Soil carbon storage and retention: a critical synthesis on concepts, research opportunities and sustainable application in environmental engineering

Authors

DOI:

https://doi.org/10.5327/Z2176-94782704

Keywords:

carbon sequestration mechanisms; soil organic matter stabilization; soil hydrodynamics; ecosystem restoration; geotechnics.

Abstract

Soil functions have been threatened by anthropogenic activities, compromising ecosystem services and unbalancing the carbon biogeochemical cycle. Soil carbon sequestration (SCS) is an emergent solution for mitigating climate change and restoring degraded soils. Soil organic carbon (SOC) stock plays a relevant role in measuring ecosystem restoration projects. Nevertheless, the soil is complex and heterogeneous. It is subjected to the soil-plant-atmosphere system interaction and is controlled by many multidisciplinary processes in the C cycle, from C air sequestration to C soil retention. There are still a series of uncertainties around concepts, mechanisms and methodological protocols to assess SOC stock. Through a critical literature review, this paper aimed to synthesize concepts with a cross-disciplinary approach, to analyze research opportunities and to examine sustainable applications in light of environmental engineering. The results point out the conceptual advances in organic matter stabilization in soil and highlight the research gap on the dynamics of the SOC and soil water flux within structured soil profiles, which may be explained using geotechnical engineering concepts. We also observed the need for a multidisciplinary framework of variables that is able to clarify the transdisciplinary contributions to this field. Finally, the SOC stock is an index that may be employed as an indicator of ecosystem restoration results in C-based engineering solutions.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials – ASTM, 2023. ASTM D6282/D6282M-14: Standard guide for direct push soil sampling for environmental site characterizations (Withdrawn 2023). ASTM.

American Society for Testing and Materials – ASTM, 2025. ASTM D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM.

Angst, G.; Mueller, K.E.; Castellano, M.J.; Vogel, C.; Wiesmeier, M.; Mueller, C.W., 2023. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications, v. 14, (1), 2967. https://doi.org/10.1038/s41467-023-38700-5.

Baer, S.G.; Birgé, H.E., 2018. Soil ecosystem services: an overview. Burleigh Dodds Science Publishing Limited, Cambridge. https://doi.org/10.19103/as.2017.0033.02.

Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, v. 47, (2), 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.

Batjes, N.H.; Ceschia, E.; Heuvelink, G.B.M.; Demenois, J.; le Maire, G.; Cardinael, R.; Arias-Navarro, C.; van Egmond, F., 2024. Towards a modular, multi-ecosystem monitoring, reporting and verification (MRV) framework for soil organic carbon stock change assessment. Carbon Management, v. 15, (1), 2410812. https://doi.org/10.1080/17583004.2024.2410812.

Baveye, P.C.; Baveye, J.; Gowdy, J., 2016. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science, v. 4, 1-49. https://doi.org/10.3389/fenvs.2016.00041.

Biesek, B.J.; Szymkiewicz, A.; Šimůnek, J.; Gumuła-Kawęcka, A.; Jaworska-Szulc, B., 2024. Numerical modeling of PFAS movement through the vadose zone: Influence of plant water uptake and soil organic carbon distribution. Science of the Total Environment, v. 935, 173252. https://doi.org/10.1016/j.scitotenv.2024.173252.

Bispo, A.; Andersen, L.; Angers, D.A.; Bernoux, M.; Brossard, M.; Cécillon, L.; Comans, R.N.J.; Harmsen, J.; Jonassen, K.; Lamé, F.; Lhuillery, C.; Maly, S.; Martin, E.; Mcelnea, A.E.; Sakai, H.; Watabe, Y.; Eglin, T.K., 2017. Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: Do we have the necessary standards? Frontiers in Environmental Science, v. 5, 41. https://doi.org/10.3389/fenvs.2017.00041.

Blanco-Canqui, H., 2024. Assessing the potential of nature-based solutions for restoring soil ecosystem services in croplands. In Science of the Total Environment, v. 921, 170854. https://doi.org/10.1016/j.scitotenv.2024.170854.

Boell, S.K.; Cecez-Kecmanovic, D., 2014. A Hermeneutic approach for conducting literature reviews and literature searches. Communications of the Association for Information Systems, v. 34. https://doi.org/10.17705/1CAIS.03412.

Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K., 2015. The interdisciplinary nature of SOIL. SOIL, v. 1, (1), 117-129. https://doi.org/10.5194/soil-1-117-2015.

Bronick, C.J.; Lal, R., 2005. Soil structure and management: A review. Geoderma, v. 124, (1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005.

Bucka, F.B.; Guigue, J.; Reifschneider, L.; Pihlap, E.; Garcia‐Franco, N.; Kühnel, A.; Kögel‐Knabner, I.; Vidal, A., 2024. From waste to soil: Can we create functioning manufactured soils by recycling rock processing waste? Soil Use and Management, v. 40, (3), e13094. https://doi.org/10.1111/sum.13094.

Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; Pulleman, M.; Sukkel, W.; van Groenigen, J.W.; Brussaard, L., 2018. Soil quality – A critical review. Soil Biology and Biochemistry, v. 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030.

Cappuyns, V., 2024. Carbon footprint calculations in the soil remediation sector: A comparative analysis. Science of the Total Environment, v. 915, 170100. https://doi.org/10.1016/j.scitotenv.2024.170100.

Carminati, A.; Kaestner, A.; Lehmann, P.; Flühler, H., 2008. Unsaturated water flow across soil aggregate contacts. Advances in Water Resources, v. 31, (9), 1221-1232. https://doi.org/10.1016/j.advwatres.2008.01.008.

Chen, S.; Chen, B.; Chen, G.; Ji, J.; Yu, W.; Liao, J.; Chen, G., 2021. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata. Science of the Total Environment, v. 752, 142279. https://doi.org/10.1016/j.scitotenv.2020.142279.

Chi, J.; Fan, Y.; Wang, L.; Putnis, C.V.; Zhang, W., 2022. Retention of soil organic matter by occlusion within soil minerals. Reviews in Environmental Science and Biotechnology, v. 21, (3), 727-746. https://doi.org/10.1007/s11157-022-09628-x.

Cotrufo, M.F.; Haddix, M.L.; Kroeger, M.E.; Stewart, C.E., 2022. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, v. 168, 108648. https://doi.org/10.1016/j.soilbio.2022.108648.

Cotrufo, M.F.; Lavallee, J.M., 2022. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, v. 172, 1-66. https://doi.org/10.1016/bs.agron.2021.11.002.

Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, v. 12, 989-994. https://doi.org/10.1038/s41561-019-0484-6.

Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J., 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, v. 8, 776-779. https://doi.org/10.1038/ngeo2520.

Davis, M.L.; Cornwell, D. A, 1991. Introduction to environmental engineering. McGraw-Hill, New York, 822 p.

De Laurentiis, V.; Maier, S.; Horn, R.; Uusitalo, V.; Hiederer, R.; Chéron-Bessou, C.; Morais, T.; Grant, T.; Milà i Canals, L.; Sala, S., 2024. Soil organic carbon as an indicator of land use impacts in life cycle assessment. International Journal of Life Cycle Assessment, v. 29, (7), 1190-1208. https://doi.org/10.1007/s11367-024-02307-9.

Deeb, M.; Groffman, P.; Blouin, M.; Perl Egendorf, S.; Vergnes, A.; Vasenev, V.; Cao, D.; Walsh, D.; Morin, T.; Séré, G., 2020. Using constructed soils for green infrastructure - Challenges and limitations. SOIL, v. 6, (2), 413-434. https://doi.org/10.5194/soil-6-413-2020.

Denef, K.; Six, J.; Merckx, R.; Paustian, K., 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil, v. 246, 185-200. https://doi.org/10.1023/A:1020668013524.

Dexter, A.R.; Richard, G.; Arrouays, D.; Czyz, E.A.; Jolivet, C.; Duval, O., 2008. Complexed organic matter controls soil physical properties. Geoderma, v. 144, (3-4), 620-627. https://doi.org/10.1016/j.geoderma.2008.01.022.

Dijkstra, F.A.; Zhu, B.; Cheng, W., 2021. Root effects on soil organic carbon: a double-edged sword. New Phytologist, v. 230, (1), 60-65. https://doi.org/10.1111/nph.17082.

Dina Ebouel, F.J.; Betsi, T.B.; Eze, P.N., 2024. Soil inorganic carbon: A review of global research trends, analytical techniques, ecosystem functions and critical knowledge gaps. Catena, v. 242, 108112. https://doi.org/10.1016/j.catena.2024.108112.

Ding, Z.; Liu, K.; Grunwald, S.; Smith, P.; Ciais, P.; Wang, B.; Wadoux, A.M.J.C.; Ferreira, C.; Karunaratne, S.; Shurpali, N.; Yin, X.; Roberts, D.; Madgett, O.; Duncan, S.; Zhou, M.; Liu, Z.; Harrison, M.T., 2025. Advancing soil organic carbon prediction: a comprehensive review of technologies, AI, process-based and hybrid modelling approacheS. Advanced Science, v. 12, (31), e04152. https://doi.org/10.1002/advs.202504152.

Don, A.; Seidel, F.; Leifeld, J.; Kätterer, T.; Martin, M.; Pellerin, S.; Emde, D.; Seitz, D.; Chenu, C., 2024. Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls. Global Change Biology, v. 30, (1), e16983. https://doi.org/10.1111/gcb.16983.

