Wood density of forest species in integrated crop-livestock-forest system in the Brazilian Amazon: challenges and opportunities for Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola
DOI:
https://doi.org/10.5327/Z2176-94782370Palavras-chave:
plantios florestais jovens; propriedades físicas da madeira; potencial bioeconômico; Pará.Resumo
A densidade da madeira é a propriedade física diretamente relacionada ao potencial madeireiro de uma espécie e influencia o serviço ambiental de armazenamento e sequestro de carbono. Portanto, o objetivo deste estudo foi de avaliar a densidade da madeira em diferentes níveis de umidade (aparente, anidra e básica) das espécies Bertholletia excelsa, Dipteryx odorata e Khaya grandifoliola em um povoamento florestal jovem cultivado em um sistema integração lavoura-pecuária-floresta. A Unidade de Referência Tecnológica, estabelecida em 2010, destacou a necessidade de intervenções de manejo até 2021 para evitar sombreamento excessivo e eliminar espécies fenotipicamente indesejáveis. Amostras de material foram colhidas em cinco alturas ao longo do tronco comercial para analisar a densidade da madeira (anidra, aparente e básica). Nossos resultados revelaram que D. odorata apresentou as maiores densidades (0,99, 0,91 e 0,83 g/cm3), enquanto B. excelsa e K. grandifoliola apresentaram densidades menores (0,68, 0,61, 0,55 g/cm3 e 0,61, 0,56, 0,51 g/cm3, respectivamente). Notavelmente, D. odorata exibiu um aumento na densidade básica de base para o topo, enquanto K. grandifoliola demonstrou maior homogeneidade ao longo de seu tronco. Os resultados apresentados fornecem suporte técnico robusto para informar a tomada de decisões sobre o uso de espécies nativas e exóticas em sistemas de produção integrados, além de enfatizar o potencial do sistema integração lavoura-pecuária-floresta como uma prática de produção sustentável.
Downloads
Referências
Associação Brasileira de. Normas Técnicas (ABNT), 2003. NBR 11941: Madeira - Determinação da densidade básica. ABNT, Rio de Janeiro, 6 p.
Altgen, M.; Fröba, M.; Gurr, J.; Krause, A.; Ohlmeyer, M.; Sazama, U.; Willems, W.; Nopens, M., 2023. Limits in reaching the anhydrous state of wood and cellulose. Cellulose, v. 30 (5), 6247-6257. https://doi.org/10/s10570-023-05293-7.
Balbino, L.C.; Barcellos, A.O.; Stone, L.F., 2011. Framework: Crop-Livestock-Forest Integration (ILPF). Embrapa Brasília. 130 p (Accessed November 1, 2023) at:. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/923530/1/balbino01.pdf.
Bamber, R.K.; Horne, R.; Graham-Higgs, A., 1982. Effect of fast growth on the wood properties of Eucalyptus grandis. Australian Forestry Research, v. 12 (2), 163-167.
Behling, M.; Martinez, G.B.; Silva, A.R.; Oliveira, T.K. de; Cipriani, H.N., 2021. Eucalyptus in crop-livestock-forest integration (ILPF) systems in the Amazon. In: Oliveira, E.B.; Pinto Junior, J.E. (Eds.), Eucalyptus and Embrapa: Four decades of research and development. Embrapa, Brasília, p. 1043-1045.
Bonfatti Júnior, E.A.; Lengowski, E.C.; Cabral, B.M.; Oliveira, T.W.G.; Barros, J.M.R.; Oliveira, R.S.; Andrade, A.S.; Klock, U.; Silva, D.A., 2023. Basic wood density, fiber dimensions, and wood chemical composition of four Eucalyptus species planted. Revista Árvore, v. 47, e4704. https://do.or/1/1806-908820230000004.
Box, G.; Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), v. 26 (2), 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
Brasil, 2006. Decreto nº 5.975/2006. Regulamenta os arts. 12, parte final, 15, 16, 19, 20 e 21 da Lei nº 4.771, de 5 de setembro de 1965, o art. 4º, inciso III, da Lei nº 6.938, de 31 de agosto de 1981, o art. 2º da Lei nº 10.650, de 16 de abril de 2003; altera e acresce dispositivos aos Decretos nº 3.179, de 21 de setembro de 1999, e 3.420, de 20 de abril de 2000; e dá outras providências (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_Ato2004-006/2006/Decreto/D5975.htm#art32.
