41, (8), 2008-2020. https://doi.org/10.1002/etc.5355
Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; Ankley, G.T., 2012. Pharmaceuticals and personal care products in the environment: what are the big questions? Environmental Health Perspectives, v. 120, (9), 1221-1229. https://10.1289/ehp.1104477
Brasil, 2020. Decreto Federal nº 10.388 de 5 de junho de 2020. Regulamenta o § 1º do caput do art. 33 da Lei nº 12.305, de 2 de agosto de 2010, e institui o sistema de LR de medicamentos domiciliares vencidos ou em desuso, de uso humano, industrializados e manipulados, e de suas embalagens após o descarte pelos consumidores (Accessed August 27, 2025) at:. http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/decreto/D10388.htm
Brazilian Institute of Geography and Statistics (IBGE), 2021. Cidades e estados. IBGE (Accessed August 27, 2025) at:. https://www.ibge.gov.br/cidades-e-estados/ms/
Brazilian Institute of Geography and Statistics (IBGE), 2022. Panorama. IBGE (Accessed August 27, 2025) at:. https://cidades.ibge.gov.br/brasil/ms/panorama
Brazilian Institute of Geography and Statistics (IBGE), 2024. Pesquisa Nacional de Saneamento Básico 2017. IBGE (Accessed August 27, 2025) at:. https://www.ibge.gov.br/estatisticas/multidominio/meio-ambiente/9073-pesquisa-nacional-de-saneamento-basico.html
Brooks, B.W.; Riley, T.M.; Taylor, R.D., 2006. Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia, v. 556, (1), 365-379. https://doi.org/10.1007/s10750-004-0189-7
Carvalho, A.C.C.D.; Silva, B.F.D.; Machado, A.A.; Santarossa, M.A.D.S.; Paganini, W.D.S., 2022. The occurrence of caffeine in surface waters for public supply. Engenharia Sanitária e Ambiental, v. 27, (4), 845-852. https://doi.org/10.1590/S1413-415220210201
Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E., 2006. Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science & Technology, v. 40, (1), 357-363. https://doi.org/10.1021/es050991m
Castiglioni, S.; Davoli, E.; Riva, F.; Palmiotto, M.; Camporini, P.; Manenti, A.; Zuccato. E., 2018. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Water Research, v. 131, 287-298. https://doi.org/10.1016/j.watres.2017.12.047
Cerveny, D.; Cisar, P.; Brodin, T.; McCallum, E.S.; Fick, J., 2022. Environmentally relevant concentration of caffeine-effect on activity and circadian rhythm in wild perch. Environmental Science and Pollution Research, v. 29, 54264-54272. https://doi.org/10.1007/S11356-022-19583-3
Chaves, M.J.S.; Barbosa, S.C.; Primel, E.G., 2021. Emerging contaminants in Brazilian aquatic environment: Identifying targets of potential concern based on occurrence and ecological risk. Environmental Science and Pollution Research, v. 28, (47), 67528-67543. https://doi.org/10.1007/s11356-021-15245-y
Dagosta, F.C.P.; Monção, M.S.; Nagamatsu, B.A.; Pavanelli, C.S.; Carvalho, F.R.; Lima, F.C.T.; Langeani, F.; Dutra, G.M.; Ota, R.R.; Seren, T.J.; Tagliacollo, V.; Menezes, N.A.; Britski, H.A.; Pinna, M.D.E., 2024. Fishes of the upper rio Paraná basin: diversity, biogeography and conservation. Neotropical Ichthyology, v. 22, (1), e230066. https://doi.org/10.1590/1982-0224-2023-0066
Daneshvar, A.; Aboulfadl, K.; Viglino, L.; Broséus, R.; Sauvé, S.; Madoux-Humery, A.S.; Weyhenmeyer, G.A.; Prévost, M., 2012. Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere, v. 88, (1), 131-139. https://doi.org/10.1016/j.chemosphere.2012.03.016
Das, S.A.; Karmakar, S.; Chhaba, B.; Rout, S.K., 2019. Ibuprofen: its toxic effect on aquatic organisms. Journal of Experimental Zoology India, v. 22, (2), 1125-1131.
