Remoção de MP2,5 por árvores urbanas em áreas com diferentes condições de arborização em São Paulo, utilizando um modelo big-leaf

Autores

DOI:

https://doi.org/10.5327/Z2176-94781458

Palavras-chave:

qualidade do ar; serviços ecossistêmicos; material particulado fino; infraestrutura verde; arborização urbana.

Resumo

A poluição do ar é um dos problemas ambientais mais proeminentes em megacidades como a área metropolitana de São Paulo (AMSP). Árvores podem contribuir para a mitigação da poluição do ar proporcionando superfície para a deposição de partículas e gases traço. Para melhor aproveitar esse serviço ambiental e planejar futuras infraestruturas verdes, é fundamental estimar as taxas de remoção de poluentes por árvores. Pela primeira vez em uma cidade brasileira, foi quantificada a taxa de remoção anual de material particulado fino (MP2,5) por árvores urbanas. Para isso, foi utilizado o modelo i-Tree Eco, do tipo “folha grande”. Como entrada, foram utilizados dados dendrométricos locais, de concentração de MP2,5 e de variáveis meteorológicas. As taxas de remoção de MP2,5 variaram entre 0,06 e 0,21 g/m2/ano em três áreas de estudo com condições de arborização contrastantes. A vizinhança com maior cobertura de dossel e diversidade de espécies arbóreas apresentou a maior taxa de remoção. O caráter perene da floresta urbana na AMSP pode ter contribuído para as taxas de remoção relativamente altas em comparação com outras cidades do mundo. A remoção foi maior no verão; a precipitação restringiu a ressuspensão de partículas para a atmosfera. Extrapolando-se os resultados para toda a área metropolitana, supondo condições de arborização homogêneas, verificou-se que a remoção de MP2,5 pela vegetação poderia compensar as emissões veiculares desse poluente, demonstrando o potencial de remoção de poluentes pela floresta urbana na AMSP. Os resultados ilustram a contribuição das árvores urbanas para a melhoria da qualidade do ar e podem impulsionar políticas públicas de arborização na AMSP.

Downloads

Não há dados estatísticos.

Referências

Abhijith, K.V.; Kumar, P., 2019. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmospheric Environment, v. 201, 132-147. https://doi.org/10.1016/j.atmosenv.2018.12.036.

Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B., 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, v. 162, 71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014.

Alvares, C.A.; Stape, J.L., Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Andrade, M.F.; Kumar, P.; Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; Miranda, R.M.; Albuquerque, T.; Gonçalves, F.L.T.; Oyama, B.; Zhang, Y., 2017. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, v. 159, 66-82. https://doi.org/10.1016/j.atmosenv.2017.03.051.

Arantes, B.L.; Mauad, T.; Silva Filho, D.F.D., 2019. Urban forests, air quality and health: a systematic review. International Forestry Review, v. 21, (2), 167-181. https://doi.org/10.1505/146554819826606559.

Barzeghar, V.; Sarbakhsh, P.; Hassanvand, M.S.; Faridi, S.; Gholampour, A., 2020. Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017, Sustainable Cities and Society, v. 54, 101988. https://doi.org/10.1016/j.scs.2019.101988

Cabaraban, M.T.I.; Kroll, C.N.; Hirabayashi, S.; Nowak, D.J. 2013. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system. Environmental Pollution, v. 176, 123-133. https://doi.org/10.1016/j.envpol.2013.01.006.

Caiafa, A.N.; Martins, F.R., 2010. Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodiversity and Conservation, v. 19, (9), 2597-2618. https://doi.org/10.1007/s10531-010-9861-6.

Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; Andrade, M.F., 2015. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, v. 47, 68-79. https://doi.org/10.1016/j.envsci.2014.11.001.

Companhia Ambiental do Estado de São Paulo (CETESB), 2008. Material Particulado inalável fino (MP2,5) e grosso (MP2,5 – 10) na atmosfera da Região Metropolitana de São Paulo (2000 – 2006). (Accessed Nov 15, 2021) at:. https://cetesb.sp.gov.br/qualidade-ar/wp-content/uploads/sites/28/2013/12/Relatorio_MP2_5.zip.

Companhia Ambiental do Estado de São Paulo (CETESB), 2020. Qualidade do ar no Estado de São Paulo em 2019. (Accessed Dec 5, 2020) at:. https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2020/07/Relatório-de-Qualidade-do-Ar-2019.pdf.