Dupla, X.; Bonvin, E.; Deluz, C.; Lugassy, L.; Verrecchia, E.; Baveye, P.C.; Grand, S.; Boivin, P., 2024. Are soil carbon credits empty promises? Shortcomings of current soil carbon quantification methodologies and improvement avenues. Soil Use and Management, v. 40, (3), e13092. https://doi.org/10.1111/sum.13092.

Dwivedi, D.; Tang, J.; Bouskill, N.; Georgiou, K.; Chacon, S.S.; Riley, W.J., 2019. Abiotic and biotic controls on soil organo mineral interactions: Developing model structures to analyze why soil organic matter persists. Reviews in Mineralogy and Geochemistry, v. 85, (1), 329-348. https://doi.org/10.2138/rmg.2019.85.11.

European Commission, 2023. Directive of the European Parliament and the Council on Soil Monitoring and Resilience: Soil Monitoring Law. Issue 416 final. European Commission, Europe. https://doi.org/10.2777/821504.

Evangelista, S.J.; Field, D.J.; McBratney, A.B.; Minasny, B.; Ng, W.; Padarian, J.; Dobarco, M.R.; Wadoux, A.M.J.C., 2024. Soil security - Strategizing a sustainable future for soil. Advances in Agronomy, v. 183, 1-70. https://doi.org/10.1016/bs.agron.2023.10.001

Evangelista, S.J.; Field, D.J.; McBratney, A.B.; Minasny, B.; Ng, W.; Padarian, J.; Román Dobarco, M.; Wadoux, A.M.J.C., 2023. A proposal for the assessment of soil security: Soil functions, soil services and threats to soil. Soil Security, v. 10, 100086. https://doi.org/10.1016/j.soisec.2023.100086.

Falloon, P.; Jones, C. D.; Ades, M.; Paul, K., 2011. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Global Biogeochemical Cycles, v. 25, (3). https://doi.org/10.1029/2010GB003938.

FAO, 2019. Measuring and modelling soil carbon stocks and stock changes in livestock production systems: guidelines for assessment: version 1. FAO, Rome, 170 p. (Accessed September 9, 2025) at:. http://www.fao.org/partnerships/leap/publications/en/.

Feeney, C.J.; Bentley, L.; De Rosa, D.; Panagos, P.; Emmett, B.A.; Thomas, A.; Robinson, D.A., 2024. Benchmarking soil organic carbon (SOC) concentration provides more robust soil health assessment than the SOC/clay ratio at European scale. Science of the Total Environment, v. 951, 175642. https://doi.org/10.1016/j.scitotenv.2024.175642.

Fredlund, D.G.; Rahardjo, H.; Fredlund, M.D., 2012. Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc., New Jersey, 939 p.

Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G. P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Alin, S.; Aragão, L.E.O.C.; Arneth, A.; Arora, V.; Bates, N.R.; … Zaehle, S., 2020. Global carbon budget 2020. Earth System Science Data, v. 12, (4), 3269-3340. https://doi.org/10.5194/ESSD-12-3269-2020.

Fukumasu, J.; Jarvis, N.; Koestel, J.; Kätterer, T.; Larsbo, M., 2022. Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties. European Journal of Soil Science, v. 73, (1), e13212. https://doi.org/10.1111/ejss.13212.

Fukumasu, J.; Jarvis, N.; Koestel, J.; Larsbo, M., 2024. Links between soil pore structure, water flow and solute transport in the topsoil of an arable field: Does soil organic carbon matter? Geoderma, v. 449, 117001. https://doi.org/10.1016/j.geoderma.2024.117001.

Galluzzi, G.; Plaza, C.; Priori, S.; Giannetta, B.; Zaccone, C., 2024. Soil organic matter dynamics and stability: Climate vs. time. Science of the Total Environment, v. 929, 172441. https://doi.org/10.1016/j.scitotenv.2024.172441.

Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; Riley, W.J.; Torn, M.S., 2022. Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, v. 13, (1), 3797. https://doi.org/10.1038/s41467-022-31540-9.

Georgiou, K.; Koven, C.D.; Wieder, W.R.; Hartman, M.D.; Riley, W.J.; Pett-Ridge, J.; Bouskill, N.J.; Abramoff, R.Z.; Slessarev, E.W.; Ahlström, A.; Parton, W.J.; Pellegrini, A.F.A.; Pierson, D.; Sulman, B.N.; Zhu, Q.; Jackson, R.B., 2024. Emergent temperature sensitivity of soil organic carbon driven by mineral associations. Nature Geoscience, v. 17, (3), 205-212. https://doi.org/10.1038/s41561-024-01384-7.

Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P., 2020. Processes that influence dissolved organic matter in the soil: A review. Scientia Agricola, v. 77, (3), e20180164. https://doi.org/10.1590/1678-992x-2018-0164.

