Use of Azadirachta indica extract in the control of contaminant bacteria in fermentation processes
DOI:
https://doi.org/10.5327/Z2176-94782409Keywords:
secondary metabolites; neem; Leuconostoc mesenteroides; Lactobacillus fermentum; alcoholic fermentation.Abstract
Considering that gram-positive contaminant bacteria may compromise the alcoholic fermentation process for ethanol production, natural biocides are sought for use in controlling such microorganisms. In this sense, neem (Azadirachta indica), known for its biological properties, emerges as a solution for controlling these contaminations. This study aimed to evaluate the antimicrobial activity of neem leaf, bark, and seed extracts, correlating them to the presence of secondary metabolites, thus determining their biocide potential. The extracts were obtained by maceration in ethanol and phytochemically analyzed through thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR), with the quantification of total phenolics, total flavonoids, total tannins, and antioxidant activity. The antimicrobial activity was evaluated through disk diffusion tests and the minimum inhibitory concentration (MIC) determination, using L. fermentumand L. mesenteroides as bacterial models. The tests showed that the leaf and bark extracts inhibited bacterial growth without affecting the yeast S. cerevisiae, with an efficacy of 50 and 30 mg/mL, respectively. A phytochemical analysis revealed the predominance of flavonoids in the leaves and a more significant concentration of tannins in the bark, both of which are recognized for their antimicrobial properties. The extracts also presented high levels of phenolic compounds, reinforcing their bacterial efficacy, while the antioxidant activity of the bark suggests a complementary role of action of the extract. The seed extract did not show antimicrobial activity. Hence, the neem leaf and bark extracts have biocide potential to be used in alcoholic fermentation.
Downloads
References
Abdulkadir, A.R.; Mat, N.; Jahan, S., 2017. In-vitro antioxidant potential in leaf, stem and bark of Azadirachta indica. Pertanika Journal of Tropical Agricultural Science, v. 40 (4), 497-506. ISSN: 1511-3701.
Adaramola, F.; Adewole, S.; Adewole, O., 2023. Assessment of Phytochemicals, Antioxidant and Antimicrobial Activities of Aqueous Ethanol Extract and Fractions of Azadirachta indica Stem Bark. International Journal of Science for Global Sustainability, v. 9 (1), 13-13. https://doi.org/10.57233/ijsgs.v9i1.401.
Airaodion, A.I.; Olatoyinbo, P.O.; Ogbuagu, U.; Ogbuagu, E.O.; Akinmolayan, J.D.; Adekale, O.A.; Airaodion, E.O., 2019. Comparative assessment of phytochemical content and antioxidant potential of Azadirachta indica and Parquetina nigrescens leaves. Asian Plant Research Journal, v. 2 (3), 1-14. https://doi.org/10.9734/aprj/2019/v2i330045.
Alexandre, A.S.; Rocha, W.C., 2017. Perfil cromatográfico por TLC do óleo e dos extratos das folhas e caule de andiroba, Carapa guianensis Aubl. Scientia Amazonia, v. 6 (2), 117-125, 2017. ISSN: 2238.1910.
Alqahtani, S.M., 2020. Antimicrobial efficacy of neem and liquorice with chlorhexidine on Streptococcus sanguis, Streptococcus mutans, Lactobacillus and Actinomyces naeslundii – An In Vitro Study. BioRxiv, 2020.09. 23.311019. https://doi.org/10.1101/2020.09.23.311019.
Ammara, A.; Sobia, A.; Nureen, Z.; Sohail, A.; Abid, S.; Aziz, T.; Nahaa, M.; Rewaa, S., Ahellah, M.; Nouf, S.; Nehad, A.; Manal, Y.; Amnah, A.; Majid, A.; Abdulhakeem, S.; Anas, S.; Saa, A., 2023. Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. European Review for Medical & Pharmacological Sciences, v. 27 (13), 5951-5963. https://doi.org/10.26355/eurrev_202307_32947.
Araújo, A.B.C.; Dias, A.J.S.; Freitas, R.L.S.; Nunes, A.R.; Silva, G.A.; Santos, D.C., 2020. Prospecção Química e avaliação da atividade biológica da própolis de Salinópolis, Pará. Revista Virtual de Química, v. 12 (2), 492-499. ISSN: 1984-6835
Atta, N.M.; Ismaiel, G.H.; Hashish, A.E.M.S.; Mohamed, E.S., 2015. Physical and chemical characteristics of neem oils extracted from seed, whole fruit and flesh. Egyptian Journal of Agricultural Research, v. 93 (3), 887-899. https://doi.org/10.21608/ejar.2015.155469.
Baby, A.R.; Freire, T.B.; Marques, G.A.; Rijo, P.; Lima, F.V.; Carvalho, J.C.M.; Rojas, J.; Magalhães, W.V.; Velasco, M.V.R.; Morocho-Jácome, A.L., 2022. Azadirachta indica (Neem) as a potential natural active for dermocosmetic and topical products: a narrative review. Cosmetics, v. 9 (3), 58. https://doi.org/10.3390/cosmetics9030058.
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, v. 6 (2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005.
