Scientific research trends for plant factory with artificial lighting: scoping review
DOI:
https://doi.org/10.5327/Z2176-94781584Palavras-chave:
tecnologia; desafios; possibilidades; economia; produção.Resumo
A Plant Factory With Artificial Lighting (PFAL) consiste em um sistema de horticultura protegido em instalações de ambiente controlado, em combinação com vários níveis de superfície de crescimento e associação de fatores como iluminação, sistema de cultivo, nutrição das culturas e eficiência energética. O objetivo deste estudo foi identificar nos artigos científicos publicados os atuais temas abordados, as potencialidades e desafios identificados e seu posicionamento futuro sobre as PFAL. Trata-se de uma revisão de escopo de 49 artigos publicados em periódicos científicos que davam a resposta à pergunta de investigação, “Quais são os temas abordados em artigos científicos sobre PFAL?”, no período de 2015 a 2022. Os artigos revisados demonstraram como tendência o desenvolvimento de alternativas para os métodos de cultivo, sistemas de iluminação com variação do espectro de luz, sistemas de irrigação e novas tecnologias de cadeia produtiva, visando ao aumento da capacidade produtiva. Também mostraram que, embora a PFAL tenha demonstrado potencial para a produção de diversas culturas, a otimização técnica e econômica requer maior atenção, apontando-se que o desenvolvimento tecnológico e os métodos produtivos são fatores fundamentais para ela se estabelecer como alternativa de produção agrícola em centros urbanos sustentáveis.
Downloads
Referências
An, S.; Park, S.W.; Kwack, Y., 2020. Growth of cucumber scions, rootstocks, and grafted seedlings as affected by different irrigation regimes during Cultivation of ‘Joenbaekdadagi’ and ‘Heukjong’ seedlings in a plant factory with artificial lighting. Agronomy, v. 10, (12), 1943. https://doi.org/10.3390/agronomy10121943.
Avgoustaki, D.D., 2019. Optimization of photoperiod and quality assessment of basil plants grown in a small-scale indoor cultivation system for reduction of energy demand. Energies, v. 12, (20), 3980. https://doi.org/10.3390/en12203980.
Avgoustaki, D.D.; Li, J.; Xydis, G., 2020. Basil plants grown under intermittent light stress in a small-scale indoor environment: Introducing energy demand reduction intelligent technologies. Food Control, v. 118, 107389. https://doi.org/10.1016/j.foodcont.2020.107389.
Bae, J.; Park, S.; Oh, M., 2019. Growth and phenolic compounds of crepidiastrum denticulatum under various blue light intensities with a fixed phytochrome photostationary state using far-red light. Horticulture, Environment, and Biotechnology, v. 60, 199-206. https://doi.org/10.1007/s13580-018-0112-1.
Bantis, F., 2021. Light spectrum differentially affects the yield and phytochemical content of microgreen vegetables in a plant factory. Plants, v. 10, (10), 2182. https://doi.org/10.3390/plants10102182.
Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K., 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, v. 235, 437-451. https://doi.org/10.1016/j.scienta.2018.02.058.
Barra, R.O., Rojas-Hernandez, J., 2022. The indexing of scientific knowledge: The need for knowledge at the service of community development and nature protection. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (4), 689-692. https://doi.org/10.5327/Z217694781470.
Beacham, A.; Vickers, L.; Monaghan, J., 2019. Vertical farming: a summary of approaches to growing skywards. Journal of Horticultural Science and Biotechnology, v. 94, (3), 277-283. https://doi.org/10.1080/14620316.2019.1574214.
Bhowmick, S.; Biswas, B.; Biswas, M.; Dey, A.; Roy, S.; Sarkar, S., 2019. Application of iot-enabled smart agriculture in vertical farming. In: Bera, R.; Sarkar, S.; Singh, O.; Saikia, H. (eds.). Advances in communication, devices and networking. lecture notes in electrical engineering. Singapore: Springer, 2019. v. 537. p. 521-528.
Chen, D.; Mei, Y.; Liu, Q; Wu, Y.; Yang, Z., 2021a. Carbon dioxide enrichment promoted the growth, yield, and light-use efficiency of lettuce in a plant factory with artificial lighting. Agronomy Journal, v. 113, (6), 5196-5206. https://doi.org/10.1002/agj2.20838.
Chen, X.; Li, Y.; Wang, L.; Guo, W., 2021b. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Scientific Reports, v. 11, 8374. https://doi.org/10.1038/s41598-021-87911-7.
Chuah, Y.D.; Lee, J.-V.; Tan, S.S.; Ng, C., 2019. Implementation of smart monitoring system in vertical farming. IOP Conference Series: Earth and Environmental Science, v. 268, 012083. https://doi.org/10.1088/1755-1315/268/1/012083.
Dieleman, J.A.; Visser, P.H.B.; Meinen, E.; Grit, J.G.; Dueck, T.A., 2019. Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3d modeling. Frontiers in Plant Science, v. 11, 839. https://doi.org/10.3389/fpls.2019.00839.
