Tendência em séries hidrológicas e de mudanças no uso e cobertura da terra em uma bacia tropical do Nordeste do Brasil
DOI:
https://doi.org/10.5327/Z2176-94781097Palavras-chave:
estacionariedade; vazão; testes não paramétricos; rio Rio Grande.Resumo
A vazão é umas das variáveis hidrológicas de maior interesse por sua importância econômica e ligação direta com a disponibilidade para os usos múltiplos da água. Nos últimos anos, no entanto, esse recurso tem sido ameaçado pelas grandes alterações no uso e ocupação do solo e pelas mudanças climáticas, com alterações nos padrões antes tido como estacionários. O objetivo deste estudo foi avaliar as tendências de mudança nos padrões de vazão, precipitação e de uso e ocupação do solo e sua correlação ao longo do tempo na bacia do Alto Rio Grande. Foram utilizados 33 anos de dados pluviométricos, fluviométricos e mapas de uso e ocupação do solo para o período de 1985–2018, em escala anual. Para indicar a presença ou não tendências nas séries históricas, foi aplicado o teste não param trico de Mann-Kendall; para avaliar a magnitude dessas tendências, foi utilizado o coeficiente Sen’s Slope, além dos testes de Spearman Rho e Pettitt para correlacionar as variáveis e detectar o ponto de mudança nas séries, respectivamente. Os resultados inferem tendências de redução no posto fluviométrico verificado, estatisticamente significante a 5% de probabilidade. Concomitantemente, houve considerável redução das áreas naturais e ascensão de +750% das áreas agrícolas. Os resultados mostram ainda que, embora tenha sido detectada uma tendência de redução na precipitação, sua magnitude não foi relevante quando relacionada vazão, sendo as mudanças do uso e ocupação do solo o principal fator para as mudanças negativas na vazão do afluente Rio Grande.
Downloads
Referências
Acheampong, E.O.; Macgregor, C.J.; Sloan, S.; Sayer, J., 2019. Deforestation is driven by agricultural expansion in Ghana's forest reserves. Scientific African, v. 5, e00146. https://doi.org/10.1016/j.sciaf.2019.e00146.
Agência Nacional de Águas (ANA). Séries históricas. (Accessed on July 15, 2020) at:. http://www.snirh.gov.br/hidroweb/serieshistoricas.
Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B., 2015. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Advances in Meteorology, v. 2015, 431860. https://doi.org/10.1155/2015/431860.
Alifujiang, Y.; Abuduwaili, J.; Ge, Y., 2021. Trend analysis of annual and seasonal river runoff by using innovative trend analysis with significant test. Water, v. 13, (1), 95. https://doi.org/10.3390/w13010095.
Bayazit, M., 2015. Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environmental Processes, v. 2, (3), 527-542. https://doi.org/10.1007/s40710-015-0081-7.
Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, (1), 180214. https://doi.org/10.1038/sdata.2018.214.
Chagas, V.B.P.; Chaffe, P.L.B., 2018. The role of land cover in the propagation of rainfall into streamflow trends. Water Resources Research, v. 54, (9), 5986-6004. https://doi.org/10.1029/2018WR022947.
Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P.K.; Wollenberg, E., 2016. Reducing risks to food security from climate change. Global Food Security, v. 11, 34-43. https://doi.org/10.1016/j.gfs.2016.06.002.
Das, P.; Behera, M.D.; Patidar, N.; Sahoo, B.; Tripathi, P.; Behera, P.R.; Sribastava, S.K.; Roy, P.S.; Thakur, P.; Agrawal, S.P.; Krishnamurthy, Y.V.N., 2018. Impacto da mudança de LULC no escoamento, fluxo de base e dinâmica de evapotranspiração nas bacias dos rios da Índia oriental durante 1985–2005 usando abordagem de capacidade de infiltração variável. Journal of Earth System Science, v. 127, (2), 19. https://doi.org/10.1007/s12040-018-0921-8.
Deb, P.; Kiem, A.S.; Willgoose, G., 2019. Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia. Journal of Hydrology, v. 571, 749-764. https://doi.org/10.1016/j.jhydrol.2019.02.025.
Doggart, N.; Morgan-Brown, T.; Lyimo, E.; Mbilinyi, B.; Meshack, C.K.; Sallu, S.M.; Spracklen, D.V., 2020. Agriculture is the main driver of deforestation in Tanzania. Environmental Research Letters, v. 15, (3), 034028. https://doi.org/10.25412/iop.11395185.v1.
Ferreira, F.L.V.; Rodrigues, L.N.; Almeida, L.T.; Teixeira, D.B., 2020. Tendência em séries hidrológicas e de mudanças no uso e cobertura da terra da bacia hidrográfica do rio Guanhães, Minas Gerais. Brazilian Journal Animal and Environmental Research, v. 3, (2), 447-459. https://doi.org/10.34188/bjaerv3n2-004.
