Mercury in piscivorous and detritivorous fish from the Teles Pires River basin, Southern Amazon
DOI:
https://doi.org/10.5327/Z2176-94782144Palavras-chave:
bacia do rio Tapajós; bioacumulação; biomagnificação; contaminação; risco ambiental.Resumo
O acúmulo de mercúrio em peixes pode ser diferente entre as espécies que vivem no mesmo corpo hídrico, e tais diferenças podem estar relacionadas ao ciclo de vida, hábitos alimentares e sua posição na cadeia trófica. O objetivo deste estudo foi avaliar as concentrações de mercúrio total (THg) no músculo, fígado, rins e brânquias do peixe detritívoro Prochilodus nigricans, e dos piscívoros: Cichla mirianae, Hydrolycus armatus e Hydrolycus tatauaia da bacia do Teles Pires. As coletas foram realizadas em setembro de 2015 (seca) e maio de 2017 (vazante). As concentrações de THg no P. nigricans da bacia do Teles Pires (1,05±1,24 mg.kg-1) e C. mirianae do rio Peixoto (0,46±0,26 mg.kg-1) foram significativamente maiores no fígado do que nos demais tecidos analisados; para as demais espécies, as concentrações no fígado e rins foram similares. As concentrações de THg no músculo foram significativamente mais elevadas (p=0,0002) nos piscívoros (H. armatus 0,30 mg.kg-1; H. tatauaia 0,18 mg.kg-1; C. mirianae no rio Teles Pires 0,17 mg.kg-1 e no rio Peixoto 0,21 mg.kg-1) do que no detritívoro (P. nigricans na bacia do Teles Pires 0,05 mg.kg-1), o que era esperado pela biomagnificação do mercúrio. A grande maioria dos exemplares apresentaram concentrações de THg no músculo abaixo do permitido para consumo humano pela Organização Mundial da Saúde, mas considerando que a região tem um alto consumo de pescado, a ingestão diária de mercúrio ultrapassa o limite. O peixe detritívoro P. nigricans apresentou as menores concentrações de THg no músculo, portanto, pode ser preferencialmente consumido pela população em geral, especialmente por grupos sensíveis (lactantes, lactentes e crianças) e consumidores frequentes como indígenas e ribeirinhos.
Downloads
Referências
Adam, S.M., 2002. Biological indicators of aquatic ecosystem stress. American Fisheries Society, Bethesda, MD, 656 p.
Agência Nacional de Mineração (ANM), 2021. Anuário Mineral Brasileiro: principais substâncias metálicas. ANM, Brasília.
Aguiar Cavalcante, M.M.; Magalhães da Costa, G.; Valéria Lima da Silva, G.; Souza Moret, A., 2021. Hydroelectric plants and conservation unit in the Amazon. Mercator - Revista de Geografia da UFC, v. 20 (2).
Aguiar-Santos, J.; deHart, P.; Forsberg, B.; Freitas, C., 2022. Impacts of river fragmentation on limiting individual dietary specialization of Amazonian predatory fish. PeerJ Publishing, v. 10, e14266. https://doi.org/10.7717/peerj.14266.
Akagi, H.; Nishimura, H., 1991. Advances in mercury toxicology, Advances in mercury toxicology. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9.
Alcala-Orozco, M.; Caballero-Gallardo, K.; Olivero-Verbel, J., 2020. Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology, v. 79, 354-370. https://doi.org/10.1007/s00244-020-00761-8.
Almeida, W.H., 2019. Mapeamento e dinâmica da exploração garimpeira de ouro no norte do Mato Grosso no período 2009-2018. Dissertação de mestrado do PPGCAM, Universidade Federal de Mato Grosso. Sinop MT.
American Veterinary Medical Association (AVMA), 2020. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition (Accessed April 05, 2024) at:. https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf.
Azevedo, L.S.; Pestana, I.A.; Nery, A.F.C.; Bastos, W.R.; Souza, C.M.M., 2019. Influence of the flood pulse on mercury accumulation in detritivorous, herbivorous and omnivorous fish in Brazilian Amazonia. Ecotoxicology, v. 28, 478-485. https://doi.org/10.1007/s10646-019-02044-y.
