Microplastics in plant-based foods in the city of Itacoatiara (AM), Brazil

Autores

DOI:

https://doi.org/10.5327/Z2176-94782244

Palavras-chave:

contaminação por plástico; alimentos vegetais; plásticos em alimentos

Resumo

Os microplásticos são contaminantes praticamente onipresentes em todos os ambientes do planeta. Portanto, o presente trabalho teve como objetivo investigar a contaminação por microplásticos em alface, cebolinha e coentro vendidos em Itacoatiara, Amazônia Central, Brasil. Amostras de cada vegetal foram adquiridas de diferentes estabelecimentos comerciais. As amostras foram lavadas com água destilada filtrada para remover quaisquer partículas presentes na superfície dos vegetais. Peróxido de hidrogênio foi adicionado à água usada para lavar os vegetais para digerir materiais orgânicos. A solução foi agitada diariamente e mantida em estufa a 60°C. As partículas de microplástico foram separadas usando a técnica de diferença de densidade. No total, 247 partículas de microplástico foram registradas. Não houve diferença significativa no número de partículas de microplástico por amostra dos três tipos de vegetais. O tamanho das partículas de microplástico também não diferiu significativamente entre os tipos de vegetais, com as menores (0,067 mm) e as maiores (4,865 mm) partículas sendo encontradas na alface. Houve diferença significativa na proporção de cores de microplástico registradas entre os vegetais. Partículas azuis e vermelhas foram predominantes, com maior abundância de partículas azuis (n=207; 83,8%). Houve diferença significativa na proporção de formatos de partículas microplásticas, sendo as fibras (n=235; 95,1%) mais representativas que os fragmentos (n=12; 4,9%). Dessa forma, pode-se confirmar que há contaminação em vegetais comercializados em Itacoatiara, Amazônia Central, que estes não são seguros para consumo humano direto e que necessitam de lavagem com água corrente em abundância para eliminação de partículas microplásticas antes de serem consumidos frescos.

Downloads

Não há dados estatísticos.

Referências

Almeida, R.; Souza, R.G.; Campos, J.C., 2021. Lessons and challenges for the recycling sector of Brazil from the pandemic outbreak of COVID-19. Waste Disposal & Sustainable Energy, v. 3, 145-154. https://doi.org/10.1007/s42768-021-00075-y.

Athavuda, S.; Weerasinghe, T.; Pathirana, K.; Dabare, P.; Rathnayake, N.; Samarakoon, T.; Hemachandra, C.K., 2025. Occurrence and distribution of microplastics in agricultural lands in the Gampaha district of Sri Lanka: Insights from selected paddy fields, vegetable plots, and coconut cultivations. Next Research, v. 2, 100101. https://doi.org/10.1016/j.nexres.2024.100101.

Aydin, R.B.; Yozukmaz, A.; Sener, I.; Temiz, F.; Giannetto, D., 2023. Occurrence of microplastics in most consumed fruits and vegetables from Turkey and public risk assessment for consumers. Life, v. 13, 1686. https://doi.org/10.3390/life13081686.

Bancone, C.E.P; Turner, S.D.; Sul, J.A.I. do; Rose, N.L., 2020. The paleoecology of microplastic contamination. Frontiers in Environmental Science, v. 8, 574008. https://doi.org/10.3389/fenvs.2020.574008.

Baruah, A.; Sharma, A.; Sharma, S.; Nagraik, R., 2022. An insight into different microplastic detection methods. International Journal of Environmental Science and Technology, v. 19, 5721-5730. https://doi.org/10.1007/s13762-021-03384-1.

Bäuerlein, P.S.; Hofman-Caris, R.C.H.M.; Pieke, E.N.; Laak, T.L., 2022. Fate of microplastics in the drinking water production. Water Research, v. 221, 118790. https://doi.org/10.1016/j.watres.2022.118790.

Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Lwanga, E.H., 2021. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Science of the Total Environment, v. 755, 142653. https://doi.org/10.1016/j.scitotenv.2020.142653.

Bullard, J.E.; Ockelford, A.; O'Brien, P.; Neuman, C.M., 2021. Preferential transport of microplastics by wind. Atmospheric Environment, v. 245, 118038. https://doi.org/10.1016/j.atmosenv.2020.118038.

Canha, N.; Jafarova, M.; Grifoni, L.; Gamelas, C.A.; Alves, L.C.; Almeida, S.M.; Loppi, S., 2023. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Scientific Reports, v. 13, 14278. https://doi.org/10.1038/s41598-023-40840-z.

Chamas, A.; Hyunjin, L.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S., 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, v. 8, 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635.