Derakhsh, M.P.; Moradi, M.A.; Sharifpour, I.; Jamili, Sh., 2017. Toxic effects of diclofenac on gills, liver and kidney of Cyprinus carpio (Linnaeus, 1758). Iranian Journal of Fisheries Sciences, v. 19, (2), 735-747 (Accessed August 27, 2025) at:. https://dor.isc.ac/dor/20.1001.1.15622916.2020.19.2.21.5
Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J., 2017. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Journal of Hazardous Materials, v. 330, 127-134. https://doi.org/10.1016/j.jhazmat.2017.02.004
Diogo, B.S.; Antunes, S.C.; Pinto, I.; Amorim, J.; Teixeira, C.; Teles, L.O.; Golovko, O.; Žlábek, V.; Carvalho, A.P.; Rodrigues, S., 2023. Insights into environmental caffeine contamination in ecotoxicological biomarkers and potential health effects of Danio rerio. Heliyon, v. 9, (9), e19875. https://doi.org/10.1016/j.heliyon.2023.e19875
Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abdallah, M.A.E., 2020. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerging Contaminants, v. 6, 124-132. https://doi.org/10.1016/j.emcon.2020.02.004
European Medicines Agency (EMEA), 2006. Committee for Medicinal Products for Human Use. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. London, 2006 (Accessed September, 2024) at:. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-first-version_en.pdf
European Medicines Agency (EMEA), 2007. European Medicines Agency recommends restricted use of piroxicam (Accessed December, 2024) at:. http://www.emea.europa.eu/pdfs/human/press/pr/26514407en.pdf
Farias, G.L.; Berezuk, A.G., 2018. O regime pluviométrico no extremo sul de Mato Grosso do Sul entre os anos de 1976 – 2015. Entre-Lugar, v. 9, (17), 44-61. https://doi.org/10.30612/el.v9i17.8314
European Commission, 2003. Document on risk assessment. Technical Guidance Document on Risk Assessment Part II. European Commission (Accessed August 27, 2025) at:. http://ihcp.jrc.ec.europa.eu/our_activities/public-health/risk_assessment_of_Biocides/doc/tgd/tgdpart2_2ed.pdf
Fekadu, S.; Alemayehu, E.; Dewil, R.; Bruggen, B.V. der, 2019. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Science of the Total Environment, v. 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072
Fent, K.; Weston, A.A.; Caminada, D., 2006. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, v. 76, (2), 122-159. https://doi.org/10.1016/j.aquatox.2005.09.009
Feo, M.L.; Bagnati, R.; Passoni, A.; Riva, F.; Salvagio Manta, D.; Sprovieri, M.; Traina, A.; Zuccato, E.; Castiglioni, S., 2020. Pharmaceuticals and other contaminants in waters and sediments from Augusta Bay (southern Italy). Science of the Total Environment, v. 739, 139827. https://doi.org/10.1016/j.scitotenv.2020.139827
Ferreira, A.P., 2005. Caffeine as an environmental indicator for assessing urban aquatic ecosystems. Cadernos de Saúde Pública, v. 21, (6), 1884-1892. https://doi.org/10.1590/S0102-311X2005000600038
Fiani, B.; Zhu, L; Musch, B.L.; Briceno, S.; Andel, R.; Sadeq, N.; Ansari, A.Z., 2021. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus, v. 13, (5), e15032. https://doi.org/10.7759/CUREUS.15032
Freitas, L.A.A.; Radis-Baptista, G., 2021. Pharmaceutical pollution and disposal of expired, unused, and unwanted medicines in the Brazilian context. Journal of Xenobiotics, v. 11, (2), 61-76. https://doi.org/10.3390/jox11020005
Geiger, E.; Hornek-Gausterer, R.; Saçan, M.T., 2016. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicology and Environmental Safety, v. 129, 189-198. https://doi.org/10.1016/j.ecoenv.2016.03.032
González-González, R.B.; Sharma, P.; Singh, S.P.; Américo-Pinheiro, J.H.P.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M., 2022. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Science of the Total Environment, v. 821, 153329. https://doi.org/10.1016/j.scitotenv.2022.153329
