Three-dimensional numerical modeling and analysis of multiphase distribution in a UASB reactor with experimental validation of biogas volumetric flow rate

Autores

DOI:

https://doi.org/10.5327/Z2176-94782300

Palavras-chave:

escoamento trifásico; dinâmica de fluidos computacional; fração volumétrica de biogás; Ansys CFX; taxa de deformação do lodo; velocidade das fases.

Resumo

Pesquisas envolvendo simulação numérica para modelar processos físicos, como o comportamento do escoamento multifásico em reator anaeróbio de fluxo ascendente e manta de lodo (UASB), requerem uma etapa de validação dos dados numéricos, a fim de assegurar a adequação do modelo para representar a dinâmica física do processo estudado. Neste contexto, esta pesquisa teve como objetivo desenvolver uma modelagem matemática e realizar simulações numéricas para investigar o comportamento do escoamento multifásico em um reator UASB , validando os dados numéricos relativos à vazão volumétrica de biogás por meio de dados reais captados no separador trifásico. Utilizando o software Ansys® CFX, foram simulados casos trifásicos, turbulentos, transientes, Eulerian-Eulerian, considerando diferentes frações volumétricas de gás (FVG de 0,026; 0,130 e 0,260) na entrada do modelo, para investigar sua influência na distribuição e velocidade das fases e na taxa de deformação dos sólidos. Para validação do modelo, dados experimentais da vazão volumétrica de biogás na interface líquido-gás foram comparados com os resultados numéricos, ocorrendo um erro relativo de 4,2% no caso simulado com a FVG de 0,026. Nos casos estudados, o comportamento da distribuição das fases permaneceu constante. As velocidades mostraram que o gás se movia cerca de 200 vezes mais rápido que o líquido, enquanto os sólidos alcançaram velocidades de 10 a 30 vezes superiores às do líquido, porém no sentido contrário ao fluxo. Constatou-se ainda que uma maior FVG resulta em uma taxa mais elevada de deformação dos sólidos por tensões de cisalhamento. O modelo validado é adequado para investigações futuras visando melhorias no escoamento de reatores UASB.

Downloads

Não há dados estatísticos.

Referências

Ansys, 2024. Ansys CFX-Solver Modeling Guide.

Associação Brasileira de Normas Técnicas (ABNT), 2011. NBR 12209: Elaboração de projetos hidráulico-sanitários de estações de tratamento de esgotos sanitários. 2. ed. ABNT, Rio de Janeiro.

Bastiani, C.D’; Alba, J.L.; Mazzarotto, G.T.; Farias Neto, S.R.; Reynolds, A.; Kennedy, D.; Beal, L.L., 2021. Three-phase hydrodynamic simulation and experimental validation of an upflow anaerobic sludge blanket reactor. Computers & Mathematics with Applications, v. 83, 95-110. https://doi.org/10.1016/j.camwa.2020.02.017.

Bastiani, C.D’; Alba, J.L.; Mazzarotto, G.T.; Farias Neto, S.R.; Torres, A.P.R.; Beal, L.L., 2020. CFD simulation and piv validation of the gas/liquid behavior in an uasb reactor. Engenharia Sanitária e Ambiental, v. 25 (1), 87-96. https://doi.org/10.1590/s1413-41522020179462.

Bastiani, C.D’; Ken, D.; Reynolds, A., 2023. CFD simulation of anaerobic granular sludge reactors: a review. Water Research, v. 242, 120220. https://doi.org/10.1016/j.watres.2023.120220.

Brennan, B.; Gunes, B.; Jacobs, M.R.; Lawler, J.; Regan, F., 2021. Potential viable products identified from characterisation of agricultural slaughterhouse rendering wastewater. Water, v. 13 (3), 352. https://doi.org/10.3390/w13030352.

Brito, M.G.S.L.; Nunes, F.C.B.; Magalhães, H.L.F.; Lima, W.M.P.B.; Moura, F.L.C.; Farias Neto, S.R.; Lima, A.G.B., 2020. Hydrodynamics of uasb reactor treating domestic wastewater: a three-dimensional numerical study. Water, v. 12 (1), 279. https://doi.org/10.3390/w12010279.

Bustillo-Lecompte, C.F.; Mehrvar, M., 2015. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management, v. 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008.

Bustillo-Lecompte, C.F.; Mehrvar, M., 2016. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: modeling, optimization, and cost-effectiveness analysis. Journal of Environmental Management, v. 182, 651-666. https://doi.org/https://doi.org/10.1016/j.jenvman.2016.07.044.

Chen, P.; Sanyal, J.; Duduković, M.P., 2005. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chemical Engineering Science, v. 60 (4), 1085-1101. https://doi.org/10.1016/j.ces.2004.09.070.

Chernicharo, C.A.L., 2007. Anaerobic Reactors. IWA Publishing, London. https://doi.org/10.2166/9781780402116.

Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M., 2012. The performance enhancements of upflow anaerobic sludge blanket (uasb) reactors for domestic sludge treatment – a state-of-the-art review. Water Research, v. 46 (11), 3434-3470. https://doi.org/10.1016/j.watres.2012.03.066.

Cisneros, J.F.; Cobos, F.; Pelaez-Samaniego, M.R.; Rehman, U.; Nopens, I.; Alvarado, A., 2021. Hydrodynamic evaluation of five influent distribution systems in a cylindrical uasb reactor using cfd simulations. Water, v. 13 (21), 3141. https://doi.org/10.3390/w13213141.

Das, S.; Sarkar, S.; Chaudhari, S., 2018. Modification of uasb reactor by using cfd simulations for enhanced treatment of municipal sewage. Water Science and Technology, v. 77 (3), 766-776. https://doi.org/10.2166/wst.2017.584.

Daud, M.K.; Rizvi, H.; Akram, M.F.; Ali, S.; Rizwan, M.; Nafees, M.; Jin, Z.S., 2018. Review of upflow anaerobic sludge blanket reactor technology: effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, v. 2018, 1-13. https://doi.org/10.1155/2018/1596319.

Gonçalves, A.B.D.; Brito, M.G.S L.; Nunes, F.C.B.; Silva, F.J.A.; Silva, J.P.; Oliveira, C.G., 2023. Efeito da configuração do separador de fases na captação de biogás em reatores uasb tratando águas residuárias de frigorífico industrial. Ciência e Sustentabilidade, v. 7 (1), 322-360. https://doi.org/10.56837/ces.v7i01.1132.

Guo, M.; Song, W.; Buhain, J., 2015. Bioenergy and biofuels: history, status, and perspective. Renewable and Sustainable Energy Reviews, v. 42, 712-725. https://doi.org/https://doi.org/10.1016/j.rser.2014.10.013.

Ishii, M.; Zuber, N., 1979. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, v. 25 (5), 843-55. https://doi.org/10.1002/aic.690250513.

Kumar V, K.; Mahendiran, R.; Subramanian, P.; Karthikeyan, S., 2024. Upflow anaerobic sludge blanket (uasb) reactors for bio-methane production from limed tannery fleshings: lab and pilot scale reactors. Sustainable Chemistry One World, v. 2, 100006. https://doi.org/10.1016/j.scowo.2024.100006.

Lettinga, G.; Van Velsen, A.F.M.; Hobma, S.W.; Zeeuw, W.; Klapwijk, A., 1980. Use of the upflow sludge blanket (usb) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, v. 22 (4), 699-734. https://doi.org/10.1002/bit.260220402.

Lim, S.J.; Kim, T., 2014. Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, v. 60, 189-202. https://doi.org/10.1016/j.biombioe.2013.11.011.

Lima, M.G.S.; Farias Neto, S.R.; Lima, A.G.B.; Nunes, F.C.B.; Gomes, L.A., 2011. Theoretical/experimental study of an upflow anaerobic sludge blanket reactor treating domestic wastewater. International Journal of Chemical Reactor Engineering, v. 9, (1). https://doi.org/10.1515/1542-6580.2599.

Lobato, L.C.S.; Bressani-Ribeiro, T.; Silva, B.S.; Flórez, C.A.D.; Neves, P.N.P.; Chernicharo, C.A.L., 2018. Contribuição para o aprimoramento de projeto, construção e operação de reatores UASB aplicados ao tratamento de esgoto sanitário. Parte 3: Gerenciamento de lodo e escuma. Sabesp: Revista DAE, v. 66, (214), 30-55. https://doi.org/10.4322/dae.2018.040.

Loganath, R.; Mazumder, D., 2018. Performance study on organic carbon, total nitrogen, suspended solids removal and biogas production in hybrid UASB reactor treating real slaughterhouse wastewater. Journal of Environmental Chemical Engineering, v. 6, (2), 3474-3484. https://doi.org/10.1016/j.jece.2018.05.031.

Mai, D.T.; Kunacheva, C.; Stuckey, D.C., 2018. A review of posttreatment technologies for anaerobic effluents for discharge and recycling of wastewater. Critical Reviews in Environmental Science and Technology, v. 48 (2), 167-209. https://doi.org/10.1080/10643389.2018.1443667.

Mainardis, M.; Buttazzoni, M.; Goi, D., 2020. Up-flow anaerobic sludge blanket (uasb) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering, v. 7 (2), 43. https://doi.org/10.3390/bioengineering7020043.

Metcalf, L.; Eddy, H.P., 2016. Tratamento de efluentes e recuperação de recursos. AMGH, Porto Alegre.

Mpofu, A.B.; Oyekola, O.O.; Welz, P.J., 2021. Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries. Journal of Cleaner Production, v. 296, 126490. https://doi.org/10.1016/j.jclepro.2021.126490.