Chassignet, E.P.; Xu, X.; Zavala-Romero, O., 2021. Tracking marine litter with a global ocean model: where does it go? Where does it come from? Frontiers in Marine Science, v. 8, 667591. https://doi.org/10.3389/fmars.2021.667591.

Chen, X.; Lu, Z.; Heng, L.; Chappell, A.; Oshunsanya, S.O.; Adu-Gyamfi, J.; Liu, W.; Yu, H., 2025. The spatio-temporal variability of soil microplastic distribution and erosion-induced microplastic export under extreme rainfall event using sediment fingerprinting and Be in intensive agricultural catchment. Journal of Hazardous Materials, v. 488, 137378. https://doi.org/10.1016/j.jhazmat.2025.137378.

Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P., 2020. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, v. 187, 109677. https://doi.org/10.1016/j.envres.2020.109677.

Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E., 2019. Human consumption of microplastics. Environmental Science & Technology, v. 53 (23), 7068-7074. https://doi.org/10.1021/acs.est.9b01517.

Cunningham, E.M.; Sigwart, J.D., 2019. Environmentally accurate microplastic levels and their absence from exposure studies. Integrative and Comparative Biology, v. 59, 1485-1496. https://doi.org/10.1093/icb/icz068.

Fayshal, M.A., 2024. Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon, v. 10 (23), 40838. https://doi.org/10.1016/j.heliyon.2024.e40838.

Fundação Heinrich Böll, 2020. Atlas do plástico: fatos e números sobre o mundo dos polímeros sintéticos (Accessed October 3, 2023) at:. https://br.boell.org/sites/default/files/2020-11/Atlas%20do%20Pl%C3%A1stico%20-%20vers%C3%A3o%20digital%20-%2030%20de%20novembro%20de%202020.pdf.

George, M.; Nallet, F.; Fabre, P., 2024. A threshold model of plastic waste fragmentation: new insights into the distribution of microplastics in the ocean and its evolution over time. Marine Pollution Bulletin, v. 199, 116012. https://doi.org/10.1016/j.marpolbul.2023.116012.

Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; Semensatto, D., 2020. Microplastics in sediments from Amazon rivers, Brazil. Science of the Total Environment, v. 749, 141604. https://doi.org/10.1016/j.scitotenv.2020.141604.

Guimarães, G.A.; Moraes, B.R. de; Ando, R.A.; Sant’Anna, B.S.; Perotti, G.F.; Hattori, G.Y., 2023. Microplastic contamination in the freshwater shrimp Macrobrachium amazonicum in Itacoatiara, Amazonas, Brazil. Environmental Monitoring and Assessment, v. 195, 434. https://doi.org/10.1007/s10661-023-11019-w.

Guo, S.; Zhang, J.; Liu, J.; Guo, N.; Zhang, L.; Wang, S.; Wang, X.; Zhao, M.; Zang, B.; Chen, Y., 2023. Organic fertilizer and irrigation water are the primary sources of microplastics in the facility soil, Beijing. Science of The Total Environment, v. 895, 165005. https://doi.org/10.1016/j.scitotenv.2023.165005.

Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; Herrling, M.P.; Hess, M.C.; Ivleva, N.P.; Lusher, A.L.; Wagner, M., 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, v. 53, 1039-1047. https://doi.org/10.1021/acs.est.8b05297.

He, D.; Guo, T.; Li, J.; Wang, F., 2023. Optimize lettuce washing methods to reduce the risk of microplastics ingestion: The evidence from microplastics residues on the surface of lettuce leaves and in the lettuce washing wastewater. Science of The Total Environment, v. 868, 161726. https://doi.org/10.1016/j.scitotenv.2023.161726.

Horton, A.A., 2022. Plastic pollution: When do we know enough? Journal of Hazardous Materials, v. 422, 126885. https://doi.org/10.1016/j.jhazmat.2021.126885.

Isari, E.A.; Papaioannou, D.; Kalavrouziotis, I.K.; Karapanagioti, H.K., 2021. Microplastics in agricultural soils: A case study in cultivation of watermelons and canning tomatoes. Water, v. 13, 2168. https://doi.org/10.3390/w13162168.

Kadac-Czapska, K.; Knez, E.; Grembecka, M., 2022. Food and human safety: The impact of microplastics. Critical Reviews in Food Science and Nutrition, v. 64, 3502-3521. https://doi.org/10.1080/10408398.2022.2132212.

Kedzierski, M.; Cirederf-Boulant, D.; Palazot, M.; Yvin, M.; Bruzaud, S., 2023. Continents of plastics: An estimate of the stock of microplastics in agricultural soils. Science of the Total Environment, v. 880, 163294. https://doi.org/10.1016/j.scitotenv.2023.163294.