Brasil, 2012. Lei nº 12.651/2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis nº 6.938, de 31 de agosto de 1981, nº 9.393, de 19 de dezembro de 1996, e nº 11.428, de 22 de dezembro de 2006; revoga as Leis nº 4.771, de 15 de setembro de 1965, e nº 7.754, de 14 de abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de agosto de 2001; e dá outras providências (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm.
Brasil, 2013. Lei nº 12.805, de 29 de abril de 2013. Institui a Política Nacional de Integração Lavoura-Pecuária-Floresta e altera a Lei nº 8.171, de 17 de janeiro de 1991. DOU de 30 de abril de 2013 (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12805.htm.
Brasil-Neto, A.B.; Brasil, N.M.Q.X.; Andrade, P.I.L.; Sampaio, A.C.F.; Noronha, N.C.; Carvalho, E.J.M.; Silva, A.R., 2021. The commercial tree species Dipteryx odorata improves soil physical and biological attributes in abandoned pastures. Ecological Engineering, v. 160 (2), 106143. https://doi.org/10.1016/j.ecoleng.2020.106143.
Cândido, A.C.T.F.; Martorano, L.G.; Cândido, B.U.F.; Nascimento, W.; Dias, C.T.S.; Lisboa, L.S.S.; Fernandes, P.C.C.; Silva, A.R.; Dias-Filho, M.B.; Beldini, T.P., 2023. Infrared Thermal Profiles in Silvopastoral and Full-Sun Pastures in the Eastern Amazon, Brazil. Forests, v. 14, 1463. https://doi.org/10.3390/f14071463.
Carauta, M.; Guzmán-Bustamante, I.; Meurer, K.; Hampf, A.; Troost, C.; Rodrigues, R.; Berger, T., 2018. Assessing the full distribution of greenhouse gas emissions from crop, livestock and commercial forestry plantations in Brazil's Southern Amazon. In: 30th International Conference of Africultural Economists, Vancouver, pp. 1-36. https://doi.org/10.22004/ag.econ.277118.
Christoforo, A.L.; Couto, N.G.; Almeida, J.P.B.; Aquino, V.B. de M.; Lahr, F.A.R., 2020. Apparent density as an estimator of wood properties obtained in tests where failure is fragile. Agricultural Engineering, v. 40 (1), 105-112. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n1p105-112/2020.
Cortes, J.P.S.; Coudel, E.; Piraux, M.; Silva, M.P.; Santos, B.A.; Folhes, R.; Silva, R.G.P., 2020. What are the prospects for family farming in a context of agribusiness expansion? Participatory zoning with community representatives from the Planalto Santareno. Franco-Brazilian Journal of Geography, (45). https://doi.org/10.4000/conns.28077.
Costa, D.C.; Martorano, L.G.; Moraes, J.R.S.C.; Lisboa, L.S.S.; Stolf, R., 2018. Temporal dynamics of the water footprint of soybean crops in a grain hub in western Pará, Amazon. Environment and Water Journal, v. 13 (5), e2051. https://doi.org/10.4136/ambi-agua.2051.
Dimou, V.; Tsaliki, A.; Kitikidou, K., 2023. Radial and longitudinal density variations in Abies cephalonica and Pinus halepensis. Journal of Forestry Research, v. 34, 853-863. https://doi.org/10.1007/s11676-022-01521-1.
Downes, G.M.; Hudson, I.L.; Raymond, C.A.; Dean, G.H.; Michell, A.J.; Schimleck, R., 1997. Sampling plantation eucalypts for wood and fiber properties. CSIRO, Hobart. https://doi.org/10.1071/9780643105287.
Eloy, E.; Mangini, T.de.S.; Nardini, C.; Caron, B.O.; Trevisan, R.; Santos, A.D. dos., 2024. Correlation of anatomy with physical properties of wood species from an agroforestry system. Tree Journal, v. 48 (1), e4815. https://doi.org/10.53661/1806-9088202448263657.
Fearnside, P.M., 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management, v. 90 (1), 59-89. https://doi.org/10.1016/S0378-1127(96)03840-6.