Azevedo, L.S.; Pestana, I.A.; Nery, A.F.C.; Bastos, W.R.; Souza, C.M.M., 2020. Mercury concentration in six fish guilds from a floodplain lake in western Amazonia: interaction between seasonality and feeding habits. Ecological Indicators, v. 111, 106056. https://doi.org/10.1016/j.ecolind.2019.106056.
Barbosa, T.A.P.; Rosa, D.C.O.; Soares, B.E.; Costa, C.H.A.; Esposito, M.C.; Montag, L.F.A., 2018. Effect of flood pulses on the trophic ecology of four piscivorous fishes from the eastern Amazon. Journal of Fish Biology, v. 93 (1), 30-39. https://doi.org/10.1111/jfb.13669.
Basta, P.C.; Vasconcellos, A.C.S.; Hallwass, G.; Yokota, D.; Pinto, D.O.R.; Aguiar, D.S.; Souza, C.C.; Oliveira-da-Costa, M., 2023. Risk assessment of mercury-contaminated fish consumption in the Brazilian Amazon: an ecological study. Toxics, v. 11 (9), 800. https://doi.org/10.3390/toxics11090800.
Begossi, A.; Salivonchyk, S.V.; Hallwass, G.; Hanazaki, N.; Lopes, P.F.M.; Silvano, R.A.M., Dumaresq, D.; Pittock, J., 2019. Fish consumption on the Amazon: a review of biodiversity, hydropower and food security issues. Brazilian Journal of Biology, v. 79 (2), 345-357. https://doi.org/10.1590/1519-6984.186572.
Bettoso, N.; Pittaluga, F.; Predonzani, S.; Zanello, A.; Acquavita, A., 2023. Mercury levels in sediment, water and selected organisms collected in a coastal contaminated environment: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Applied Sciences, v. 13 (5), 3064. https://doi.org/10.3390/app13053064.
Castilhos, Z.; Domingos, L.M.B., 2018. Inventário Nacional de Emissões e Liberações de Mercúrio no Âmbito da Mineração Artesanal e de Pequena Escala no Brasil. Instituto Escolhas, São Paulo (Accessed December 14, 2024) at:. https://www.escolhas.org/wp-content/uploads/2020/05/Invent%C3%A1rio-das-emiss%C3%B5es-de-merc%C3%BArio.pdf.
Costa, I.D.; Nascimento, E.L.; Faccheti, M.S.A.; Nunes, N.N.S.; Gomes, J.P.O.; Almeida, R.; Bastos, W.R., 2022. Mercury in muscle and liver of Plagioscion squamosissimus (Acanthuriformes: Sciaenidae) from the Machado River, Brazilian Amazon. Acta Amazonica, v. 52 (1), 60-68. https://doi.org/10.1590/1809-4392202001032.
Costa, K.; Costa, J., 2023. Poluição por mercúrio na Amazônia: rfeitos sobre o meio ambiente e a saúde humana. Periódico Técnico e Científico Cidades Verdes, v. 11 (32), 134-148. https://doi.org/10.17271/23178604113220234631.
Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Takeda, P.Y.; Macchi, B.M.; Nascimento, J.L.M.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P., 2021. Mercury: what can we learn from the Amazon? Environment International, v. 146, 106223. https://doi.org/10.1016/j.envint.2020.106223.
Dary, E.P.; Ferreira, E.; Zuanon, J.; Röpke, C.P., 2017. Diet and trophic structure of the fish assemblage in the mid-course of the Teles Pires River, Tapajós River basin, Brazil. Neotropical Ichthyology, v. 15 (4), e160173. https://doi.org/10.1590/1982-0224-20160173.
De Castro Paiva, T.; Pestana, I.A.; Oliveira, B.C.V.; Malm, O.; Rezende, C.E.; Kasper, D., 2024. Temporal variation of mercury levels in fish, soil, and sediments in an Amazon reservoir: insights from 35 years of river impoundment in Pará State, Brazil. Environmental Monitoring and Assessment, v. 196, 1089. https://doi.org/10.1007/s10661-024-13199-5.
De Marco, G.; Billè, B.; Brandão, F.;Galati, M.; Pereira, P.; Cappello, T.; Pacheco, M. 2023. Differential cell metabolic pathways in gills and liver of fish (white seabream Diplodus sargus) coping with dietary methylmercury exposure. Toxics, v. 11 (2), 181. https://doi.org/10.3390/toxics11020181.