Dou, H.; Niu, G.; Gu, M.; Masabni, J.G., 2018. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience, v. 53, (4), 496-503. https://doi.org/10.21273/HORTSCI12785-17.
Fang, J.; Peidian, G.; Nan, L.; Dongxian, H.; Po, Y., 2020. Effects of LED spectrum and daily light integral on growth and energy use efficiency of tomato seedlings. Transactions of the Chinese Society of Agricultural Engineering, v. 36, (22), 231-238. https://doi.org/10.11975/j.issn.1002-6819.2020.22.026.
Fang, W.; Chung, H., 2018. Bioponics for lettuce production in a plant factory with artificial lighting. Acta Horticulturae, v. 1227, 593-598. https://doi.org/10.17660/ActaHortic.2018.1227.75.
Hang, T.; Lu, N.; Takagaki, M.; Mao, H., 2019. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Scientia Horticulturae, v. 252, 113-120. https://doi.org/10.1016/j.scienta.2019.03.057.
Haris, I.; Fasching, A.; Punzenberger, L.; Grosu, R., 2019. CPS/IoT Ecosystem: Indoor Vertical Farming System. In: IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona: Italy. p. 47-52. https://doi.org/10.1109/ISCE.2019.8900974.
Hayashi, E.; Amagai, Y.; Kozai, T.; Maruo, T.; Tsukagoshi, S.; Nakano, A.; Johkan, M., 2022. Variations in the growth of cotyledons and initial true leaves as affected by photosynthetic photon flux density at individual seedlings and nutrients. Agronomy, v. 12, (1), 194. https://doi.org/10.3390/agronomy12010194.
Hayashi, E.; Amagai, Y.; Maruo, T.; Kozai, T., 2020. Phenotypic analysis of germination time of individual seeds affected by microenvironment and management factors for cohort research in plant factory. Agronomy, v. 10, (11), 1680. https://doi.org/10.3390/agronomy10111680.
Ismail, M.I.H.; Norashikin, N.M., 2017. IoT implementation for indoor vertical farming watering system. In: International Conference on Electrical, Electronics and System Engineering (ICEESE). Kanazawa. p. 89-94.
Joshi, J.; Zhang, G.; Shen, S.; Supaibulwattana, K.; Watanabe, C.K.A.; Yamori, W., 2017. A combination of downward lighting and supplemental upward lighting improves plant growth in a closed plant factory with artificial lighting. American Society for Hortultural Science, v. 52, (6), 831-835. https://doi.org/10.21273/HORTSCI11822-17.
Jürkenbeck, K.; Heumann, A.; Spiller, A., 2019. Sustainability matters: consumer acceptance of different vertical farming systems. Sustainability, v. 11, (15), 4052. https://doi.org/10.3390/su11154052.
Kozai, T., 2013. Sustainnable plant factory: close plant production system with artificial light for high resource use efficiencies and quality produce. Acta Horticulturae, v. 1004, 27-40. https://doi.org/10.17660/ActaHortic.2013.1004.2.
Kozai, T.; Fujiwara, K.; Runkle, E. (eds.), 2016. LED: Lighting for Urban Horticulture. Singapore: Springer, 454 p. https://doi.org/10.1007/978-981-10-1848-0.
Kozai, T.; Uraisami, K.; Kai, K.; Hayashi, E., 2019. Some thoughts on productivity indexes of plant factory with artificial lighting (PFAL). Proceedings of International symposium on environment control technology for value-added plant production. Beijing.
Lauguico, S.; Concepcio, R.S.; Macasaet, D.D.; Alejandrino, J.D.; Bandala, A.A.; Dadios, E.P., 2019. Implementation of inverse kinematics for crop-harvesting robotic arm in vertical farming. In: IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). Bangkok. p. 298-303. https://doi.org/10.1109/CIS-RAM47153.2019.9095774.
Lee, H.; Park, S.W.; Pham, M.D.; Hwang, H.; Chun, C., 2020. Effect of the light spectrum of white leds on the productivity of strawberry transplants in a plant factory with artificial lighting. Horticulture, Environment and Biotechnology, v. 61, 971-979. https://doi.org/10.1007/s13580-020-00284-0.
Liu, W.; Zha, L.; Zhang, Y., 2020. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities. Agronomy, v. 10, (11), 1678. https://doi.org/10.3390/agronomy10111678.
Meng, Q.; Runkle, E.K., 2019. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Scientia Horticulturae, v. 255, 269-280. https://doi.org/10.1016/j.scienta.2019.05.030.
Modarelli, G.C.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M.-C., 2022. high light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, v. 8, (2), 114. https://doi.org/10.3390/horticulturae8020114.
Monteiro, J.; Barata, J.; Veloso, M.; Veloso, L.; Nunes, J., 2018. Towards Sustainable Digital Twins for Vertical Farming. In: Thirteenth International Conference on Digital Information Management (ICDIM), Berlin. p. 234-239.