Companhia Ambiental do Estado de São Paulo (CETESB), 2022. Qualar - Sistema de Informações da Qualidade do Ar. (Accessed Dec 1 2020) at:. https://cetesb.sp.gov.br/ar/qualar/.

Concha, H. de la; Cano, L.R.; Burgos, A.G., 2017. Inventario del arbolado urbano de la Ciudad de Mérida, Mérida, México. (Accessed Jan 31 2022) at:. http://www.merida.gob.mx/municipio/sitiosphp/sustentable/contenidos/doc/inventario_arbolado_merida.pdf.

Doick, K.J.; Handley, P.; Ashwood, F.; Vaz Monteiro, M.; Frediani, K.; Rogers, K., 2017. Valuing Edinburgh’s Urban Trees. An update to the 2011 i-Tree Eco survey – a report of Edinburgh City Council and Forestry Commission Scotland, Edinburgh, UK. (Accessed Mar 13 2021) at:. https://www.forestresearch.gov.uk/documents/7876/FR_Doick_Edinburgh_iTree_Full_Report_2017_OJfWakl.pdf.

Donateo, A.; Rinaldi, M.; Paglione, M.; Villani, M.G.; Russo, F.; Carbone, C.; Zanca, N.; Pappaccogli, G.; Grasso, F.M.; Busetto, M.; Sänger, P.; Ciancarella, L.; Decesari, S., 2021. An evaluation of the performance of a green panel in improving air quality, the case study in a street canyon in Modena, Italy. Atmospheric Environment, v. 247, 118189. https://doi.org/10.1016/j.atmosenv.2021.118189.

Engemann, K.; Enquist, B.J.; Sandel, B.; Boyle, B.; Jørgensen, P.M.; Morueta‐Holme, N.; Peet, R.K.; Violle, C.; Svenning, J., 2015. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution, v. 5, (3), 807-820. https://doi.org/10.1002/ece3.1405.

Escobedo, F.J.; Nowak, D.J., 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, v. 90, (3-4), 102-110. https://doi.org/10.1016/j.landurbplan.2008.10.021.

Gaglio, M.; Pace, R.; Muresan, A.N.; Grote, R.; Castaldelli, G.; Calfapietra, C.; Fano, E.A., 2022. Species-specific efficiency in PM2.5 removal by urban trees: From leaf measurements to improved modeling estimates. Science of The Total Environment, v. 844, 157131. https://doi.org/10.1016/j.scitotenv.2022.157131.

Gómez Peláez, L.M.; Santos, J.M.,; Almeida Albuquerque, T.T.; Reis, N.C.; Andreão, W.L.; Fátima Andrade, M., 2020. Air quality status and trends over large cities in South America. Environmental Science and Policy, v. 114, 422-435. https://doi.org/10.1016/j.envsci.2020.09.009.

Han, D.; Shen, H.; Duan, W.; Chen, L., 2020. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry and Urban Greening, v. 48, 126565. https://doi.org/10.1016/j.ufug.2019.126565.

Hirabayashi, S.; Kroll, C.N.; Nowak, D.J., 2012. Development of a distributed air pollutant dry deposition modeling framework. Environmental Pollution, v. 171, 9-17. https://doi.org/10.1016/j.envpol.2012.07.002.

Hirabayashi, S.; Kroll, C.N.; Nowak, D.J.; Endreny, T.A., 2015. i-Tree Eco Dry Deposition Model Descriptions. 34. (Accessed Jun 5, 2020) at:. http://www.itreetools.org/eco/resources/iTree_Eco_Dry_Deposition_Model_Descriptions.pdf.

Hirabayashi, S.; Nowak, D.J., 2016. Comprehensive national database of tree effects on air quality and human health in the United States. Environmental Pollution, v. 215, 48-57. https://doi.org/10.1016/j.envpol.2016.04.068.

Informe Nacional de Calidad del Aire (INECC), 2019. México, Ciudad de México, 2021. (Accessed Jul 31, 2021) at:. http://189.240.101.244:8080/xmlui/handle/publicaciones/349.

Janhäll, S., 2015. Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, v. 105, 130-137. https://doi.org/10.1016/j.atmosenv.2015.01.052.

Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C., 2017. Green infrastructure practices for improvement of urban air quality. Urban Forestry and Urban Greening, v. 21, 34-47. https://doi.org/10.1016/j.ufug.2016.11.007.