Dragan, F.; Lestyan, M.; Lupu, V.V.; Marcu, F.M.; Cozma, A.; Fodor, K.; Ciubara, A.; Moisa, C.F.; Teaha, D.; Lupu, A.; Starcea, I.M.; Ignat, A.E.; Ciubara, A.B., 2023. The Threat of Mercury Poisoning by Fish Consumption. Applied Sciences, v. 13 (1), 369. https://doi.org/10.3390/app13010369.
Evers, D.C.; Ackerman, J.T.; Åkerblom, S.; Bally, D.; Basu, N.; Bishop, K.; Bodin, N.; Braaten, H.F.V.; Burton, M.E.H.; Bustamante, P.; Chen, C.; Chételat, J.; Christian, L.; Dietz, R.; Drevnick, P.; Eagles-Smith, C.; Fernandez, L.E.; Hammerschlag, N.; Harmelin-Vivien, M.; Harte, A.; Krümmel, E.M.; Lailson Brito, J.; Medina, G.; Barrios Rodriguez, C.A.; Stenhouse, I.; Sunderland, E.; Takeuchi, A.; Tear, T.; Vega, C.; Wilson, S.; Wu, P., 2024. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. Ecotoxicology, v. 33, 325-396. https://doi.org/10.1007/s10646-024-02747-x.
Fany, R., 2011. Povos Indígenas no Brasil 2006/2010. Instituto Socioambiental, [S.l.], 778 p (Accessed May 02, 2024) at:. https://acervo.socioambiental.org/acervo/publicacoes-isa/povos-indigenas-no-brasil-2006-2010.
Fearnside, P.M., 2015. Hidrelétricas na Amazônia: impactos ambientais e sociais na tomada de decisões sobre grandes obras. Manaus: Editora do INPA (Accessed January 03, 2025) at:. https://repositorio.inpa.gov.br/bitstream/1/4684/1/hidreletricas_na_Amazonia_v1.pdf.
Fearnside, P.M., 2019. A Hidrelétrica de Sinop: 1 – Resumo da Série, publicado em 01/03/2019 (Accessed May 02, 2024) at:. https://amazoniareal.com.br/hidreletrica-de-sinop-1-resumo-da-serie/.
Feinberg, A.; Jiskra, M.; Borrelli, P.; Biswakarma, J.; Selin, N.E., 2024. Deforestation as an Anthropogenic Driver of Mercury Pollution. Environmental Science & Technology, v. 58 (7), 3246-3257. https://doi.org/10.1021/acs.est.3c07851.
Freitas, C.E.C.; Mereles, M.A.; Pereira, D.V.; Siqueira-Souza, F.; Hurd, L.; Kahn, J.; Morais, G.; Sousa, R.G.C., 2022. Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environmental Science & Policy, v. 136, 447-452. https://doi.org/10.1016/j.envsci.2022.07.013.
Fréry, N.; Maury-Brachet, R.; Maillot, E.; Deheeger, M. Mérona, B.; Boudou, A., 2001. Gold-mining activities and mercury contamination of native amerindian communities in French Guiana: key role of fish in dietary uptake. Environmental Health Perspectives, v. 109 (5), 449-456. https://doi.org/10.1289/ehp.109-1240303.
Global Initiative against Transnational Organized Crime (GIATOC), 2016. Organized Crime and Illegally Mined Gold in Latin America. GIATOC, [S.l.].
Gomiero, L.M.; Braga, F.M.S., 2004. Relação peso-comprimento e fator de condição para Cichla cf. ocellaris e Cichla monoculus (Perciformes, Cichlidae) no reservatório de Volta Grande, Rio Grande- MG/ SP. Acta Scientiarum. Biological Sciences, v. 25 (1), 79-86. https://doi.org/10.4025/actascibiolsci.v25i1.2119.
Guimarães, J.R.D., 2020. Mercury in the Amazon: Problem or opportunity? A commentary on 30 years of research on the subject. Elementa: Science of the Anthropocene, v. 8 (1), 032. https://doi.org/https://doi.org/10.1525/elementa.032.
