Microwave hydrodiffusion and gravity and pressurized-liquid extraction for obtaining bioactive compounds from Solanum viarum
DOI:
https://doi.org/10.5327/Z2176-94782070Palavras-chave:
substâncias ativas; alcaloides pirrolizidínicos; metabólitos secundários vegetais; extratos vegetais.Resumo
A biodiversidade brasileira é considerada fonte de substâncias bioativas, e uma das espécies encontradas é a Solanum viarum Dunal, que é composta, principalmente, por alcaloides pirrolizidínicos. O propósito deste estudo foi avaliar duas técnicas de extração não convencionais — micro-ondas de hidrodifusão e gravidade (MHG) e extração em líquido pressurizado (ELP) — na obtenção de compostos bioativos de S. viarum. Foram examinados diferentes parâmetros que influenciaram diretamente o rendimento e a composição química dos extratos. Para ELP, foram avaliadas a porcentagem de etanol e a temperatura sobre os rendimentos e composição. Para MHG, temperatura e pressão foram avaliadas nas mesmas respostas. O ELP apresentou o maior rendimento de extrato (26,11% em peso) e concentração de compostos bioativos, enquanto o maior rendimento de extrato de MHG foi de 1,68% em peso. Ambas as técnicas indicaram eficiência na extração de integerrimina, senecionina e ácido quínico. Conhecer os compostos presentes nas plantas utilizando diferentes métodos extrativos possibilita o desenvolvimento de pesquisas que abordem seu possível potencial no futuro.
Downloads
Referências
Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C., 2021. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. Lebensmittel-Wissenschaft & Technologie, v. 147, 111549. https://doi.org/10.1016/j.lwt.2021.111549
Barrales, F.M.; Silveira, P.; Barbosa, P.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J., 2018. Recovery of phenolic compounds from citrus by-products using pressurized liquids — an application to orange peel. Food and Bioproducts Processing, v. 112, 9-21. https://doi.org/10.1016/j.fbp.2018.08.006
Bousbia, N.; Abert, M.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F., 2009. Comparison of two isolation methods for essential oil from rosemary leaves: hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry, v. 114, (1), 355-362. https://doi.org/10.1016/j.foodchem.2008.09.106
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A V.; Barbero, G.F.; Rostagno, M.A., 2020. Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, v. 8, 507887. https://doi.org/10.3389/fchem.2020.507887
Chouhan, K.B.S.; Tandey, R.; Sem, K.K.; Mehta, R.; Mandal, V., 2019. Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends in Food Science & Technology, v. 92, 12-21. https://doi.org/10.1016/j.tifs.2019.08.006
Confortin, T.C.; Todero, I.; Luft, L.; Teixeira, A.L.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V., 2019. Valorization of Solanum viarum dunal by extracting bioactive compounds from roots and fruits using ultrasound and supercritical CO2. Brazilian Journal of Chemical Engineering, v. 36, (4), 1689-1702. https://doi.org/10.1590/0104-6632.20190364s20190267
Confortin, T.C.; Todero, I.; Luft, L.; Schmaltz, S.; Ferreira, D.F.; Barin, J.S.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V., 2021. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech, v. 11, 284. https://doi.org/10.1007/s13205-021-02845-1
Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A., 2021. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends. Ultrasonics Sonochemistry, v. 74, 105584. https://doi.org/10.1016/j.ultsonch.2021.105584
Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V., 2022. Pressurized liquid extraction as a novel technique for the isolation of Laurus nobilis L. leaf polyphenols. Molecules, v. 27, (16), 5099. https://doi.org/10.3390/molecules27165099