Fistarol, P.H.B.; Santos, J.Y.G., 2020. Implicações das alterações no uso e ocupação do solo nas perdas de solo da bacia do Rio de Ondas, Estado da Bahia. Okara: Geografia em Debate, v. 14, (1), 81-103. https://doi.org/10.22478/ufpb.1982-3878.0vn0.51691.
França, L.M.; Diaz, C.C.F.; Reis, J.V.; Costa, V.S.O.; Galvíncio, J.D., 2019. Efeitos da precipitação na vazão da bacia hidrográfica do rio Pajeú-PE. Revista Brasileira de Geografia Física, v. 12, (6), 2377-2391. https://doi.org/10.26848/rbgf.v12.6.p2377-2391.
Gonçalves, R.D.; Engelbrecht, B.Z.; Chang, H.K., 2018. Evolução da contribuição do Sistema Aquífero Urucuia para o Rio São Francisco, Brasil. Águas Subterrâneas, v. 32, (1), 1-10. https://doi.org/10.14295/ras.v32i1.28916.
Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J., 2017. Variations and changes of annual precipitation in Central Asia over the last century. International Journal of Climatology, v. 37, (S1), 157-170. https://doi.org/10.1002/joc.4988.
Jehanzaib, M.; Shah, S.A.; Yoo, J.; Kim, T.W., 2020. Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. Journal of Hydrology, v. 588, 125052. https://doi.org/10.1016/j.jhydrol.2020.125052.
Junqueira, H.S.; Almeida, L.M.F.; Souza, T.S.; Santos Nascimento, P., 2020. Análise da variação sazonal e de tendências na precipitação pluviométrica no município de Juazeiro-BA. Revista Brasileira de Geografia Física, v. 13, (6), 2641-2649. https://doi.org/10.26848/rbgf.v13.6.p2641-2649.
Kale, S.; Sönmez, A.Y., 2018. Trend analysis of mean monthly, seasonally and annual streamflow of Daday Stream in Kastamonu, Turkey. Marine Science and Technology Bulletin, v. 7, (2), 60-67. https://doi.org/10.33714/masteb.418234.
Karmeshu, N., 2012. Trend detection in annual temperature & precipitation using the Mann Kendall test–a case study to assess climate change on select states in the northeastern United States. Master Disssertation, Departmentof Earth & Environmental Science, University of Pennsylvania, Pennsylvania.
Kendall, M., 1975. Multivariate analysis. Charles Griffin, London.
Lamichhane, S.; Shakya, N.M., 2019. Integrated assessment of climate change and land use change impacts on hydrology in the Kathmandu Valley watershed, Central Nepal. Water, v. 11, (10), 2059. https://doi.org/10.3390/w11102059.
Liang, L.; Li, L.; Liu, Q., 2011. Precipitation variability in Northeast China from 1961 to 2008. Journal of Hydrology, v. 404, (1-2), 67-76. https://doi.org/10.1016/j.jhydrol.2011.04.020.
Mann, H.B. 1945. Nonparametric tests against trend. Econometrica, 245-259.
MapBiomas. Coleção v4. Série anual de mapas de cobertura e uso de solo do Brasil. (Accessed on January 20, 2020). Available at:. http://mapbiomas.org.
Medeiros, I.C.; Costa Silva, J.F.C.B.; Silva, R.M.; Santos, C.A.G., 2019. Run-off–erosion modelling and water balance in the Epitácio Pessoa Dam river basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology, v. 16, (7), 3035-3048. https://doi.org/10.1007/s13762-018-1940-3.
Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J., 2008. Stationarity is dead: whither water management? Science, v. 319, (5863), 573-574. https://doi.org/10.1126/science.1151915.
Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa'doddin, A., 2020. Regional analysis of trend and non‐stationarity of hydro‐climatic time series in the Southern Alborz Region, Iran. International Journal of Climatology, v. 40, (4), 1979-1991. https://doi.org/10.1002/joc.6313.
Moraci, F.; Errigo, M.F.; Fazia, C.; Campisi, T.; Castelli, F., 2020. Cities under pressure: Strategies and tools to face climate change and pandemic. Sustainability, v. 12, (18), 7743. https://doi.org/10.3390/su12187743.
Moreira, J.G.V.; Naghettini, M., 2016. Detecção de tendências monotônicas temporais e relação com erros dos tipos I e II: estudo de caso em séries de precipitações diárias máximas anuais do estado do Acre. Revista Brasileira de Meteorologia, v. 31, (4), 394-402. https://doi.org/10.1590/0102-778631231420140155.