Nabout, J.C.; Faquim, R.C.P.; Carvalho, R.A.; Machado, K.B., 2021. Effects of funding on the collaboration and citation in environmental papers and the relationship with nation’s science and technology budgets. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 56, (4), 599-607. https://doi.org/10.5327/Z217694781043.
Nyanchoka, L.; Tudur-Smith, C.; Thu, V.N.; Iversen, V.; Tricco, A.C.; Porcher, R., 2019. A scoping review describes methods used to identify, prioritize and display gaps in health research. Journal of Clinical Epidemiology, v. 109, 99-110. https://doi.org/10.1016/j.jclinepi.2019.01.005.
Ohyama, K., 2015. Actual management conditions on a large-scale plant factory with artificial lighting (written in Japanese: Dai-kibo keiei de no keiei jittai). JGHA Prot. Hortic. (JGHA Shisetsu to Engei), v. 168, 30-33.
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, v. 372, 71. https://doi.org/10.1136/bmj.n71.
Park, S.W.; Kim, S.K.; Kwack, Y.; Chun, C., 2020. Simulation of the number of strawberry transplants produced by an autotrophic transplant production method in a plant factory with artificial lighting. Horticulture, v. 64, (4), 63. https://doi.org/10.3390/horticulturae6040063.
Park, S.W.; Kwack, Y.; Chun, C., 2018. Growth and propagation rate of strawberry transplants produced in a plant factory with artificial lighting as affected by separation time from stock plants. Horticulture, Environment, and Biotechnology, v. 59, 199-204. https://doi.org/10.1007/s13580-018-0027-x.
Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; Mclnerney, P.; Godfrey, C.M.; Khalil, H., 2020. Updated methodological guidance for theconduct of scoping reviews. JBI EvidSynth, v. 18, (10), 2119-2126. https://doi.org/10.11124/jbies-20-00167.
Ren, X.; Lu, N.; Xu, W.; Zhuang, Y.; Takagaki, M., 2022. Optimization of the Yield, Total Phenolic Content, and Antioxidant Capacity of Basil by Controlling the Electrical Conductivity of the Nutrient Solution. Horticulturae, v. 8, (3), 216. https://doi.org/10.3390/horticulturae8030216.
Roberts, J.M.; Bruce, T.J.A.; Monaghan, J.M.; Pope, T.W.; Leather, S.R.; Beacham, A.M., 2020. Vertical farming systems bring new considerations for pest and disease management. Annals of Applied Biology, v. 176, (3), 226-232. https://doi.org/10.1111/aab.12587.
Saito, K.; Ishigami, Y.; Goto, E., 2020. Evaluation of the light environment of a plant factory with artificial light by using an optical simulation. Agronomy, v. 10, (11), 1663. https://doi.org/10.3390/agronomy10111663.
Sankhuan, D.; Niramolyanun, G.; Kangwanrangsan, N.; Nakano, M.; Supaibulwatana, K., 2022. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC Plant Biology, v. 22, 128. https://doi.org/10.1186/s12870-022-03528-6.
Shao, Y.; Heath, T.; Zhu, Y., 2016. Developing an economic estimation system for vertical farms. International Journal of Agricultural and Environmental Information Systems, v. 7, (2), 26-51. https://doi.org/10.4018/IJAEIS.2016040102.
Shomefun, T.E.; Awosope, C.O.A.; Ebenezer, O.D., 2018. Microcontroller-based vertical farming automation system. International Journal of Electrical and Computer Engineering, v. 8, (4), 2046-2053. https://doi.org/10.11591/ijece.v8i4.pp2046-2053.
Song, X.P.; Tan, H.T.W.; Tan, P.Y., 2018. Assessment of light adequacy for vertical farming in a tropical city. Urban Forestry & Urban Greening, v. 29, 49-57. https://doi.org/10.1016/j.ufug.2017.11.004.
Touliatos, D.; Dodd, I.; Mcainsh, M., 2016. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, v. 5, (3), 184-191. https://doi.org/10.1002%2Ffes3.83.
Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; Hempel, S.; Akl, E.A.; Chang, C.; McGowan, J.; Stewart, L.; Hartling, L.; Aldcroft, A.; Wilson, M.G.; Garritty, C.; Lewin, S.; Godfrey, C.M.; Macdonald, M.T.; Langlois, E.V.; Soares-Weiser, K.; Moriarty, J.; Clifford, T.; Tunçalp, O.; Straus, S.E., 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklis and explanation. Annals of Internal Medicine, v. 169, (7), 467-473. https://doi.org/10.7326/M18-0850.
United Nations Environment Programme (2021). The Food Waste Index Report (Accessed February, 2022) at:. https://catalogue.unccd.int/1679_FoodWaste.pdf.
Urairi, C.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K., 2017. Optimization of Light-Dark Cycles of Lactuca sativa L. in Plant Factory. Environment Control in Biology, v. 55, (2), 85-91. https://doi.org/10.2525/ecb.55.85.
Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y., 2019. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. American Society for Horticultural Science, v. 54, (10), 1737-1744. https://doi.org/10.21273/HORTSCI14236-19.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.