Fernandes, P.C.C.; Chaves, S.S.F.; Martorano, L.G., 2019. Crop-livestock-forest integration in the North region: soil carbon assessments at Fazenda Vitória in Paragominas, Pará. In: Bungenstab, D.J.; Almeida, R.G.; Laura, V.A.; Balbino, L.C.; Ferreira, A.D. ILPF: innovation with the interaction of crops, livestock and forestry. Embrapa, Brasília, pp. 628-640.
Ferreira, M.D.; de Melo, R.R.; Tonini, H.; Pimenta, A.S.; Gatto, D.A.; Beltrame, B.; Stangerlin, D.M., 2019. Physical–mechanical properties of wood from a eucalyptus clone planted in an integrated crop-livestock-forest system, International Wood Products Journal, 2042-6453. https://doi.org/10.1080/20426445.2019.1706137.
França, T.S.F.A.; Arantes, M.D.C.; Paes, J.B.; Vidaurre, G.B.; Oliveira, J.T.S.; Barauna, E.E.P., 2015. Anatomical characteristics and physical-mechanical properties of wood from two species of African mahogany. Cerne, v. 21 (4), 633-640. https://doi.org/10.1590/01047760201521041877.
Gendvilas, V.; Neyland, M.; Rocha-Sepúlveda, M.F.; Downes, G.M.; Hunt, M.; Jacobs, A.; Williams, D.; Vega, M.; O'Reilly-Wapstra, J., 2022. Effects of thinning on the longitudinal and radial variation in wood properties of Eucalyptus nitens. Forestry, v. 95, 504-517. https://doi.org/10.1093/forestry/cpac007.
Gomes, G.S.L.; Caldeira, M.V.W.; Gomes, R.; Duarte, V.B.R.; Momolli, D.R.; Faria, J.C.T.; Godinho, T. de O.; Trazzi, P.A.; Sobrinho, L.S.; Oliveira Neto, S.N .de; Schumacher, M.V., 2024. Biomass Production and Nutritional Sustainability in Different Species of African Mahogany. Forests, v. 15, 1951. https://doi.org/10.3390/ f15111951.
Guerreiro, Q.L. de M.; Oliveira Júnior, R.C. de; Santos, G.R. dos; Ruivo, M. de L.P.; Beldini, T.P.; Carvalho, E.J.M.; Silva, K.E. da Guedes, M.C.; Santos, P. R.B., 2017. Spatial variability of soil physical and chemical aspects in a Brazil nut tree stand in the Brazilian Amazon. African Journal of Agricultural Research, v. 12 (4), 237-250. https://doi.org/10.5897/AJAR2016.11766.
Herrero-Jáuregui, C.; Guariguata, M.R.; Cárdenas, D.; Vilanova, E.; Robles, M.; Licona, J.C.; Nalvarte, W., 2013. Assessing the extent of “conflict of use” in multipurpose tropical forest trees: A regional view. Journal of Environmental Management, v. 130, 40-47. https://doi.org/10.1016/j.jenvman.2013.08.044.
Honorio-Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Gomero, D.A.; del Castillo-Torres, D.; Flores-Llampazo, G.; Hidalgo-Pizango, G.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Carvalho, C.; de Lima, H.C.; Cardoso, D.; Degen, B., 2020. SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx. Journal of Heredity, v. 111 (4), 346-356. https://doi.org/10.1093/jhered/esaa011.
Hsing, T.Y.; Paula, N.F.; Paula, R.C., 2016. Dendrometric, chemical characteristics and basic density of wood from hybrids Eucalyptus grandis x Eucalyptus urophylla. Forest Science, v. 26 (1), 273-283. https://doi.org/10.5902/1980509821119.
ILPF Network, 2021. ICLF in Numbers: 2020/2021 (Accessed November 05, 2024) at:. https://redeilpf.org.br/ilpf-em-numeros/.
Kohl, M.; Neupane, P.R.; Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. Plos One, v. 12 (8), e0181187. https://doi.org/10.1371/journal.pone.0181187.
Latreille, A.J.; Wünsch, D.G.; Souza, J.T.; Talgatti, M.; Silveira, A.G.; Oliveira, L.H.; Santini, E.J., 2018. Physico-mechanical properties of wood Dipteryx alata, Astronium graveolens, Bowdichia virgilioides and Eucalyptus grandis. Revista do Instituto Florestal, v. 30 (2), 143-150. https://doi.org/10.24278/2178-5031.201830203.