Mudbhatkal, A.; Raikar, R.V.; Venkatesh, B.; Mahesha, A., 2017. Impacts of climate change on varied river-flow regimes of southern India. Journal of Hydrologic Engineering, v. 22, (9), 05017017. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001556.
Naghettini, M.; Pinto, E.J., 2007. Hidrologia estatística. CPRM, Belo Horizonte.
Nascimento, R.Q.S; Santos, J.Y.G., 2019. Análise das alterações ocorridas no uso e ocupação do solo da bacia do Rio das Fêmeas, estado da Bahia. In: Simpósio Brasileiro de Sensoriamento Remoto, 19., 2019, Santos. Anais... Galoá, Araras, v. 17, p. 1-4.
Oliveira, M.N.; Vieira, O.H.P., 2018. Agronegócio no Oeste Baiano e os principais municípios na dinâmica da produção de grãos: uma análise shift-share com base na produção de soja, milho e algodão para os anos de 2001 e 2010. In: Semana da Economia: Políticas Públicas para o Desenvolvimento, 8., 2018, Ilhéus. Anais... Editus, Ilhéus.
Penereiro, J.C.; Ferreira, D.L., 2012. Testes estatísticos e questões ambientais no ensino de engenharia: uma aplicação à climatologia. Revista de Ensino de Engenharia, v. 31, (2), 25-44.
Pettitt, A.N. (1979). A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 28, (2), 126-135. https://doi.org/10.2307/2346729.
Pimentel, A.L.; Aquino, R.F.; Silva, R.C.A.; Vieira, C.M.B., 2000. Estimativa da recarga do Aqüífero Urucuia na bacia do Rio das Fêmeas - oeste da Bahia, utilizando separação de histogramas. In: Congresso sobre Aproveitamento e Gestão de Recursos Hídricos em países de idioma português. Anais... SRH / COGESP / GERIN, Rio de Janeiro, 2000.
Poorheydari, S.; Ahmadi, H.; Moeini, A.; Feiznia, S.; Jafari, M., 2020. Efficiency of SWAT model for determining hydrological responses of marl formation. International Journal of Environmental Science and Technology, v. 17, 3741-3750. https://doi.org/10.1007/s13762-020-02688-y.
Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Brito, V.F.A.D.; Castro, M., 2019. Climate change and intense irrigation growth in Western Bahia, Brazil: The urgent need for hydroclimatic monitoring. Water, v. 11, (5), 933. https://doi.org/10.3390/w11050933.
Reis, L.C.; Silva, C.M.; Bezerra, B.G.; Spyrides, M.H.C., 2020. Caracterização da variabilidade da precipitação no MATOPIBA, região produtora de soja. Revista Brasileira de Geografia Física, v. 13, (4), 1425-1441. https://doi.org/10.26848/rbgf.v13.4.p1425-1441.
Rosin, C.; Amorim, R.S.S.; Morais, T.S.T., 2015. Análise de tendências hidrológicas na bacia do rio das Mortes. Revista Brasileira de Recursos Hídricos, v. 20, (4), 991-998. https://doi.org/10.21168/rbrh.v20n4.p991-998.
Salehi, S.; Dehghani, M.; Mortazavi, S.M.; Singh, V.P., 2020. Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, v. 40, (1), 308-323. https://doi.org/10.1002/joc.6211.
Santos, C.A.; Sano, E.E.; Santos, P.S., 2018. Fronteira agrícola e a dinâmica de uso e ocupação dos solos no oeste da Bahia. Acta Geográfica, v. 12, (28), 17-32. https://doi.org/10.5654/acta.v12i28.4385.
Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, v. 63, (324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934.
Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Seta, G.A.; Baral, H., 2018. Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land, v. 7, (2), 57. https://doi.org/10.3390/land7020057.
Silva, F.B., 2019. Modelagem hidrológica na bacia do Rio Paracatu: avaliação do modelo WEAP como ferramenta de planejamento e gestão dos recursos hídricos. Doctoral Thesis, Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa.
Tamagnone, P.; Massazza, G.; Pezzoli, A.; Rosso, M., 2019. Hydrology of the Sirba river: Updating and analysis of discharge time series. Water, v. 11, (1), 156. https://doi.org/10.3390/w11010156.
Tao, H.; Fraederich, K.; Menz, C.; Zhai, J., 2014. Trends in extreme temperature indices in the Poyang Lake Basin, China. Stochastic Environmental Research and Risk Assessment, v. 28, 1543-1553. https://doi.org/10.1007/s00477-014-0863-x.
Zhang, Y.; Cai, W.; Chen, Q.; Yao, Y.; Liu, K., 2015. Analysis of changes in precipitation and drought in Aksu River Basin, Northwest China. Advances in Meteorology, v. 2015, 215840. https://doi.org/10.1155/2015/215840.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.