Granja Dorilêo Leite, F.F.; Fontana, A.; Nóbrega, G.N.; Santos, F.M.; Rodrigues Alves, B.J.; da Silveira, J.G.; Cordeiro, R.C.; Cerri, C.E.P.; Firmino dos Santos, R.A.; Ribeiro Rodrigues, R. de A., 2025. Land use change effect on organic matter dynamics and soil carbon sequestration in the Brazilian Cerrado: A study case in Mato Grosso do Sul state (Midwest-Brazil). Catena, v. 249, 108670. https://doi.org/10.1016/j.catena.2024.108670.

Grim, R.E., 1968. Clay mineralogy. Second edition. McGraw-Hill, New York, 596 p.

Gross, C.D.; Harrison, R.B., 2019. The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, v. 3, (2), 28. https://doi.org/10.3390/soilsystems3020028.

Guo, J.; Li, G.; Zhu, Q.; Jiang, Y.; Guo, X.; Ding, L.; Zhao, X., 2024. Exploring the spatial relationship between soil quality index and soil ecosystem services driven by social-ecological factors: A peri-urban case study in central China. Catena, v. 245, 108350. https://doi.org/10.1016/j.catena.2024.108350.

Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; Zhang, H.; Zeng, C., 2021. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma, v. 398, 115118. https://doi.org/10.1016/j.geoderma.2021.115118.

Harwell, M.C.; Jackson, C.; Kravitz, M.; Lynch, K.; Tomasula, J.; Neale, A.; Mahoney, M.; Pachon, C.; Scheuermann, K.; Grissom, G.; Parry, K., 2021. Ecosystem services consideration in the remediation process for contaminated sites. Journal of Environmental Management, v. 285, 112102. https://doi.org/10.1016/j.jenvman.2021.112102.

Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, v. 191, (1), 77-87.

Heckman, K.A.; Possinger, A.R.; Badgley, B.D.; Bowman, M.M.; Gallo, A.C.; Hatten, J.A.; Nave, L.E.; SanClements, M.D.; Swanston, C.W.; Weiglein, T.L.; Wieder, W.R.; Strahm, B.D., 2023. Moisture-driven divergence in mineral-associated soil carbon persistence. Proceedings of the National Academy of Sciences of the United States of America, v. 120, (7), e2210044120. https://doi.org/10.1073/pnas.2210044120.

Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengard, S.Z.; Eglinton, T.I.; Derry, L.A.; Galy, V.V., 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, v. 570, 228-231. https://doi.org/10.1038/s41586-019-1280-6.

Huat, B.B.K.; Toll, D.G.; Prasad, A., 2012. Handbook of Tropical Residual Soils Engineering. Taylor & Francis, London.

Ibañez, J.P., 2008. Modelagem micro-mecânica discreta de solos residuais. Doctoral Thesis, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro.

Intergovernmental Panel on Climate Change (IPCC), 2001. Climate Change 2001: The Scientific Bases. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC..

Intergovernmental Panel on Climate Change (IPCC), 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Accessed September 8, 2025) at:. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.

Intergovernmental Panel on Climate Change (IPCC), 2023. Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647.001.

Jephita, G.; Jefline, K.; Willis, G.; Justice, N., 2023. Carbon stock, aggregate stability and hydraulic properties of soils under tillage, crop rotation and mineral fertiliser application in sub-humid Zimbabwe. Heliyon, v. 9, (5), e15846. https://doi.org/10.1016/j.heliyon.2023.e15846.

Jesús Melej, M.; Acevedo, S.E.; Contreras, C.P.; Giraldo, C.V.; Maurer, T.; Calderón, F.J.; Bonilla, C.A., 2024. Changes in macroaggregate stability as a result of wetting/drying cycles of soils with different organic matter and clay contents. Geoderma, v. 448, 116965. https://doi.org/10.1016/j.geoderma.2024.116965.

Jobbágy, E.G.; Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, v. 10, (2), 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

Johannes, A.; Matter, A.; Schulin, R.; Weisskopf, P.; Baveye, P.C.; Boivin, P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma, v. 302, 14-21. https://doi.org/10.1016/j.geoderma.2017.04.021.

Kaiser, K.; Guggenberger, G., 2003. Mineral surfaces and soil organic matter. European Journal of Soil Science, v. 54, (2), 219-236. https://doi.org/10.1046/j.1365-2389.2003.00544.x.

Kavukattu Sreekumar, K.; Anil Kumar, K.S.; Madhusoodanan Nair, K.P.; Beeman, K.; Manickam, L.; Sreekumar, P.; Ramamurthy, V., 2024. Assessing changes in soil organic carbon stocks and vulnerability to land degradation in Western Ghats, South India: Is it restorative enough? Soil Use and Management, v. 40, (2), e13056. https://doi.org/10.1111/sum.13056.

Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S., 2015. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy, v. 130, 1-140. https://doi.org/10.1016/bs.agron.2014.10.005.

Köchy, M.; Hiederer, R.; Freibauer, A., 2015. Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. SOIL, v. 1, (1), 351-365. https://doi.org/10.5194/soil-1-351-2015.

Kopittke, P.M.; Berhe, A.A.; Carrillo, Y.; Cavagnaro, T.R.; Chen, D.; Chen, Q.L.; Román Dobarco, M.; Dijkstra, F.A.; Field, D.J.; Grundy, M.J.; He, J.Z.; Hoyle, F.C.; Kögel-Knabner, I.; Lam, S.K.; Marschner, P.; Martinez, C.; McBratney, A.B.; McDonald-Madden, E.; Menzies, N.W.; Minasny, B., 2022. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. In Critical Reviews in Environmental Science and Technology, v. 52, (23), 4308-4324. https://doi.org/10.1080/10643389.2021.2024484.

Kopittke, P.M.; Dalal, R.C.; Hoeschen, C.; Li, C.; Menzies, N.W.; Mueller, C.W., 2020. Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma, v. 357, 113974. https://doi.org/10.1016/j.geoderma.2019.113974.

Kramer, M.G.; Chadwick, O.A., 2018. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nature Climate Change, v. 8 (12), 1104-1108. https://doi.org/10.1038/s41558-018-0341-4.

Krug, T.; Kurz, W.A.; Lasco, R.D.; Martino, D.L.; McConkey, B.G., 2006. Volume 4: Agriculture, Forestry and Other Land Use 2.2, 2006. IPCC Guidelines for National Greenhouse Gas Inventories.

Lal, R., 2004a. Soil carbon sequestration impacts on global climate change and food security. Science, v. 304, (5677), 1623-1627. https://doi.org/10.1126/science.1097396.

Lal, R., 2004b. Soil carbon sequestration to mitigate climate change. Geoderma, v. 123, (1-2), 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032.

Lal, R., 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science, v. 1, (1), 86-100. https://doi.org/10.1039/b809492f.

Lal, R., 2020. Soil organic matter and water retention. Agronomy Journal, v. 112, (5), 3265-3277. https://doi.org/10.1002/agj2.20282.

Lal, R.; Negassa, W.; Lorenz, K., 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability, v. 15, 79-86. https://doi.org/10.1016/j.cosust.2015.09.002.

Latawiec, A.E.; Rodrigues, A.; Korys, K.A.; Medeiros, B., 2022. Methodical aspects of soil ecosystem services valuation. Agricultural Engineering, v. 26, (1), 39-49. https://doi.org/10.2478/agriceng-2022-0004.

Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F., 2019. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, v. 26, (1), 261-273. https://doi.org/10.1111/gcb.14859.

Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; Wieder, W.R.; Kögel-Knabner, I., 2020. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, v. 13, (8), 529-534. https://doi.org/10.1038/s41561-020-0612-3.

Lehmann, J.; Kinyangi, J.; Solomon, D., 2007. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, v. 85, (1), 45-57. https://doi.org/10.1007/s10533-007-9105-3.

Lehmann, J.; Kleber, M., 2015. The contentious nature of soil organic matter. Nature, v. 528, (7580), 60-68. https://doi.org/10.1038/nature16069.

Leuthold, S.J.; Haddix, M.L.; Lavallee, J.; Cotrufo, M.F., 2022. Physical fractionation techniques. Reference Module in Earth Systems and Environmental Sciences, v. 2, 68-80. https://doi.org/10.1016/b978-0-12-822974-3.00067-7.

Li, F.; Zhang, X.; Zhao, Y.; Song, M.; Liang, J., 2023. Soil quality assessment of reclaimed land in the urban-rural fringe. Catena, v. 220, (Part A), 106692. https://doi.org/10.1016/j.catena.2022.106692.

Lorenz, K.; Lal, R.; Ehlers, K., 2019. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degradation and Development, v. 30, (7), 824-838. https://doi.org/10.1002/ldr.3270.

Luo, Z.; Viscarra-Rossel, R., 2020. Soil properties override climate controls on global soil organic carbon stocks. Biogeosciences, preprint. https://doi.org/10.5194/bg-2020-298.

Luo, Z.; Viscarra-Rossel, R.A.; Qian, T., 2021. Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world. Biogeosciences, v. 18, (6), 2063-2073. https://doi.org/10.5194/bg-18-2063-2021.

Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H., 2006. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - A review. European Journal of Soil Science, v. 57, (4), 426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x.