Kedzierski, M.; Frère, D.; Maguer, G.L.; Bruzaud, S., 2020. Why is there plastic packaging in the natural environment? Understanding the roots of our individual plastic waste management behaviours. Science of The Total Environment, v. 740, 139985. https://doi.org/10.1016/j.scitotenv.2020.139985.

Khan, M.A.; Huang, Q.; Khan, S.; Wang, Q.; Huang, J.; Fahad, S.; Sajjad, M.; Liu, Y.; Masek, O.; Li, X.; Wang, J.; Song, X., 2023. Abundance, spatial distribution, and characteristics of microplastics in agricultural soils and their relationship with contributing factors. Journal of Environmental Management, v. 328, 117006. https://doi.org/10.1016/j.jenvman.2022.117006.

Kim, J.S.; Lee, H.J.; Kim, S.K.; Kim, H.J., 2018. Global pattern of microplastics (MPs) in commercial food-grade salts: sea salt as an indicator of seawater MP pollution. Environmental science & technology, v. 52, 12819-12828. https://doi.org/10.1021/acs.est.8b04180.

Kosuth, M.; Mason, S.A.; Wattenberg, E.V., 2018. Anthropogenic contamination of tap water, beer, and sea salt. PloS One, v. 13, 0194970. https://doi.org/10.1371/journal.pone.0194970.

Kundu, M.N.; Komakech, H.C.; Lugomela, G., 2022. Analysis of macro- and microplastics in riverine, riverbanks, and irrigated farms in Arusha, Tanzania. Archives of Environmental Contamination and Toxicology, v. 82, 142-157. https://doi.org/10.1007/s00244-021-00897-1.

Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F.; Roy, P.D., 2023. Microplastic diagnostics in humans:“The 3Ps” Progress, problems, and prospects. Science of The Total Environment, v. 856, 159164. https://doi.org/10.1016/j.scitotenv.2022.159164.

Kwon, J.H.; Kim, J.W.; Pham, T.D.; Tarafdar, A.; Hong, S.; Chun, S.H.; Lee, S.H.; Kang, D.Y.; Kim, J.Y.; Kim, S.B.; Jung, J., 2020. Microplastics in food: a review on analytical methods and challenges. International Journal of Environmental Research and Public Health, v. 17, 6710. https://doi.org/10.3390/ijerph17186710.

Lebreton, L.; Andrady, A., 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Communications, v. 5, 1-11. https://doi.org/10.1057/s41599-018-0212-7.

Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; He, D., 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, v. 242, 855-862. https://doi.org/10.1016/j.envpol.2018.07.051.

Liu, Y.; Liu, Y.; Bian, P.; Hu, Y.; Zhang, J.; Shen, W., 2023. Effects of irrigation on the fate of microplastics in typical agricultural soil and freshwater environments in the upper irrigation area of the Yellow River. Journal of Hazardous Materials, v. 447, 130766. https://doi.org/10.1016/j.jhazmat.2023.130766.

Lofty, J.; Muhawenimana, V.; Wilson, C.; Ouro, P., 2022. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling. Environmental Pollution, v. 304, 119198. https://doi.org/10.1016/j.envpol.2022.119198.

Martinelli-Filho, J.E.; Monteiro, R.C.P., 2019. Widespread microplastics distribution at an Amazon macrotidal sandy beach. Marine Pollution Bulletin, v. 145, 219-223. https://doi.org/10.1016/j.marpolbul.2019.05.049.

Mong, G.R.; Tan, H.; Sheng, D.D.C.V.; Kek, H.Y.; Nyakuma, B.B.; Woon, K.S.; Othman, M.H.D.; Kang, H.S.; Goh, P.S.; Wong, K.Y., 2024. A review on plastic waste valorisation to advanced materials: Solutions and technologies to curb plastic waste pollution. Journal of Cleaner Production, v. 434, 140180. https://doi.org/10.1016/j.jclepro.2023.140180.

MSFD Technical Group on Marine Litter; Galgani, F.; Ruiz-Orejón, L. F.; Ronchi, F.; Tallec, K.; Fischer, E.K, Matiddi, M.; Anastasopoulou, A.; Andresmaa, E.; Angiolillo, M.; Bakker Paiva, M.; Booth, A.M.; Buhalko, N.; Cadiou, B.; Caro, F.; Consoli, P.; Darmon, G.; Deudero, S.; Fleet, D.; Fortibuoni, T.; Fossi, M.C.; Gago, J.; Gérigny, O.; Giorgetti, A.; González-Fernández, D.; Guse, N.; Haseler, M.; Ioakeimidis, C.; Kammann, U.; Kühn, S.; Lacroix, C.; Lips, I.; Loza, A.L.; Molina Jack, M.E.; Norén, K.; Papadoyannakis, M.; Pragnel-Raasch, H.; Rndorf, A.; Ruiz, M.; Setälä, O.; Schulz, M.; Schultze, M.; Silvestri, C.; Soederberg, L.; Stoica, E.; Storr-Paulsen, M.; Strand, J.; Valente, T.; van Franeker, J.; van Loon, W.M.G.M.; Vighi, M.; Vincx, M.; Vlachogianni, T.; Volckaert, A.; Weiel, S.; Wenneker, B.; Werner, S.; Zeri, C.; Zorzo, P.; Hanke, G., 2023. Guidance on monitoring of marine litter in European seas. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/59137.