Kabashima, Y.; Andrade, M.L.F.; Gandara, F.B.; Tomas, F.L.; Polizel, J.L.; Velasco, G.D.N.; Silva, L.F.; Dozzo, A.D.P.; Moura, R.G.; Ferreira da Silva Filho, D., 2019. Histórico da composição da vegetação arbórea do parque do Ibirapuera e sua contribuição para a conservação da biodiversidade. Revista da Sociedade Brasileira de Arborização Urbana, v. 6, (4), 125-144. https://doi.org/10.5380/revsbau.v6i4.66492.

Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; Abhijith, K.V.; Adlakha, D.; McNabola, A.; Astell-Burt, T.; Feng, X.; Skeldon, A.C.; Lusignan, S.; Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environment International, 133, (part A), 105181. https://doi.org/10.1016/j.envint.2019.105181.

Li, D.; Ma, J.; Cheng, T.; van Genderen, J.L.; Shao, Z., 2019. Challenges and opportunities for the development of MEGACITIES. International Journal of Digital Earth, v. 12, (12), 1382-1395. https://doi.org/10.1080/17538947.2018.1512662.

Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J., 2019. A review of urban forest modeling: Implications for management and future research. Urban Forestry and Urban Greening, v. 43, 126366. https://doi.org/10.1016/j.ufug.2019.126366.

Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; Valdes Ortega, N.; Osorio Garcia, S.; Pascal, M.; Stafoggia, M.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Díaz, M.; Cruz, J., … Kan, H., 2019. Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, v. 381, (8), 705-715. https://doi.org/10.1056/NEJMoa1817364.

Livesley, S.J.; McPherson, E.G.; Calfapietra, C., 2016. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, v. 45, (1), 119-124. https://doi.org/10.2134/jeq2015.11.0567.

Locosselli, G.M.; Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; Andrade, M.F.; André, C.D.S.; André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; Buckeridge, M.S., 2019. The role of air pollution and climate on the growth of urban trees. Science of the Total Environment, v. 666, 652-661. https://doi.org/10.1016/j.scitotenv.2019.02.291.

Locosselli, G.M.; Chacón-Madrid, K.; Zezzi Arruda, M.A.; Pereira de Camargo, E.; Lopes Moreira, T.C.; Saldiva de André, C.D.; Afonso de André, P.; Singer, J.M.; Nascimento Saldiva, P.H.; Buckeridge, M.S., 2018. Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil. Environmental Pollution, v. 242, (part A), 320-328. https://doi.org/10.1016/j.envpol.2018.06.098.

Moreira, T.C.L.; Polizel, J.L.; Santos, I.S.; Silva Filho, D.F.; Bensenor, I.; Lotufo, P.A.; Mauad, T., 2020. Green spaces, land cover, street trees and hypertension in the megacity of São Paulo. International Journal of Environmental Research and Public Health, v. 17, (3), 725. https://doi.org/10.3390/ijerph17030725.

Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J., 2018. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry and Urban Greening, v. 29, 40-48. https://doi.org/10.1016/j.ufug.2017.10.019.

Oliveira, M.C.Q.D.; Drumond, A.; Rizzo, L.V., 2022. Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather patterns. International Journal of Environmental Science and Technology, v. 19, 9495-9506. https://doi.org/10.1007/s13762-021-03778-1.

Pace, R.; Guidolotti, G.; Baldacchini, C.; Pallozzi, E.; Grote, R.; Nowak, D.J.; Calfapietra, C., 2021. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environmental Science and Technology, v. 55, (10), 6613-6622. https://doi.org/10.1021/acs.est.0c07679.

Parnreiter, C., 2019. Global cities and the geographical transfer of value. Urban Studies, v. 56, (1), 81-96. https://doi.org/10.1177/0042098017722739.

Parsa, V.A.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M., 2019. Analyzing temporal changes in urban forest structure and the effect on air quality improvement. Sustainable Cities and Society, v. 48, 101548. https://doi.org/10.1016/j.scs.2019.101548.

Piñero Sánchez, M.; Oliveira, A.P.; Varona, R.P.; Tito, J.V.; Codato, G.; Ribeiro, F.N.D.; Marques Filho, E.P.; Silveira, L.C., 2020. Rawinsonde-Based Analysis of the Urban Boundary Layer in the Metropolitan Region of São Paulo, Brazil. Earth and Space Science, v. 7, (2), e2019EA000781. https://doi.org/10.1029/2019EA000781.