Mäkipää, R.; Menichetti, L.; Martínez-García, E.; Törmänen, T.; Lehtonen, A., 2024. Is the organic carbon-to-clay ratio a reliable indicator of soil health? Geoderma, v. 444, 116862. https://doi.org/10.1016/j.geoderma.2024.116862.

McBratney, A.; Field, D.J.; Koch, A., 2014. The dimensions of soil security. Geoderma, v. 213, 203-213. https://doi.org/10.1016/j.geoderma.2013.08.013.

Millennium Ecosystem Assessment (MEA), 2003. Ecosystems and Human Well-Being: a Framework for Assessment. MEA.

Mitchell, J.K.; Soga, K., 2005. Fundamentals of soil behavior. Third edition. John Wiley & Sons, New Jersey, 522 p.

Muhammad, M.; Wahab, A.; Waheed, A.; Hakeem, K.R.; Mohamed, H.I.; Basit, A.; Toor, M.D.; Liu, Y.H.; Li, L.; Li, W.J., 2025. Navigating climate change: exploring the dynamics between plant–soil microbiomes and their impact on plant growth and productivity. Global Change Biology, v. 31, (2), e70057. https://doi.org/10.1111/gcb.70057.

Olson, K.R.; Al-Kaisi, M.M.; Lal, R.; Lowery, B., 2014. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal, v. 78, (2), 348-360. https://doi.org/10.2136/sssaj2013.09.0412.

O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C., 2021. The ecosystem services of urban soils: A review. Geoderma, v. 395, 115076. https://doi.org/10.1016/J.GEODERMA.2021.115076.

Orlova, K.S.; Savin, I.Y., 2024. Ecosystem services provided by urban soils and their assessment: a review. Eurasian Soil Science, v. 57, (6), 1072-1083. https://doi.org/10.1134/S1064229324600155.

Paltineanu, C.; Dumitru, S.; Vizitiu, O.; Mocanu, V.; Lăcătusu, A.R.; Ion, S.; Domnariu, H., 2024. Soil organic carbon and total nitrogen stocks related to land use and basic environmental properties − assessment of soil carbon sequestration potential in different ecosystems. Catena, v. 246, 108435. https://doi.org/10.1016/j.catena.2024.108435.

Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P., 2016. Climate-smart soils. Nature, v. 532, (7597), 49-57. https://doi.org/10.1038/nature17174.

Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C., 2018. Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science and Health, v. 5, 7-13. https://doi.org/10.1016/j.coesh.2017.12.003.

Poeplau, C.; Don, A.; Six, J.; Kaiser, M.; Benbi, D.; Chenu, C.; Cotrufo, M.F.; Derrien, D.; Gioacchini, P.; Grand, S.; Gregorich, E.; Griepentrog, M.; Gunina, A.; Haddix, M.; Kuzyakov, Y.; Kühnel, A.; Macdonald, L.M.; Soong, J.; Trigalet, S.; Nieder, R., 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry, v. 125, 10-26. https://doi.org/10.1016/j.soilbio.2018.06.025.

Poeplau, C.; Gregorich, E., 2022. Advances in measuring soil organic carbon stocks and dynamics at the profile scale. Burleigh Dodds Science Publishing Limited, Cambridge. https://doi.org/10.19103/as.2022.0106.10.

Poeplau, C.; Vos, C.; Don, A., 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. SOIL, v. 3, (1), 61-66. https://doi.org/10.5194/SOIL-3-61-2017.

Poeplau, C.; Jacobs, A.; Don, A.; Vos, C.; Schneider, F.; Wittnebel, M.; Tiemeyer, B.; Heidkamp, A.; Prietz, R.; Flessa, H., 2020. Stocks of organic carbon in German agricultural soils: Key results of the first comprehensive inventory. Journal of Plant Nutrition and Soil Science, 183, (6), 665-681. https://doi.org/10.1002/jpln.202000113.

Possinger, A.R.; Zachman, M.J.; Enders, A.; Levin, B.D.A.; Muller, D.A.; Kourkoutis, L.F.; Lehmann, J., 2020. Organo–organic and organo–mineral interfaces in soil at the nanometer scale. Nature Communications, v. 11, (1), 6103. https://doi.org/10.1038/s41467-020-19792-9.

Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L., 2002. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, v. 116, (Suppl. 1), S107-118. https://doi.org/10.1016/S0269-7491(01)00263-9.

Prescott, C.E.; Vesterdal, L., 2021. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, v. 498, 119522. https://doi.org/10.1016/j.foreco.2021.119522.

Primavesi, A.M., 2018. A biocenose do solo na produção vegetal e deficiências minerais em culturas: nutrição e produção vegetal. Expressão Popular, São Paulo, 608 p.

Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.D.; Haefele, S.M., 2021. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. European Journal of Soil Science, v. 72, (6), 2493-2503. https://doi.org/10.1111/ejss.13012.

Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J., 2018. Soil structure as an indicator of soil functions: A review. Geoderma, v. 314, 122-137. https://doi.org/10.1016/j.geoderma.2017.11.009.

Raiesi, F., 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, v. 75, 307-320. https://doi.org/10.1016/j.ecolind.2016.12.049.

Ridsdale, D.R.; Noble, B.F., 2016. Assessing sustainable remediation frameworks using sustainability principles. Journal of Environmental Management, v. 184, (Part 1), 36-44. https://doi.org/10.1016/j.jenvman.2016.09.015.

Rocci, K.S.; Lavallee, J.M.; Stewart, C.E.; Cotrufo, M.F., 2021. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment, v. 793, 148569. https://doi.org/10.1016/j.scitotenv.2021.148569.

Rodrigues, A.F.; Latawiec, A.E.; Reid, B.J.; Solórzano, A.; Schuler, A.E.; Lacerda, C.; Fidalgo, E.C.C.; Scarano, F.R.; Tubenchlak, F.; Pena, I.; Vicente-Vicente, J.L.; Korys, K.A.; Cooper, M.; Fernandes, N.F.; Prado, R.B.; Maioli, V.; Dib, V.; Teixeira, W.G., 2021. Systematic review of soil ecosystem services in tropical regions. Royal Society Open Science, v. 8, (3). https://doi.org/10.1098/rsos.201584.

Rodríguez-Albarracín, H.S.; Demattê, J.A.M.; Rosin, N.A.; Contreras, A.E.D.; Silvero, N.E.Q.; Cerri, C.E.P.; Mendes, W. de S.; Tayebi, M., 2023. Potential of soil minerals to sequester soil organic carbon. Geoderma, v. 436, 116549. https://doi.org/10.1016/j.geoderma.2023.116549.

Roy, B.; Sagan, V.; Alifu, H.; Saxton, J.; Ghoreishi, D.; Shakoor, N., 2024. Soil carbon estimation from hyperspectral imagery with wavelet decomposition and frame theory. IEEE Trans Geosci Remote Sens, v. 62. https://doi.org/10.1109/TGRS.2024.3461628.

Santos Brito, A.; Libardi, P.L.; Mota, J.C.A.; Moraes, S.O., 2011. Estimativa da capacidade de campo pela curva de retenção e pela densidade de fluxo da água. Revista Brasileira de Ciências do Solo, v. 35, (6), 1939-1948. https://doi.org/10.1590/S0100-06832011000600010.

Scartazza, A.; Gavrichkova, O.; Pini, R.; D’Acqui, L.P., 2023. Physically protected organic matter drives soil carbon sequestration potential of a managed grassland ecosystem in Italian Alps. Geoderma Regional, v. 34, e00686. https://doi.org/10.1016/j.geodrs.2023.e00686.

Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, v. 478, (7367), 49-56. https://doi.org/10.1038/nature10386.

Séré, G.; Lothode, M.; Blanchart, A.; Chirol, C.; Tribotte, A.; Schwartz, C., 2024. Destisol: A decision-support tool to assess the ecosystem services provided by urban soils for better urban planning. European Journal of Soil Science, v. 75, (5), e13557. https://doi.org/10.1111/ejss.13557.

Sharififar, A.; Minasny, B.; Arrouays, D.; Boulonne, L.; Chevallier, T.; van Deventer, P.; Field, D.J.; Gomez, C.; Jang, H.; Jeon, S.; Koch, J.; McBratney, A.B.; Malone, B.P.; Marchant, B.P.; Martin, M.P.; Monger, C.; Munera-Echeverri, J.L.; Padarian, J.; Pfeiffer, M.; Richer-de-Forges, A.C.; Saby, N.P.A.; Singh, K.; Song, X.; Zamanian, K.; Zhang, G.; van Zijl, G., 2023. Soil inorganic carbon, the other and equally important soil carbon pool: distribution, controlling factors, and the impact of climate change. Advances in Agronomy, v. 178, 165-231. https://doi.org/10.1016/bs.agron.2022.11.005.

Si, Y.; Xiong, L.; Chen, Y.; Zhu, J.; Xie, J.; Gao, R.; Yang, Y., 2018. Contribution of the vertical movement of dissolved organic carbon to carbon allocation in two distinct soil types under Castanopsis fargesii Franch. and C. carlesii (Hemsl.) Hayata forests. Annals of Forest Science, v. 75, (3), 79. https://doi.org/10.1007/s13595-018-0756-0.

Sims, N.C.; Barger, N.N.; Metternicht, G.I.; England, J.R., 2020. A land degradation interpretation matrix for reporting on UN SDG indicator 15.3.1 and land degradation neutrality. Environmental Science and Policy, v. 114, 1-6. https://doi.org/10.1016/j.envsci.2020.07.015.

Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C- saturation of soils, 2002. Plant and Soil, v. 241, 155-176. https://doi.org/10.1023/A:1016125726789.

Six, J.; Doetterl, S.; Laub, M.; Müller, C.R.; Van De Broek, M., 2024. The six rights of how and when to test for soil C saturation. SOIL, v. 10, (1), 275-279. https://doi.org/10.5194/soil-10-275-2024.

Smith, P.; Lutfalla, S.; Riley, W.J.; Torn, M.S.; Schmidt, M.W.I.; Soussana, J.F., 2018. The changing faces of soil organic matter research. European Journal of Soil Science, v. 69, (1), 23-30. https://doi.org/10.1111/ejss.12500.

Souza Medeiros, A. de; Silva Soares, A.A.; Ferreira Maia, S.M., 2022. Soil carbon stocks and compartments of organic matter under conventional systems in Brazilian semi-arid region. Revista Caatinga, v. 35, (3), 697-710. https://doi.org/10.1590/1983-21252022v35n321rc.

Sun, G.; Mu, M., 2022. Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model. Ecological Complexity, v. 50, 100986. https://doi.org/10.1016/j.ecocom.2022.100986.

Sun, Y.; Wang, X.; Zhang, Y.; Duan, W.; Xia, J.; Wu, J.; Deng, T., 2024. Vegetation types can affect soil organic carbon and δ13C by influencing plant inputs in topsoil and microbial residue carbon composition in subsoil. Sustainability, v. 16, (11), 4538. https://doi.org/10.3390/su16114538.

Tan, K.H., 2003. Humic matter in soil and the environment: principles and controversies. Marcel Dekker, New York, 408 p.

van den Bergh, S.G.; Chardon, I.; Leite, M.F.A.; Korthals, G.W.; Mayer, J.; Cougnon, M.; Reheul, D.; de Boer, W.; Bodelier, P.L.E., 2024. Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils. Soil Biology and Biochemistry, v. 191, 109354. https://doi.org/10.1016/j.soilbio.2024.109354.

Védère, C.; Lebrun, M.; Honvault, N.; Aubertin, M.L.; Girardin, C.; Garnier, P.; Dignac, M.F.; Houben, D.; Rumpel, C., 2022. How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Science Reviews, v. 234, 104214. https://doi.org/10.1016/j.earscirev.2022.104214.

Verma, P.; Ghosh, P.K., 2024. The economics of forest carbon sequestration: a bibliometric analysis. Environment, Development and Sustainability, v. 26, (2), 2989-3019. https://doi.org/10.1007/s10668-023-02922-w.

von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B., 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, v. 39, (9), 2183-2207. https://doi.org/10.1016/j.soilbio.2007.03.007.

Xiao, C.L.; Ji, N.H.; Wang, P.; He, J.R.; Wang, X.; Li, L., 2025. Crop diversity significantly enhances soil carbon sequestration via alleviating soil inorganic carbon decline caused by rhizobium inoculation. Soil and Tillage Research, v. 245, 106286. https://doi.org/10.1016/j.still.2024.106286

Wang, M.; Zhang, S.; Guo, X.; Xiao, L.; Yang, Y.; Luo, Y.; Mishra, U.; Luo, Z., 2024. Responses of soil organic carbon to climate extremes under warming across global biomes. Nature Climate Change, v. 14, (1), 98-105. https://doi.org/10.1038/s41558-023-01874-3.

Wei, Y.; Wang, M.; Viscarra Rossel, R.A.; Chen, H.; Luo, Z., 2024. Extreme climate as the primary control of global soil organic carbon across spatial scales. Global Biogeochemical Cycles, v. 38, (11), e2024GB008200. https://doi.org/10.1029/2024GB008200.

Yu, F.; Liu, Q.; Fan, C.; Li, S., 2023. Modeling the vertical distribution of soil organic carbon in temperate forest soils on the basis of solute transport. Frontiers in Forests and Global Change, v. 6, 1228145. https://doi.org/10.3389/ffgc.2023.1228145.

Yusuf, A.Y.; Silvester, E.; Brkljaca, R.; Birnbaum, C.; Chapman, J.; Grover, S., 2024. Peatland carbon chemistry, amino acids and protein preservation in biogeochemically distinct ecohydrologic layers. European Journal of Soil Science, v. 75, (3), e13518. https://doi.org/10.1111/ejss.13518.

Downloads

Published

2025-10-11

How to Cite

Antunes, M. C., Campos, T. M. P. de, & Araruna Júnior, J. T. (2025). Soil carbon storage and retention: a critical synthesis on concepts, research opportunities and sustainable application in environmental engineering. Revista Brasileira De Ciências Ambientais, 60, e2704. https://doi.org/10.5327/Z2176-94782704