Oliveira, L.G.; Hattori, G.Y.; Sant’Anna, B.S., 2023. Microplastic contamination in bathing areas in the Central Amazon, Itacoatiara, Brazil. Environmental Science and Pollution Research, v. 30, 117748-117758. https://doi.org/10.1007/s11356-023-30509-5.

Patel, D.; Mamtora, D.; Kamath, A.; Shukla, A., 2022. Rogue one: A plastic story. Marine Pollution Bulletin, v. 177, 113509. https://doi.org/10.1016/j.marpolbul.2022.113509.

Rezaei, M.; Abbasi, S.; Pourmahmood, H.; Oleszczuk, P.; Ritsema, C.; Turner, A., 2022. Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion. Environmental Research, v. 212, 113213. https://doi.org/10.1016/j.envres.2022.113213.

Sa’adu, I.; Farsang, A., 2023. Plastic contamination in agricultural soils: a review. Environmental Sciences Europe, v. 35, 13. https://doi.org/10.1186/s12302-023-00720-9.

Sobhani, Z.; Lei, Y.; Tang, Y.H.; Wu, L.; Zhang, X.; Naidu, R.; Megharaj, M.; Fang, C., 2020. Microplastics generated when opening plastic packaging. Scientific Reports, v. 10, 4841. https://doi.org/10.1038/s41598-020-61146-4.

Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.S.; Saha, M., 2021. Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, v. 418, 126245. https://doi.org/10.1016/j.jhazmat.2021.126245.

Thiagarajan, C.; Devarajan, Y., 2025. The urgent challenge of ocean pollution: impacts on marine biodiversity and human health. Regional Studies in Marine Science, v. 81, 103995. https://doi.org/10.1016/j.rsma.2024.103995.

Wang, K.; Chen, W.; Tian, J.; Niu, F.; Xing, Y.; Wu, Y.; Zhang, R.; Zheng, J.; Xu, L., 2022. Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China. Science of The Total Environment, v. 828, 154544. https://doi.org/10.1016/j.scitotenv.2022.154544.

Wu, H.; Mohsen, M.; Cen, Y.; Yang, Y.; Yu, Z., 2024. Effects of microplastics on larval ingestion, survival, and development of sea cucumber Holothuria leucospilota. Water Biology and Security, 100329. https://doi.org/10.1016/j.watbs.2024.100329.

Xu, J.; Tang, M.; Xu, X., 2025. Microplastics in food: sources, distribution, health impacts, and regulation. Journal of Food Composition and Analysis, v. 140, 107274. https://doi.org/10.1016/j.jfca.2025.107274.

Yao, Z.; Seong, H.J.; Jang, Y.S., 2022. Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety, v. 242, 113933. https://doi.org/10.1016/j.ecoenv.2022.113933.

Yuan, Z.; Nag, R.; Cummins, E., 2022. Human health concerns regarding microplastics in the aquatic environment-From marine to food systems. Science of the Total Environment, v. 823, 153730. https://doi.org/10.1016/j.scitotenv.2022.153730.

Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H., 2020. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, v. 54, 3740-3751. https://pubs.acs.org/doi/10.1021/acs.est.9b04535.

Zhao, Z.; Zhao, K.; Zhang, T.; Xu, Y.; Chen, R.; Xue, S.; Liu, M.; Tang, D.; Yang, X.; Giessen, V., 2022. Irrigation-facilitated low-density polyethylene microplastic vertical transport along soil profile: An empirical model developed by column experiment. Ecotoxicology and Environmental Safety, v. 247, 114232. https://doi.org/10.1016/j.ecoenv.2022.114232.

Downloads

Publicado

13-04-2025

Como Citar

Staffen, H. C. S., Guimarães, G. dos A., Hattori, G. Y., & Sant’Anna, B. S. (2025). Microplastics in plant-based foods in the city of Itacoatiara (AM), Brazil. Revista Brasileira De Ciências Ambientais, 60, e2244. https://doi.org/10.5327/Z2176-94782244

Mais artigos do(s) mesmo(s) autor(es)