Lima, F.B. de; Souza, Á.N. de; Matricardi, E.A.T.; Gaspar, R. de O.; Lima, I.B. de; Souza, H.J. de; Santos, M.L. de; Miguel, E.P.; Borges, L.A.C.; Santos, C.R.C. de; Gouveia, F.N.; Lima, M.F.B., 2024. Alternative tree species for sustainable forest management in the Brazilian Amazon. Forests, v. 15 (10), 1763. https://doi.org/10.3390/f15101763.
Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P. R.; Lobo, F. D.; Ribeiro, G.; Vincent, G., 2020. Impacts of degradation on water, energy, and carbon cycling of the Amazon tropical forests. Journal of Geophysical Research: Biogeosciences, v. 125 (8), e2020JG005677. https://doi.org/10.1029/2020JG005677.
Lopes, L.S.S.; Pauletto, D.; Gomes, E.S.C.; Silva, A.F.; Oliveira, T.G.S.; Silva, J.A.G.; Baloneque, D.D.; Martorano, L.G., 2023. Dendrometric relationships and Biomass in commercial plantations of Dipteryx spp. in the Eastern Amazon. Forests, v. 14 (11), 2167. https://doi.org/10.3390/f14112167.
Martorano, L.G.; Pereira, L.C.; Nechet, D., 1993. Climate typology of the state of Pará – Adaptation of the Koppen method. Bulletin of Theoretical Geography. v. 23, 45-46.
Martorano, L.G.; de Moraes, J.R. da S.C.; Silva, L.K.X.; Fernandes, P.C.C.; Amaral, J.M. do; Lisboa, L.S.; Neves, K.A.L.; Pacheco, A.; Beldini, T.P.; Aparecido, L.E. de O., da Silva, W. C.; Godinho, V. de P.C., 2021a. Agricultural and livestock production in the Amazon: A reflection on the necessity of adoption of integrated production strategies in the western region of the state of Para. Australian Journal of Crop Science, v. 15 (8), 1102-1109. https://search.informit.org/doi/10.3316/informit.179690707250399.
Martorano, L.G.; Soares, W.B.; Moraes, J.R.S.C.; Nascimento, W.; Aparecido, L.E.O.; Villa, P.M., 2021b. Climatology of Air Temperature in Belterra: Thermal Regulation Ecosystem Services Provided by the Tapajós National Forest in the Amazon. Revista Brasileira de Meteorologia, v. 36 (2), 327-337. https://doi.org/10.1590/0102-7786362001.
Medeiros, T.K.A.; Wadt, L.H.O.; Kainer, K.A., 2024. Traditional knowledge of tree “bleeding” in Brazil nut tree (Bertholletia excelsa) management. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 59, e1858. https://doi.org/10.5327/Z2176-94781858.
Momolli, D.R.; Caldeira, M.V.W.; Gomes, G.S.L.; Gomes, R.; Duarte, V.B.R.; Godinho, T. de O.; da Silva, J.G.M.; dos Santos, V.B.; Vidaurre, G.B.; Faria, J.C.T.; Schumacher, M.V.; Pereira, M.G., 2024. Stem longitudinal gradient for basic density, carbon, nitrogen, and CN ratio in Khaya spp.: improved correlation using diameter instead of commercial height. Forests, v. 15 (1923), 2-18. https://doi.org/10.3390/f15111923.
Monteiro, A.; Barreto-Mendes, L.; Fanchone, A.; Morgavi, D.P.; Pedreira, B.C.; Magalhães, C.A.S.; Abdalla, A.L.; Eugène, M., 2024. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of the Total Environment, v. 906, 167396. https://doi.org/10.1016/j.scitotenv.2023.167396.
Mukaila, Y.O.; Ajao, A.A.; Moteetee, A.N., 2021. Khaya grandifoliola C. DC. (Meliaceae: Sapindales): Ethnobotany, phytochemistry, pharmacological properties, and toxicology. Journal of Ethnopharmacology, v. 278, 114253. https://doi.org/10.1016/j.jep.2021.114253.