Hacon, S.S.; Oliveira-da-Costa, M.; Gama, C.d.S.; Ferreira, R.; Basta, P.C.; Schramm, A.; Yokota, D., 2020. Mercury Exposure through Fish Consumption in Traditional Communities in the Brazilian Northern Amazon. International Journal of Environmental Research and Public Health, v. 17, 5269. https://doi.org/10.3390/ijerph17155269.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2011. Pesquisa de orçamentos familiares 2008–2009: Análise do consumo alimentar pessoal no Brasil/IBGE. Coordenação de Trabalho e Rendimento, IBGE, Rio de Janeiro (Accessed December 01, 2024) at:. https://biblioteca.ibge.gov.br/visualizacao/livros/liv50063.pdf.
Jackson, T.A., 2018. Isotopic and chemical characteristics of mercury in organs and tissues of fish in a mercury-polluted lake: Evidence for fractionation of mercury isotopes by physiological processes. Environmental Toxicology and Chemistry, v. 37 (2), 515-529. https://doi.org/10.1002/etc.3987.
Kasper, D.; Forsberg, B.R.; Amaral, J.H.F.; Leitão, R.P.; Py-Daniel, S.S.; Bastos, W.R.; Malm, O., 2014. Reservoir stratification affects methylmercury levels in river water plankton and fish downstream from Balbina hydroelectric dam Amazonas Brazil. Environmental Science & Technology, v. 48 (2), 1032-1040. https://doi.org/10.1021/es4042644.
Kraeski, A.; Almeida, F.T.; Souza, A.P.; Carvalho, T.M., 2022. Identification of land use conflicts in Permanent Preservation Area in a Brazilian Amazon sub-basin. Sociedade & Natureza, v. 35 (1). https://doi.org/10.14393/SN-v35-2023-65724.
Kullander, S.O.; Ferreira, E.J.G., 2006. A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters, v. 17 (4), 289-398.
Lacerda, L.D.; Malm, O., 2008. Contaminação por mercúrio em ecossistemas aquáticos: uma análise das áreas críticas. Estudos Avançados, v. 22 (63), 173-190. https://doi.org/10.1590/S0103-40142008000200011.
Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.; Zuanon, J.A.S., 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, v. 25, 451-466. https://doi.org/10.1007/s10531-016-1072-3.
Lobo, F.L.; Costa, M.; Novo, E.M.L.M.; Telmer, K., 2017. Effects of small-scale gold mining tailings on the underwater light field in the Tapajós River Basin, Brazilian Amazon. Remote Sensing, v. 9 (8), 861. https://doi.org/10.3390/rs9080861.
Lucanus, O.; Kalacska, M.; Arroyo-Mora, J.P.; Sousa, L.; Carvalho, L.N., 2021. Before and after: a multiscale remote sensing assessment of the Sinop Dam, Mato Grosso, Brazil. Earth, v. 2 (2), 303-330. https://doi.org/10.3390/earth2020018.
Matos, L.S.; Corrêa, A.S.A.S.; Silva, S.S.A.; Muniz, C.C.; Ignácio, A.R.A., 2021. Mercury concentrations in fish and human health assessment in pre-flood phase of a hydro dam in Teles Pires River, Southern Brazilian Amazon. Elementa: Science of the Anthropocene in Special Forum on Mercury in the Southern Hemisphere and Tropics, v. 9 (1), 020. https://doi.org/10.1525/elementa.2021.020.
Matos, L.S.; Santana, H.S.; Silva, J.O.S.; Carvalho, L.N., 2020. Perception of professional artesanal fishermen on the decline in the catch of matrinxã fish in the Teles Pires River, Tapajós Basin. In: Prandel, J.A. (Org.), Padrões Ambientais Emergentes e Sustentabilidade dos Sistemas. Atena, Ponta Grossa, pp. 87-101. https://doi.org/10.22533/at.ed.650202805.
McCoy, C.P.; O’Hara, T.M.; Benett, L.W.; Boyle, C.R., 1995. Liver and kidney concentrations of zinc, copper and cadmium in Channel catfish (Ictalurus punctatus): variations due to size, season and health status. Veterinary and Human Toxicology, v. 37 (1), 11-15. PMID: 7709581.
Miller, J.C.; Miller, J.N., 1994. Statistics for Analytical Chemistry. Ellis Horwood, Chichester, UK.