Gumbi, B.P.; Moodley, B.; Birungi, G.; Ndungu, P.G., 2017. Assessment of nonsteroidal anti-inflammatory drugs by ultrasonic-assisted extraction and GC-MS in Mgeni and Msunduzi river sediments, KwaZulu-Natal, South Africa. Environmental Science Pollution Research, v. 24, 20015-20028. https://doi.org/10.1007/s11356-017-9653-6
Heath, E.; Filipič, M.; Kosjek, T.; & Isidori, M., 2016. Fate and effects of the residues of anticancer drugs in the environment. Environmental Science and Pollution Research, v. 23, (15),14687-14691. https://doi.org/10.1007/s11356-016-7069-3
Hejna, M.; Kapuścińska, D.; Aksmann, A., 2022. Pharmaceutical in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. International Journal of Environmental Research and Public Health, v. 19, (13), 7717. https://doi.org/10.3390/ijerph19137717
Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, v. 69, (2), 334-342. https://doi.org/10.1016/j.talanta.2005.09.037
Hillebrand, O.; Nodler, K.; Licha, T.; Sauter, M.; Geyer, T., 2012. Caffeine as an indicator for the quantification of untreated wastewater in karst systems. Water Research, v. 46, (2), 395-402. https://doi.org/10.1016/j.watres.2011.11.003
Hong, B.; Yu, S.; Niu, Y.; Ding, J.; Lin, Q.; Lin, X.; Hu, W., 2020. Spectrum and environmental risks of residual pharmaceuticals in stream water with emphasis on its relation to epidemic infectious disease and anthropogenic activity in watershed. Journal Hazardous Materials, v. 385, 121594. https://doi.org/10.1016/j.jhazmat.2019.121594
Hothorn, T.; Hornik, K.; Zeileis, A., 2006. Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics, v. 15, (3), 651-674. https://doi.org/10.1198/106186006X133933
Hothorn, T.; Zeileis, A., 2015. Partykit: a modular toolkit for recursive partitioning in R. Journal of Machine Learning Research, v. 16, (118), 3905-3909.
Hunt, R.H.; Lanas, A.; Stichtenoth, D.O.; Scarpignato, C., 2009. Myths and facts in the use of anti-inflammatory drugs. Annals of Medicine, v. 41, (6), 423-437. https://doi.org/10.1080/07853890902887295
IQVIA, 2019. The global use of medicine in 2019 and outlook to 2023: forecasts and areas to watch. IQVIA (Accessed December, 2024). at:. https://www.iqvia.com/institute/reports/theglobal-use--of-medicine-in-2019-and-outlook-to-2023
Joachim, S.; Beaudouin, R.; Daniele, G.; Geffard, A.; Bado-Nilles, A.; Tebby, C.; Palluel, O.; Dedourge-Geffard, O.; Fieu, M.; Bonnard, M.; Palos-Ladeiro, M.; Turiès, C.; Vulliet, E.; David, V.; Baudoin, P.; James, A.; Andres, S.; Porcher, J. M., 2021. Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. Ecotoxicology and Environmental Safety, v. 211, 111812. https://doi.org/10.1016/j.ecoenv.2020.111812
Ke, Z.; Yang, L.; Sun, J.; Xu, Y.; Tang, J., 2024. Seasonal dynamics and key drivers of pharmaceutical pollution in a peri-urban watershed. Ecological Indicators, v. 158, 111434. https://doi.org/10.1016/j.ecolind.2023.111434
Kleywegt, S.; Payne, M.; Ng, F.; Fletcher, T., 2019. Environmental loadings of Active Pharmaceutical Ingredients from manufacturing facilities in Canada. Science of the Total Environmental, v. 646, 257-264. https://doi.org/10.1016/j.scitotenv.2018.07.240
Kookana, R.S.; Williams, M.; Boxall, A.B.; Larsson, D.J.; Gaw, S.; Choi, K.; Yamamoto, H.; Thatikonda, S.; Zhu, Y.G.; Carriquiriborde, P., 2014. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle-and high-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 369, (1656), 20130586. https://doi.org/10.1098/rstb.2013.0586
Korekar, G.; Kumar, A.; Ugale, C., 2020. Occurrence, fate, persistence and remediation of caffeine: a review. Environmental Science and Pollution Research, v. 27, (3), 34715-34733. https://doi.org/10.1007/s11356-019-06998-8