Nwaogu, C.; Cherubin, M.R., 2024. Chapter one - integrated agricultural systems: the 21st-century nature-based solution to solve global FEEES challenges. Advances in Agronomy, v. 185, 1-73. https://doi.org/10.1016/bs.agron.2024.02.003.
Oliveira, L.Z.; Uller, H.F.; Klitzke, A.R.; Eleotério, J.R.; Vibrans, A.C., 2019. Towards the fulfillment of a knowledge gap: wood densities for species of the subtropical Atlantic Forest. Data, v. 4 (3), 104. https://doi:10.3390/data4030104.
Pimenta, E.M.; Ramalho, F.M.G.; Dambroz, G.B.V.; Couto, A.M.; Campoe, O.C.; Hein, P.R.G., 2024. Planting spacing and genotype affected tree growth and variation in wood density and lignin content along Eucalyptus trunks. Industrial Crops and Products, v. 222, 119595. https://doi.org/10.1016/j.indcrop.2024.119595.
Poorter, L.; Van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; Bongers, F.; Carvalho, F.A.; Casanoves, F.; Cornejo-Tenorio, G.; Costa, F.R.C.; Castilho, C.V.; Duivenvoorden, J.F.; Dutrieux, L.P.; Enquist, B.J.; Fernández-Méndez, F.; Finegan, B.; Gormley, L.H.L.; Healey, J.R.; Hoosbeek, M.R.; Ibarra-Manríquez, G.; Junqueira, A.B.; Levis, C.; Licona, J.C.; Lisboa, L.S.; Magnusson, W.E.; Martínez-Ramos, M.; Martínez-Yrizar, A.; Martorano, L.G.; Maskell, L.C.; Mazzei L.; Meave, J.A.; Mora, F.; Muñoz, R.; Nytch, C.; Pansonato, M.P.; Parr, T.W.; Paz, H.; Pérez-García, E.A.; Rentería, L.Y.; Rodríguez-Velazquez, J.; Rozendaal, D.M.A.; Ruschel, A.R.; Sakschewski, B.; Salgado-Negret, B., Schietti, J.; Simões, M.; Sinclair, F.L.; Souza, P.F.; Souza, F.C.; Stropp, J.; Ter Steege, H.; Swenson, N.G.; Thonicke, K.; Toledo, M.; Uriarte, M.; Van der Hout, P.; Walker, P.; Zamora, N.; Peña-Claros, M., 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, v. 24 (11), 1314-1328. https://doi.org/10.1111/geb.12364.
Projeto de Monitoramento do Desmatamento na Amazônia Legal por Satélite (PRODES), 2024. PRODES Amazônia (Accessed November 05, 2024) at:. http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes.
Ramalho, F.M.G.; Pimenta, E.M.; Goulart, C.P.; Almeida, M.N.F.; Vidaurre, G.B.; Hein, P.R.G., 2019. Effect of stand density on longitudinal variation of wood and bark growth in fast-growing Eucalyptus plantations. iForest v. 12, 527-532. https://doi.org/10.3832/ifor3082-012.
Reis, C.A.F.; Kalil Filho, A.N.; Aguiar, A.V.; Moraes-Rangel, A.C., 2019. Characterization of species belonging to the genus Khaya of interest in Brazil. In: Reis, C.A.F., Oliveira, E.B., Santos, A.M. African mahogany (Khaya spp.): current affairs and prospects for cultivation in Brazil. Embrapa, Brasília, pp. 13-49 (Accessed October 12, 2023) at:. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/202696/1/Mogno-Africano-08-10-2019.pdf.
Reis, J.C.; Stachetti Rodrigues, G.; de Barros, I.; Ribeiro Rodrigues, R.deA.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; Pimentel, P.E.O.; Smukler, S., 2021. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, v. 283, 124580. https://doi.org/10.1016/j.jclepro.2020.124580.
Rezende, M.A. de; Escobedo, J.F., 1988. Volumetric shrinkage and apparent density of wood as a function of moisture. IPEF, v. 39, 33-40.
Ribeiro, A.; Ferraz Filho, A.C.; Scolforo, J.R.S., 2017. The cultivation of African mahogany (Khaya spp.) and the growth of activity in Brazil. Forest and Environment, v. 24, e00076814. https://doi.org/10.1590/2179-8087.076814.