Pope, C.A.; Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, v. 56, (6), 709-742. https://doi.org/10.1080/10473289.2006.10464485

Ramon, M.; Ribeiro, A.P.; Theophilo, C.Y.S.; Moreira, E.G.; Camargo, P.B.; Bragança Pereira, C.A.; Saraiva, E.F.; Reis Tavares, A.; Dias, A.G.; Nowak, D.; Ferreira, M.L., 2022. Assessment of four urban forest as environmental indicator of air quality: a study in a Brazilian megacity. Urban Ecosystems. https://doi.org/10.1007/s11252-022-01296-7.

Raupp, M.J.; Cumming, A.B.; Raupp, E.C., 2006. Street tree diversity in eastern North America and its potential for tree loss to exotic borers. Arboriculture & Urban Forestry, v. 32, (6), 297-304. https://doi.org/10.48044/jauf.2006.038.

Salvo, A.; Brito, J.; Artaxo, P.; Geiger, F.M., 2017. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nature Communications, v. 8, (1), 77. https://doi.org/10.1038/s41467-017-00041-5.

Seinfeld, J.H.; Pandis, S.N., 2006. Atmospheric chemistry and physics: from air pollution to climate change (2nd ed.). Wiley.

Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D., 2016. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry and Urban Greening, v. 17, 192-201. https://doi.org/10.1016/j.ufug.2016.04.010.

Silva, J.L.S.; Oliveira, M.T.P.; Oliveira, W.; Borges, L.A.; Cruz-Neto, O.; Lopes, A.V., 2020. High richness of exotic trees in tropical urban green spaces: Reproductive systems, fruiting and associated risks to native species. Urban Forestry & Urban Greening, v. 50, 126659. https://doi.org/10.1016/j.ufug.2020.126659.

Silva, M.D.; Oliveira, M.C.Q.D.; Drumond, A.; Rizz, L.V. (2021). Air pollutants associated with surface meteorological conditions in São Paulo’s ABC region. Brazilian Journal of Environmental Sciences, v. 56, (3), 459-469. https://doi.org/10.5327/Z21769478917.

Sugahara, S.; Rocha, R.P.; Ynoue, R.Y.; Silveira, R.B., 2012. Homogeneity assessment of a station climate series (1933-2005) in the Metropolitan Area of São Paulo: Instruments change and urbanization effects. Theoretical and Applied Climatology, v. 107, (3-4), 361-374. https://doi.org/10.1007/s00704-011-0485-x.

Szkop, Z., 2020. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban Forestry and Urban Greening, v. 55, 126859. https://doi.org/10.1016/j.ufug.2020.126859.

UK-AIR, 2022. PM2.5 annual mean at Edinburgh St Leonards air quality monitoring station in 2016. Air Inf. Resource. (Accessed February 3, 2022) at:. https://uk-air.defra.gov.uk/data/data_selector_service#mid.

Vaudrey, B.; Mielcarek, M.; Sauleau, E.; Meyer, N.; Marchandot, B.; Moitry, M.; Robellet, P.; Reeb, T.; Jesel, L.; Ohlmann, P.; Bourdrel, T.; Morel, O., 2020. Short-Term Effects of Air Pollution on Coronary Events in Strasbourg, France—Importance of Seasonal Variations. Medical Sciences, v. 8, (3), 31. https://doi.org/10.3390/medsci8030031.

Wang, H.; Maher, B.A.; Ahmed, I.A.M.; Davison, B., 2019. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science and Technology, v. 53, (12), 6906-6916. https://doi.org/10.1021/acs.est.8b06629.

Wu, J.; Wang, Y.; Qiu, S.; Peng, J., 2019. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of the Total Environment, v. 688, 673-683. https://doi.org/10.1016/j.scitotenv.2019.05.437.

Yang, J.; McBride, J.; Zhou, J.; Sun, Z., 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening, v. 3, (2), 65-78. https://doi.org/10.1016/j.ufug.2004.09.001.

Zenni, R.D.; Ziller, S.R., 2011. An overview of invasive plants in Brazil. Revista Brasileira de Botânica, v. 34, (3), 431-446. https://doi.org/10.1590/S0100-84042011000300016.

Publicado

15-12-2022

Como Citar

Brito, C. N., & Rizzo, L. V. (2022). Remoção de MP2,5 por árvores urbanas em áreas com diferentes condições de arborização em São Paulo, utilizando um modelo big-leaf. Revista Brasileira De Ciências Ambientais, 57(4), 606–617. https://doi.org/10.5327/Z2176-94781458