Kümmerer, K.; Haiß, A.; Schuster, A.; Hein, A.; & Ebert, I., 2016. Antineoplastic compounds in the environment-substances of special concern. Environmental Science and Pollution Research, v. 23, (15), 14791-14804. https://doi.org/10.1007/s11356-014-3902-8
Kwak, K.; Ji, K.; Kho, Y.; Kim, P.; Lee, J.; Ryu, J.; Choi, K., 2018. Chronic toxicity and endocrine disruption of naproxen in freshwater water fleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere, v. 204, 156-162. https://doi.org/10.1016/j.chemosphere.2018.04.035
Lam, M.W.; Young, C.J.; Brain, R.A.; Johnson, D.J.; Hanson, M.A.; Wilson, C.J.; Richards, S.M., Solomon, K.R.; Mabury, S.A., 2004. Aquatic persistence of eight pharmaceuticals in a microcosm study. Environmental Toxicology and Chemistry, v. 23, (6), 1431-1440. https://doi.org/10.1897/03-421
Li, S.; He, B.; Wang, J.; Liu, J.; Hu, X., 2020. Risks of caffeine residues in the environment: Necessity for a targeted ecopharmacovigilance program. Chemosphere, v. 243, 125343. https://doi.org/10.1016/j.chemosphere.2019.125343
Maciá Martínez, M.-Á., 2015. Evaluación económica de la restricción del uso de piroxicam en España. Reumatologia Clinica, v. 11, (6), 345-352. https://doi.org/10.1016/j.reuma.2014.12.003
Martins, M.L.; Primel, E.G.; Caldas, S.S.; Prestes, O.D.; Adaime, M.B.; Zanella, R., 2012. Microextração Líquido-Líquido Dispersiva (DLLME): fundamentos e aplicações. Scientia Chromatographica, v. 4, (1), 35-51. https://doi.org/10.4322/sc.2012.004
Mathias, F.T.; Fockink, D.H.; Disner, G.R.; Prodocimo, V.; Ribas, J.L.C.; Ramos, L.P.; Cestari, M.M.; Silva de Assis, H.C., 2018. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environmental Toxicology and Pharmacology, v. 59, 105-113. https://doi.org/10.1016/j.etap.2018.03.008
Minillo, A.; Isique, W.D.; Cardoso, C.A.L.; Súarez, Y.R. 2023. Occurrence and ecological risk assessment of pharmaceutically active compounds in neotropical small basins, Brazil. Acta Limnologica Brasiliensia, v. 35, e8. https://doi.org/10.1590/S2179-975X7022
Montagner, C.C.; Sodré, F.F.; Acayaba, R.D.; Vidal, C.; Campestrini, I.; Locatelli, M.A.; Pescara, I.C.; Albuquerque, A.F.; Umbuzeiro, G.A.; Jardim, W.F., 2019. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. Journal Brazilian Chemistry Society, v. 30, (3), 614-632. https://doi.org/10.21577/0103-5053.20180232
Muñoz-Peñuela, M.; Moreira, R.G.; Gomes, A.D.O.; Tolussi, C.E.; Branco, G.S.; Pinheiro, J.P.S.; Zampieri, R.A.; Lo Nostro, F.L., 2022. Neurotoxic, biotransformation, oxidative stress and genotoxic effects in Astyanax altiparanae (Teleostei, Characiformes) males exposed to environmentally relevant concentrations of diclofenac and/or caffeine. Environmental Toxicology and Pharmacology, v. 91, 103821. https://doi.org/10.1016/J.ETAP.2022.103821
National Institute of Metrology, Standardization and Industrial Quality (INMETRO), 2010. Guidelines on validation of analytical methods, DOQ-CGCRE-008. Rio de Janeiro: INMETRO (Accessed August 27, 2025) at:. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/ DOQINTERFARMA
Ogunwole, G.A.; Saliu, J.K.; Osuala, Osuala, F.I.; Odunjo, F.O., 2021. Chronic levels of ibuprofen induces haematoxic and histopathology damage in the gills, liver, and kidney of the African sharptooth catfish (Clarias gariepinus). Environmental Science and Pollution Research, v. 28, 25603-25613. https://doi.org/10.1007/s11356-020-12286-7
Ohoro, C.R.; Adeniji, A.O.; Semerjian, L.; Okoh, O.O.; Okoh, A.I., 2021. Occurrence and distribution of pharmaceuticals in surface water and sediment of Buffalo and Sundays River estuaries, South Africa and their ecological risk assessment. Emerging Contaminants, v. 7, 187-195. https://doi.org/10.1016/j.emcon.2021.09.002