Moiseenko, T.I.; Gashkina, N.A., 2020. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate. Environmental Research Letters, v. 15, 115013. https://doi.org/10.1088/1748-9326/abbf7c.
Nyholt, K.; Jardine, T.D.; Villamarín, F.; Jacobi, C.M.; Hawes, J.E.; Campos-Silva, J.V.; Srayko, S.; Magnusson, W.E., 2022. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs. Science of The Total Environment, v. 883, 155161. https://doi.org/10.1016/j.scitotenv.2022.155161.
Oliveira, E.; Kasper, D.; Silva, S.A.A.; Lázaro, W.L.; Muniz, C.C.; Carvalho, G.S.; Borges, F.V.; Pimenta, A.L.; Hurtado, T.C.; Ignácio, Á.R.A., 2025. Cascade reservoirs affect mercury concentrations in fish from Teles Pires river, Brazilian Amazon. Ecotoxicology, v. 34, 444-455 https://doi.org/10.1007/s10646-024-02847-8.
Oliveira, R.B.; Silva, D.M.; Franco, T.S.B.S.; Vasconcelos, C.R.S.; Sousa, D.J.A.; Sarrazin, S.L.F.; Sakamoto, M.; Bourdineaud, J.-P., 2022. Fish consumption habits of pregnant women in Itaituba, Tapajós River basin, Brazil: risks of mercury contamination as assessed by measuring total mercury in highly consumed piscivore fish species and in hair of pregnant women. Archives of Industrial Hygiene and Toxicology, v. 73 (2), 131-142. https://doi.org/10.2478/aiht-2022-73-3611.
Paiva, T.C.; Dary, E.P.; Pestana, I.A.; Amadio, S.A.; Malm, O.; Kasper, D., 2022. Flood-pulse and trophic position modulate mercury concentrations in fishes from an Amazon floodplain lake. Environmental Research, v. 215 (Part 2), 114307. https://doi.org/10.1016/j.envres.2022.114307.
Pereira., C.A.; Benatti, J. H.; McGrath, D.; Santos, A.O.; Margalho, R., 2021. Analysis of the regulations and knowledge of the riparians on access to freshwater, fishing and associated resources in the Tapajós river basin. This Report is part of the Tapajós River: Engaging Communities and Protecting Freshwater Ecosystems Project – Águas do Tapajós. [S.l.], The Nature Conservancy, 44 p (Accessed July 19, 2024) at:. https://www.tnc.org.br/content/dam/tnc/nature/en/documents/brasil/tnc-relatorioribeirinhostapajos-EN.pdf.
Pestana, I.A.; Azevedo, L.S.; Bastos, W.R.; Magalhães de Souza, C.M., 2019. The impact of hydroelectric dams on mercury dynamics in South America: a review. Chemosphere, v. 219, 546-556. https://doi.org/10.1016/j.chemosphere.2018.12.035.
R Core Team, 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Roulet, M.; Lucotte, M.; Canuel, R.; Rheault, I.; Tran, S.; Freitos, Y.G., Farella, N.; Vale, R.S.; Passos, C.J.S.; Silva, E.J.; Mergler, D.; Amorim, M., 1998. Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon1The present investigation is part of an ongoing study, the CARUSO project (CRDI-UFPa-UQAM), initiated to determine the sources, fate and health effects of the presence of MeHg in the area of the Lower Tapajós. Science of The Total Environment, v. 213 (1-3), 203-211. https://doi.org/10.1016/S0048-9697(98)00093-X.
Silva, E.A.; Stewart, D.J., 2017. Reproduction, feeding and migration patterns of Prochilodus nigricans (Characiformes: Prochilodontidae) in northeastern Ecuador. Neotropical Ichthyolog, v. 15, e160171. https://doi.org/10.1590/1982-0224-20160171.
Silva, R.F.; Rocha, S.D.; Menegário, A.A.; Pedrobom, J.H.; Sulatoa, E.T.; Lukoa, K.S.; Elias, L.P.; Oliveiraa, L.M.S.; Juniorc, E.S., 2021. Determinação de mercúrio em fígado de tetrápodes marinhos por Espectrometria de Fluorescência Atômica Acoplada a Geração de Vapor Frio (Cv-Afs) e Espectrometria de Massa com fonte de Plasma Indutivamente Acoplado (Icp-Ms): uma comparação sistemática entre as duas técnicas. Química Nova, v. 44 (1), 64-69. https://doi.org/10.21577/0100-4042.20170675.