Musa, M.A.; Idrus, S.; Harun, M.R.; Marzuki, T.F.T.M.; Wahab, A.M.A., 2020. A comparative study of biogas production from cattle slaughterhouse wastewater using conventional and modified upflow anaerobic sludge blanket (uasb) reactors. International Journal of Environmental Research and Public Health, v. 17 (1), 283. https://doi.org/10.3390/ijerph17010283.

Musa, M.A.; Idrus, S.; Man, H.C.; Daud, N.N.N., 2019. Performance comparison of conventional and modified upflow anaerobic sludge blanket (uasb) reactors treating high-strength cattle slaughterhouse wastewater. Water, v. 11 (4), 806. https://doi.org/10.3390/w11040806.

Nery, V.D.; Pozzi, E.; Damianovic, M.H.R.Z.; Domingues, M.R.; Zaiat, M., 2008. Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresource Technology, v. 99 (6), 2018-2024. https://doi.org/10.1016/j.biortech.2007.03.019.

Oliveira, T.D.; Nepomuceno, D.C.F.; Naval, L.P., 2023. Reuse of Effluents from Cattle Slaughterhouses: Multicriteria Evaluation. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 58 (2), 203-211. https://doi.org/10.5327/Z2176-94781624.

Owusu-Agyeman, I.; Özge, E.; Cetecioglu, Z; Plaza, E., 2019. the study of structure of anaerobic granules and methane producing pathways of pilot-scale uasb reactors treating municipal wastewater under sub-mesophilic conditions. Bioresource Technology, v. 290, 121733. https://doi.org/10.1016/j.biortech.2019.121733.

Ren, T.; Mu, Y.; Ni, B.; Yu, H., 2009. Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE Journal, v. 55 (2), 516-528. https://doi.org/10.1002/aic.11667.

Rocha, V. C., 2017. Modelagem hidro-bioquímica de reatores anaeróbios: aplicação da dinâmica de fluidos computacional e da dinâmica de sistemas. Doctoral Thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo. doi: 10.11606/T.18.2017.tde-20062017-103746. Retrieved 2024-02-02 from www.teses.usp.br

Ruttithiwapanich, T.; Songkasiri, W.; Ruenglertpanyakul, W., 2013. Identification of granular sludge wash-out origin inside an upflow industrial-scale biogas reactor by the three-phase flow model. IERI Procedia, v. 5, 245-251. https://doi.org/10.1016/j.ieri.2013.11.099.

Santos Júnior, F.N.; Rodrigues, R.O.; Nunes, F.C.B., 2017. Hidrodinâmica em um reator uasb convencional e tipo y tratando água residuária doméstica: um estudo numérico tridimensional. In Anais SEMIC. PRPI, Juazeiro do Norte.

Santos, S.L.; Chaves, S.R.M.; Van Haandel, A., 2016. Influence of phase separator design on the performance of uasb reactors treating municipal wastewater. Water SA, v. 42 (2), 176-182. https://doi.org/10.4314/wsa.v42i2.01.

Schiller, L.; Naumann, Z., 1933. Über die grundlegenden berechungen bei der schwerkraftbereitung. Zeitschrift Des Vereins Deutscher Ingenieure, v. 77, 318-320.

Souza, M.E., 1986. Criteria for the utilization, design and operation of uasb reactors. Water Science and Technology, v. 18 (12), 55-69. https://doi.org/10.2166/wst.1986.0163.

Stazi, V.; Tomei, M.C., 2021. Dissolved methane in anaerobic effluents: a review on sustainable strategies for optimization of energy recovery or internal process reuse. Journal of Cleaner Production, v. 317, 128359. https://doi.org/10.1016/j.jclepro.2021.128359.

Van Lier, J.B.; Mahmoud, N.; Zeeman, G., 2020. Anaerobic wastewater treatment. In: Chen, G.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic D. (Eds), Biological wastewater treatment: principles, modeling and design. IWA Publishing, London, pp. 701-756. https://doi.org/10.2166/9781789060362_0701.

Vesvikar, M.S.; Al‐Dahhan, M., 2005. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology and Bioengineering, v. 89 (6), 719-732. https://doi.org/10.1002/bit.20388.

Von Sperling, M.; Chernicharo, C.A.L., 2005. Biological wastewater treatment in warm climate regions. London, IWA Publishing.

Downloads

Publicado

30-07-2025

Como Citar

Gonçalves, A. B. D., Freitas, L. N. de, Brito, M. G. de S. L., Nunes, F. C. B., Silva, J. P. da, Mendonça, L. A. R., Silva, F. J. A. da, & Lima, A. G. B. de. (2025). Three-dimensional numerical modeling and analysis of multiphase distribution in a UASB reactor with experimental validation of biogas volumetric flow rate. Revista Brasileira De Ciências Ambientais, 60, e2300. https://doi.org/10.5327/Z2176-94782300