Ojeda, C.B.; Rojas, F.S., 2011. Separation and preconcentration by dispersive liquid-liquid microextraction procedure: recent applications. Chromatographia, v. 74, 651-679. https://doi.org/10.1007/s10337-011-2124-1
Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; Wagner, H., 2022. Vegan: Community Ecology Package. R Package Version 2.6-2 (Accessed December 2024) at:. https://CRAN.R-project.org/package=vegan
Oliveira, T.M.A.; Mansano, A.S.; Holanda, C.A.; Pinto, T.S.; Reis, J.B.; Azevedo, E.B.; Verbinnen, R.T.; Viana, J.L.; Franco, T.C.R.S.; Vieira, E.M., 2024. Occurrence and Environmental Risk Assessment of Contaminants of Emerging Concern in Brazilian Surface Waters. Environmental Toxicology and Chemistry, v. 43, (10), 2199-2210. https://doi.org/10.1002/etc.5953
Organization for Economic Co-operation and Development (OECD), 2019. Pharmaceutical residues in freshwater: hazards and policy responses, OECD studies on water. OECD Publishing, Paris. https://doi.org/10.1787/c936f42d-en
Pan, C.; Bao, Y.; Xu, B., 2020. Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater sources. Chemosphere, v. 239, 124816. https://doi.org/10.1016/j.chemosphere.2019.124816
Parolini, M., 2020. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of the Total Environmental, v. 740, 140043. https://doi.org/10.1016/j.scitotenv.2020.140043
Patel, N.; Khan, M.D.Z.A.; Shahane, S.; Rai, D.; Chauhan, D.; Kant, C.; Chaudhary, V.K., 2020. Emerging pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation - a review. Pollution, v. 6, (1), 99-113. https://doi.org/10.22059/poll.2019.285116.646
Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A., 2020. Selected pharmaceuticals in different aquatic compartments: part II—toxicity and environmental risk assessment. Molecules, v. 25, (8), 1796. https://doi.org/10.3390/molecules25081796
Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Meisel, L.M.; Lino, C.M.; Pena, A., 2017. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk. Science of the Total Environment, v. 609, 1182-1191. https://doi.org/10.1016/j.scitotenv.2017.07.200
Petrie, B.; Barden, R.; Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, v. 72, 3-27. https://doi.org/10.1016/j.watres.2014.08.053
Pires, A.; Almeida, Â.; Calisto, V.; Schneider, R.J.; Esteves, V.I.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, E.; Freitas, R., 2016. Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina. Environmental Pollution, v. 214, 456-463. https://doi.org/10.1016/j.envpol.2016.04.031
Placova, K.; Halfar, J.; Brozova, K.; Heviankova, S., 2023. Issues of non-steroidal anti-inflammatory drugs in aquatic environments: a review study. Engineering Proceedings, 57, (1), 13. https://doi.org/10.3390/engproc2023057013
Quadra, G.R.; Li, Z.; Silva, P.S.A.; Barros, N.; Roland, F.; Sobek, A., 2021. Temporal and spatial variability of micropollutants in a Brazilian urban river. Archives of Environmental Contamination and Toxicology, v. 81, (1), 142-154. https://doi.org/10.1007/s00244-021-00853-z
Quinn, B.; Gagné, F.; Blaise, C., 2008. The effects of pharmaceuticals on the regeneration of the cnidarians, Hydra attenuata. Science of The Total Environment, v. 402, (1), 62-69. https://doi.org/10.1016/j.scitotenv.2008.04.039
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Accessed August 26, 2025) at:. https://www.R-project.org/
Ragugnetti, M.; Adams, M.L.; Guimarães, A.T.B., 2011. Ibuprofen genotoxicity in aquatic environment: an experimental model using Oreochromis niloticus ibuprofen genotoxicity in aquatic environment: an experimental model using Oreochromis niloticus. Water, Air, & Soil Pollution, v. 218, 361-364. https://doi.org/10.1007/s11270-010-0698-0