Rocha, S.M.G.; Vidaurre, G.B.; Pezzopane, J.E.M.; Almeida, M.N.F.; Carneiro, R.L.; Campo, O.C.; Scolforo, H.F.; Alvares, C.A.; Neves, J.C.L.; Xaviera, A.C.; Figura, M.A., 2020. Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species. Forest Ecology and Management, v. 473, 118290. https://doi.org/10.1016/j.foreco.2020.118290.
Romero, F.M.B.; Novais, T.N.O.; Jacobine, L.A.G.; Bezerra, E.B.; Lopes, R. B. de C.; de Holanda, J.S.; Reyna, E.F.; Fearnside, P. M., 2024. Basic wood density in large trees: Impacts on biomass estimates in the southwestern Brazilian Amazon. Forests, v. 15 (5), 734. https://doi.org/10.3390/f15050734.
Santana, A.C.; Santana, Á.L.; Santana, Á.L.; Oliveira, G.M.T.S.; Santos, M.A.S., 2023. Bioeconomic evaluation of an agroforestry system and the potential to recover degraded areas and capitalize producers in the state of Pará, Brazilian Amazon, v. 61, 439-455. https://doi.org/10.5380/dma.v61i0.80516.
Santos, L.H.O.; Alexandre, F.S.; Mendoza, Z.M.S.H.; Souza, E.C.; Borges, P.H.M.; Mariano, R.R.; Diaz, L.M.G.R.; Nunes, C.A., 2020. Chemical and physical characteristics of African mahogany wood (Khaya ivorensis A. Chev.). Nativa, v. 8 (3), 361-366. http://doi.org/10.31413/nativa.v8i3.9526.
Santos, P.L.; Santos, E.A.A.; Magalhães, M.R.R.; Santos, V.B.; Baraúna, E.E.P., 2021. Determination of extractives and basic density of wood Brosimum lactescens (S. Moore) C.C. Berg for productive purposes. In: Evangelista WV. Native and planted wood from Brazil: quality, research and current affairs. Editora Científica, São Paulo, pp. 372-381.
Schulz, H.R.; Gallio, E.; Acosta, A.P.; Gatto, D.A., 2019. Evaluation of physical properties of six forest wood species. Journal Materia, v. 25 (3), e-1279. https://doi.org/10.1590/S1517-707620200003.1095.
Sette Junior, C.R.; de Oliveira, I.R.; Tomazello Filho, M.; Yamaji, F.M.; Laclau, J.P., 2012. Effect of age and sampling position on wood density and anatomical characteristics of Eucalyptus grandis. Revista Árvore, v. 36 (6), 1183-1190. https://doi.org/10.1590/S0100-67622012000600019.
Silva, J.C.N.; Silva, A.R.; Veloso, C.A.C.; Dantas, E.F.; Sacramento, J.A.A.S., 2018. Aggregation, carbon, and total soil nitrogen in crop-livestock-forest integration in the Eastern Amazon. Brazilian Journal of Agricultural and Environmental Engineering, v. 22 (12), 837-842. https://doi.org/10.1590/1807-1929/agriambi.v22n12p837-842.
Silva-Neto, P.A.; Silva, J.S.; Gomes, L.F., 2023. Cumaru (Dipteryx odorata): scientific and technological prospecting. Prospecting Notebooks, v. 16 (1), 295-311. https://doi.org/10.9771/cp.v15i4.49735.
Silveira, J.G. da; Oliveira Neto, S.N. de; Canto, A.C.B. do; Leite, F.F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R. de O.; Dalarme, M.S.L.; Ferreira, I.G.M.; da Conceição, M.C.G.; Rodrigues, R.A.R., 2022. Land use, land cover change and sustainable intensification of agriculture and livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability, v. 14 (5), 2563. https://doi.org/10.3390/su14052563.
Sousa, B.C.M. de; Castro, S.P. de; Lourido, K.A.; Kasper, A.A.M.; Paulino, G. de S.; Delarmelina, C.; Duarte, M.C.T.; Sartoratto, A.; Vieira, T.A.; Lustosa, D.C.; Barata, L.E.S., 2022. Identification of coumarins and antimicrobial potential of ethanolic extracts of Dipteryx odorata and Dipteryx punctata. Molecules, v. 27 (18), 5837. https://doi.org/10.3390/molecules27185837.