Silva, S.F.; Lima, M.O., 2020. Mercury in fish marketed in the Amazon Triple Frontier and health risk assessment. Chemosphere, v. 248, 1-12. https://doi.org/10.1016/j.chemosphere.2020.125989.
Silva, S.F.; Oliveira, D.C.; Pereira, J.P.G.; Castro, S.P.; Costa, B.N.S.; Lima, M.O., 2019. Seasonal variation of mercury in commercial fishes of the Amazon Triple Frontier, Western Amazon Basin, Ecological Indicators, v. 106, 105549. https://doi.org/10.1016/j.ecolind.2019.105549.
Tesser, T.T.; da Rocha, C.M.; Castro, D., 2021. Metal contamination in omnivores, carnivores and detritivores fish along the Tramandaí River Basin, RS, Brazil. Environmental Nanotechnology, Monitoring & Management, v. 16, 100496. https://doi.org/10.1016/j.enmm.2021.100496.
United States Environmental Protection Agency (USEPA), 2000. Guidance for assessing chemical contaminant data for use in fish advisories. v. 1. Fish sampling and analysis. EPA 823-B-00-007. Office of Science and Technology Office of Water. USEPA, Washington, DC.
Vasconcellos, A.C.S.; Ferreira, S.R.B.; de Sousa, C.C.; de Oliveira, M.W.; de Oliveira Lima, M.; Basta, P.C., 2022. Health risk assessment attributed to consumption of fish contaminated with mercury in the Rio Branco Basin, Roraima, Amazon, Brazil. Toxics, v. 10 (9), 516. https://doi.org/10.3390/toxics10090516.
Vazzoler, A.E.A.M., 1981. Manual de métodos para estudos biológicos de população de peixes. Reprodução e crescimento. CNPq, Programa Nacional de Zoologia, Brasília.
Vieira, H.C.; Rodrigues, A.C.M.; Soares, A.M.V.M.; Abreu, S.; Morgado, F. 2021. Mercury accumulation and elimination in different tissues of zebrafish (Danio rerio) exposed to a mercury-supplemented diet. Journal of Marine Science and Engineering, v. 9 (8), 882. https://doi.org/10.3390/jmse9080882.
Weber, P.; Behr, E.R.; Knorr, C.L.; Vendruscolo, D.S.; Flores, E.M.M.; Dressler, V.L.; Baldisserotto, B., 2013. Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchemical Journal, v. 106, 61-66. https://doi.org/10.1016/j.microc.2012.05.004.
Willacker, J.J.; Eagles-Smith, C.A.; Chandler, J.A.; et al. 2023. Reservoir stratification modulates the influence of impoundments on fish mercury concentrations along an arid land river system. Environmental Science & Technology, v. 57 (50), 21313-21326. https://doi.org/10.1021/acs.est.3c04646.
World Health Organization (WHO), 2008. United Nations Environment Programme. Guidance for identifying populations at risk from mercury exposure. World Health Organization, Geneva.
World Health Organization (WHO), 2021. Mercury and human health: educational course. Copenhagen: WHO Regional Office for Europe; 2021 (Accessed January 03, 2025) at:. https://iris.who.int/bitstream/handle/10665/345443/9789289055888-eng.pdf.
Yossa, M.I.; Araujo-Lima, C.A.R.M., 1998. Detritivory in two Amazonian fish species. Journal of Fish Biology, v. 52 (6), 1141-1153. https://doi.org/10.1111/j.1095-8649.1998.tb00961.x.
Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S., 2022. Health and environmental effects of heavy metals. Journal of King Saud University - Science, v. 34 (1), 101653. https://doi.org/10.1016/j.jksus.2021.101653.
Zhou, H.Y.; Wong, M.H., 2000. Mercury accumulation in freshwater fish with emphasis on dietary influences. Water Research, v. 34 (17), 4234-4242. https://doi.org/10.1016/S0043-1354(00)00176-7.
Zhou, J.; Obrist, D., 2021. Global mercury assimilation by vegetation. Environmental Science & Technology, v. 55 (20), 14245-14257. https://doi.org/10.1021/acs.est.1c03530.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.