Farias, C.A.A.A.; Moraes, D.P.; Neuenfeldt, N.H.; Zabot, G.L; Emanuelli, T.; Barin, J.S.; Ballus, C.A.; Barcia, M.T., 2022. Microwave hydrodiffusion and gravity model with a unique hydration strategy for exhaustive extraction of anthocyanins from strawberries and raspberries. Food Chemistry, v. 383, 132446. https://doi.org/10.1016/j.foodchem.2022.132446
Fernandes, P.A.R.; Bastos, R.; Calvão, J.; Neto, F.; Coelho, E.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A.; Passos, C.P., 2021. Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. Bioresource Technology, v. 333, 125207. https://doi.org/10.1016/j.biortech.2021.125207
Ferreira, D.F.; Lucas, B.N.; Voss, M.; Santos, D.; Mello, P.A.; Wagner, R.; Cravotto, G.; Barin, J.S., 2020. Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Industrial Crops and Products, v. 145, 112094. https://doi.org/10.1016/j.indcrop.2020.112094
Gajger, I.T.; Dar, S.A., 2021. Plant allelochemicals as sources of insecticides. Insects, v. 12, (3), 189. https://doi.org/10.3390/insects12030189
Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C., 2022. Effect of extraction temperature on pressurized liquid extraction of bioactive compounds from Fucus vesiculosus. Marine Drugs, v. 20, (4), 1-16. https://doi.org/10.3390/md20040263
Gogoi, D.; Kumar, M.; Gruha, Y., 2023. A comprehensive review on “pyrolysis” for energy recovery. BioEnergy Research, v. 16, 1417-1437. https://doi.org/10.1007/s12155-023-10568-9
Hammami, F.; Issaoui, N., 2022. A DFT study of the hydrogen bonded structures of pyruvic acid–water complexes. Frontiers in Physics, v. 10, 1-9. https://doi.org/10.3389/fphy.2022.901736
Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E., 2010. Green processes for the extraction of bioactives from rosemary: chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. Journal of Chromatography A, v. 1217, (16), 2512-2520. https://doi.org/10.1016/j.chroma.2009.11.032
Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P., 2021. Sustainable green processing of grape pomace for the production of value-added products: an overview. Environmental Technology & Innovation, v. 23, 101592. https://doi.org/10.1016/j.eti.2021.101592
Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M., 2021. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, v. 11, (5), 968. https://doi.org/10.3390/agronomy11050968
Kausar, M.; Singh, B.K., 2018. Pharmacological evaluation of Solanum viarum Dunal leaves extract for analgesic and antipyretic activities. Journal of Drug Delivery and Therapeutics, v. 8, (4), 356-361. https://doi.org/10.22270/jddt.v8i4.1812
Kang, J. H.; Kim, S.; Moon, B., 2016. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction. Food Chemistry, v. 205, 140-145. https://doi.org/10.1016/j.foodchem.2016.03.013
Khaserao, S.; Somani, R., 2017. Evaluation of anti-obesity activity of solasodine in high fat diet-induced obesity in rat. International Journal of Pharmaceutical Sciences and Research, v. 9, (3), 23. https://doi.org/10.22159/ijpps.2017v9i3.16025
Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B., 2022. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules, v. 27, (3), 730. https://doi.org/10.3390/molecules27030730
Lama-Muñoz, A.; Del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E., 2019. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: optimization of technique and operating conditions. Food Chemistry, v. 293, 161-168. https://doi.org/10.1016/j.foodchem.2019.04.075
Lasta, H.F.B.; Lentz, L.; Mezzomo, N.; Ferreira, S.R.S., 2019. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatalysis and Agricultural Biotechnology, v. 19, 101169. https://doi.org/10.1016/j.bcab.2019.101169
Lingampally, V.; Solanki, V R.; Anuradha, D.L.; Raja, S.S., 2014. Effect of solasodine against last instar larvae of Tribolium confusum. Journal of Entomology and Zoology Studies, v. 2, (2), 118-120.
Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J., 2015. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Research International, v. 77, 675-683. https://doi.org/10.1016/j.foodres.2014.12.042
Martín, S.; Cuevas, J.M.; Elena, S.F.; Grande-Pérez, A., 2017. A putative antiviral role of plant cytidine deaminases. F1000Research, v. 6, 622. https://doi.org/10.12688/f1000research.11111.1
Nawaz, H.; Shad, M. A.; Rehman, N.; Andaleeb, H.; Ullah, N., 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, v. 56. https://doi.org/10.1590/s2175-97902019000417129
Onyebuchi, C.; Kavaz, D., 2020. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, v. 10, 1-11. https://doi.org/10.1038/s41598-020-78847-5
Pandey, S.; Shukla, P.; Misra, P., 2018. Physical state of the culture medium triggers shift in morphogenetic pattern from shoot bud formation to somatic embryo in Solanum khasianum. Physiology and Molecular Biology of Plants, v. 24, 1295-1305. https://doi.org/10.1007/s12298-018-0582-8
Patel, P.; Prasad, A.; Gupta, S.C.; Niranjan, A.; Lehri, A.; Singh, S.S.; Misra, P.; Chakrabarty, D., 2021. Growth, phytochemical and gene expression changes related to the secondary metabolite synthesis of Solanum viarum Dunal. Industrial Crops and Products, v. 166, 113464. https://doi.org/10.1016/j.indcrop.2021.113464
Pawlowska, A.M.; Zannini, E.; Coffey, A.; Arendt, E.K., 2012. “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research, v. 66, 217-238. https://doi.org/10.1016/B978-0-12-394597-6.00005-7
Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J., 2019. Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering, v. 240, 105-113. https://doi.org/10.1016/j.jfoodeng.2018.07.019
Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J., 2021. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innovative Food Science & Emerging Technologies, v. 67, 102549. https://doi.org/10.1016/j.ifset.2020.102549
Qaderi, M.M.; Martel, A.B.; Strugnell, C.A., 2023. Environmental factors regulate plant secondary metabolites. Plants, v. 12, (3), 447. https://doi.org/10.3390/plants12030447
Santos, M.S.N.; Wancura, J.H.C.; Oro, C.E.D.; Dallago, R.M.; Tres, M.V., 2022. Opportunities and challenges of plant bioactive compounds for food and agricultural-related areas. Phyton-International Journal of Experimental Botany, v. 91, (16), 1105-1127. https://doi.org/10.32604/phyton.2022.020913
Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H., 2021. Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chemistry, v. 344, 128620. https://doi.org/10.1016/j.foodchem.2020.128620
Silva, A.F.G.; Gomes, P.F.; Damião, P.D.; Oliveira, M.F., 2023. Toxicity and antioxidant activity of extracts from the leaves, bark and green fruits of Solanum viarum Dunal (Solanaceae). Cuadernos de Educación y Desarrollo, v. 15, (6). https://doi.org/10.55905/cuadv15n6-017
Thiemann, T., 2021. Isolation of phthalates and terephthalates from plant material–natural products or contaminants? The Open Chemistry Journal, v. 8, 1874-8422. https://doi.org/10.2174/1874842202108010001
Valanciene, E.; Malys, N., 2022. Advances in production of hydroxycinnamoyl-quinic acids: from natural sources to biotechnology. Antioxidants, v. 11, (12), 2427. https://doi.org/10.3390/antiox11122427
Venditti, A., 2020. What is and what should never be: artifacts, improbable phytochemicals, contaminants and natural products. Natural Product Research, v. 347, 1014-1031. https://doi.org/10.1080/14786419.2018.1543674
Viganó, J.; Brumer, I.Z.; Braga, P.A.C.; da Silva, J.K.; Maróstica Júnior, M.R.; Reyes Reyes, F.G.; Martínez, J., 2016. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food and Bioproducts Processing, v. 100, (Part A), 382-390. https://doi.org/10.1016/j.fbp.2016.08.011
Wianowska, D.; Gil, M., 2019. Critical approach to PLE technique application in the analysis of secondary metabolites in plants. TrAC Trends in Analytical Chemistry, v. 114, 314-325. https://doi.org/10.1016/j.trac.2019.03.018
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.