Sousa, W.C.S.; Barbosa, L.J.; Soares, A.A.V.; Goulart, S.L.; Protásio T.P., 2019. Wood colorimetry for the characterization of amazonian tree species: a subsidy for a more efficient classification. Cerne, v. 25 (4), p.451-462. https://doi.org/10.1590/01047760201925042650.
Souza, A.O.; Santos, A.R.; Lopes, S.F.; Soares, T.R., 2023. Harvesting Bertholletia excelsa Bonpl. in a western Amazon rural community: local ecological knowledge and meaning to “nut-crackers”. Journal of Ethnobiology and Ethnomedicine, v. 19 (61), 2-12. https://doi.org/10.1186/s13002-023-00635-y.
Souza, C.R.; Baldoni, A.B.; Tonini, H.; Maia, V.A.; Santos, R.M.; Luvison, M.; Santos, J.P., 2023. Ecological patterns and conservation opportunities with carbon credits in brazil nut groves: a study-case in the southeast amazon. Cerne, v. 29, e-103164. https://doi.org/10.1590/01047760202329013164.
Souza, I.M.D.; Sagrilo, E.; de Oliveira Júnior, J.O.L.; Araújo, M.D.M.; Muniz, L.C.; Costa, J.B.; Pompeu, R.C.F.F.; de Sousa, D.C.; de Andrade, H.A.F.; de Oliveira Neto, E.D.; Carvalho Leite, L.F.C.; Blanco, F.F.; Lima, P.S. da C.; Souza, H.A., 2024. Chemical soil quality in integrated production systems with presence of native and exotic arboreal components in the eastern Brazilian Amazon. Forests, v. 15 (7), 1078. https://doi.org/10.3390/f15071078.
Souza, J.P; Gonçalves, J.F.C.; Jaquetti, R.K.; Costa, K.C.P.; Lima, R.M.B.; Fearnside, P.M.; Nina Junior, A.R., 2023. Silvicultural interventions and agroforestry systems increase the economic and ecological value of Bertholletia excelsa plantations in the Amazon. Agroforestry Systems, v. 97, 197-207. https://doi.org/10.1007/s10457-022-00798-9.
Statistical Analysis System (SAS), 2023. Analytics Software & Solutions (Accessed November 1, 2023) at:. https://www.sas.com/pt_br/home.html?utm_source = google&utm_medium = cpc&utm_campaign = branb-global&utm_content = GMS 88251&gclid = CjwKCAjwmbqoBhAgEiwACIjzEOhrfkTsrsU0oCZYVFrnb3IxEeLSbqIQYh-HJGSrfmiEctar0oVO-xoC5YAQAvD_BwE.
Vieira, D.S.; Oliveira, M.L.R.; Gama, J.R.V.; Lafetá, B.O., 2022. Perceptions about native chestnut trees in the Lower Tapajós River, state of Pará. Nativa, v. 10 (4), 449-457. https://doi.org/10.31413/nativa.v10i4.14216.
Wadt, L.H.O.; Maroccolo, J.F.; Guedes, M.C.; Silva, K.E. (Eds.), 2023. Amazon nut: studies on the species and its value chain: social, economic and organizational aspects. v. 1. Embrapa, Brasília, DF, 352 p.
Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M., 2020. Forests and decarbonization - roles of natural and planted forests. Frontiers in Forestry and Global Change, v. 3 (8). https://doi.org/10.3389/ffgc.2020.00058.
Wassenberg, M.; Chiu, H.S.; Guo, W.; Spiecker, H., 2015. Analysis of wood density profiles of tree stems: Incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees, v. 29, 551-561. https://doi.org/10.1007/s00468-014-1134-7.
Wheeler, E.A.; Baas, P.; Gasson, P.E., 1989. International Association of Wood Anatomists: list of microscopic features for hardwood identification. IAWA Journal, v. 10 (3), 219-232 (Accessed Outubro 08, 2023) at:. https://www.researchgate.net/publication/294088872_IAWA_List_of_Microcopie_Features_for_Hardwood_Identification.
Zhang, S.Y.; Ren, H.; Jiang, Z., 2021. Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana). Journal of Wood Science, v. 67 (30). https://doi.org/10.1186/s10086-021-01965-9.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.