Ranjan, N.; Singh, P.K.; Maurya, N.S., 2022. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. Ecotoxicology and Environmental Safety, v. 247, 114220. https://doi.org/10.1016/j.ecoenv.2022.114220
Rezaee, M.; Assadi, Y.; Hossein, M.M.; Hosseini, M.R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S., 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, v. 1116, (1-2), 1-9. https://doi.org/10.1016/j.chroma.2006.03.007
Ribeiro, S.; Torres, T.; Martins, R.; Santos, M. M., 2015. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicology and Environmental Safety, 114, 67-74. https://doi.org/10.1016/j.ecoenv.2015.01.008
Santana, J.M.; Fraga, S.V.B.; Zanatta, M.C.K.; Martins, M.R.; Pires, M.S.G., 2021. Characterization of organic compounds and drugs in sewage sludge aiming for agricultural recycling. Heliyon, v. 7, (4), e06771. https://doi.org/10.1016/j.heliyon.2021.e06771
Scarpignato, C., 2013. Piroxicam-β-cyclodextrin: a GI safer piroxicam. Current Medicinal Chemistry, v. 20, (19), 2415-2437. https://doi.org/10.2174/09298673113209990115
Singh, V.; Suthar, S., 2021. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. Chemosphere, v. 268, 129331. https://doi.org/10.1016/j.chemosphere.2020.129331
Sörengård, M.; Campos-Pereira, H.; Ullberg, M.; Lai, F.Y.; Golovko, O.; Ahrens, L., 2019. Mass loads, source apportionment, and risk estimation of organic micropollutants from hospital and municipal wastewater in recipient catchments. Chemosphere, v. 234, 931-941. https://doi.org/10.1016/j.chemosphere.2019.06.041
Sousa, D.N.R.; Mozeto, A.A.; Carneiro, R.L.; Fadini, P.S., 2014. Electrical conductivity and emerging contaminants as markers of surface freshwater contamination by wastewater. Science of the Total Environment, v. 484, 19-26. https://doi.org/10.1016/j.scitotenv.2014.02.135
Sposito, J.C.V.; Francisco, L.F.V.; do Amaral Crispim, B.; da Silva Dantas, F.G.; de Souza, J.P.; Viana, L.F.; Solórzano, J.C.J.; de Oliveira, K.M.P.; Barufatti, A., 2019. Influence of land use and cover on toxicogenetic potential of surface water from Central-West Brazilian rivers. Archives of Environmental Contamination and Toxicology, v. 76, (3), 483-495. https://doi.org/10.1007/s00244-019-00603-2
Starling, M.C.V.M.; Amorim, C.C.; Leão, M.M.D., 2019. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. Journal of Hazardous Materials, v. 372, 17-36. https://doi.org/10.1016/j.jhazmat.2018.04.043
Verbinnen, R.T.; Viana, J.L.; Franco, T.C.R.S.; Vieira, E.M., 2024. Occurrence and environmental risk assessment of contaminants of emerging concern in Brazilian surface waters. Environmental Toxicology and Chemistry, v. 43, (10), 2199-2210. https://doi.org/10.1002/etc.5953
Wang, J.; Wang, S., 2016. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, v. 182, 620-640. https://doi.org/10.1016/j.jenvman.2016.07.049
World Health Organization, 2020. Management of substance abuse. Lexicon of alcohol and drug terms. World Health Organization (Accessed December, 2024) at:. https://iris.who.int/bitstream/handle/10665/39461/9241544686_eng.pdf?%20sequence
Zaied, B.K.; Rashid, M.; Nasrullah, M.; Zularisam, A.W.; Pant, D.; Singh, L., 2020. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, v. 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095
Zhou, H.; Ying, T.; Wang, X.; Liu, J., 2016. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China. Scientific Reports, v. 6, 34928. https://doi.org/10.1038/srep34928
Zhou, S.; Chen, Q.; di Paolo, C.; Shao, Y.; Hollert, H.; Seiler, T.B., 2019. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. Science of the Total Environment, v. 664, 89-98. https://doi.org/10.1016/J.SCITOTENV.2019.01.300
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.