Bappah, A.M.; Qossim, M.; Dambam, Z. N.; Usman, A. S.; Awalu, U., 2022. Antibacterial Activity of Alkaloid, Flavonoids and Lipids from Crude Extracts of Azadirachta indica on Some Selected Medically Important Bacteria. Journal of Biochemistry, Microbiology and Biotechnology, v. 10 (2), 20-24. https://doi.org/10.54987/jobimb.v10i2.752.
Bhatti, N.; Hajam, Y.A.; Mushtaq, S.; Kaur, L.; Kumar, R.; Rai, S., 2024. A review on dynamic pharmacological potency and multifaceted biological activities of propolis. Discover Sustainability, v. 5 (1), 185. https://doi.org/10.1007/s43621-024-00375-3.
Bischoff, K.; Zhang, Y.; Rich, J., 2016. Destino da virginiamicina através do processo de produção de etanol combustível. World Journal of Microbiology and Biotechnology, v. 32 (76), 1-7. https://doi.org/10.1007/s11274-016-2026-3.
Brexó, R.P.; Sant’Ana, A.S., 2017. Impact and significance of microbial contamination during fermentation for bioethanol production. Renewable and Sustainable Energy Reviews, v. 73, 423-434. https://doi.org/10.1016/j.rser.2017.01.151.
Chen, J.; Henny, R.J.; Mcconnell, D.B., 2023. Environmental factors regulate plant secondary metabolites. Plants, v. 12 (3), 447. https://doi.org/10.3390/plants12030447.
Clinical Laboratory Standards Institute (CLSI), 2010. Metodologia dos testes de sensibilidade a agentes antimicrobianos por diluição para bactéria de crescimento aeróbico. 6. ed. M7-A6, 23 (2), 49. M7 A6. Clinical and Laboratory Standards Institute, Wayne, PA.
Corrêa, T.A.; Moiana, C.C.R.; Rocha, L.P.; Franco, A.L.; Costa, G.H.G., 2025. Vanilla bahiana Hoehne: Caracterização Química e Avaliação de Atividade Antimicrobiana. Fronteiras: Journal of Social, Technological and Environmental Science, v. 14, 87-98. https://doi.org/10.21664/2238-8869.2025v14i1p.87-98.
Fadel, M.; Zohri, A.N.A.; El-Heeny, M.S.; Abdel Aziz, A.M., 2018. Managing of bacterial contamination in alcoholic fermentation of sugar cane molasses. Asian Journal of Science and Technology, v. 9 (1), 7383-7391. ISSN: 0976-3376.
Fernandes, P.A.d.S.; Pereira, R.L.S.; Santos, A.T.L.d.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; da Silva, V.B.; Costa, A.R.; Generino, M.E M.; de Oliveira, M.G.; de Menezes, S.A.; Santos, L.T.d.; Siyadatpanah, A.; Wilairatana, P.; Portela, T.M.A.; Gonçalo, M.A.B.F.; Almeida-Bezerra, J.W., 2022. Phytochemical Analysis, Antibacterial Activity and Modulating Effect of Essential Oil from Syzygium cumini (L.) Skeels. Molecules, v. 27 (10), 3281. https://doi.org/10.3390/molecules27103281.
Fernando, S.M.; Dissanayake, I., 2020. Determination of the antioxidant capacity of different solvent extractions of leaves and bark of Azadirachta indica (Neem), Medicinal Plant, v. 6 (5), 61-75.
Francolini, I.; Piozzi, A., 2020. Role of antioxidant molecules and polymers in prevention of bacterial growth and biofilm formation. Current Medicinal Chemistry, v. 27 (29), 4882-4904. https://doi.org/10.2174/0929867326666190409120409.
Galeane, M.; Martins, C.; Massuco, J.; Bauab, T.; Sacramento, L., 2017. Phytochemical screening of Azadirachta indica A. Juss for antimicrobial activity. African Journal of Microbiology Research, v. 11 (4), 117-122. https://doi.org/10.5897/AJMR2016.8337.
Haroun, M.A.; Ahmed, M.M., 2022. Hide-power and combined methods for characterization of vegetable tannin in plant. GSC Advanced Research and Reviews, v. 13, (3), 097-102. https://doi.org/10.30574/gscarr.2022.13.3.0348.
Himalaya Global Holdings, 2020. Purifying Neem Face Wash (Accessed March 30, 2025) at:. https://himalayaglobalholdings.com/products/purifying-neem-face-wash.
Khaliullina, A.; Kolesnikova, A.; Khairullina, L.; Morgatskaya, O.; Shakirova, D.; Patov, S.; Nekrasova, P.; Bogachev, M.; Kurkin, V.; Trizna, E.; Kayumov, A., 2024. The antimicrobial potential of the hop (Humulus lupulus L.) extract against Staphylococcus aureus and oral streptococci. Pharmaceuticals, v. 17 (2), 162. https://doi.org/10.3390/ph17020162.
Lazzarotto, S.R.S.; Scherruth, M.S.F.; Calixto, P.S.; Carraro, M.M.; Silveira, A.C.; Lazzarotto, M., 2020. Método de Folin-Ciocalteau adaptado para quantificar polifenóis em extratos de erva-mate. Revista Movimenta, v.13 (3), 419-426.
Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F., 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, v. 25 (20), 4672. https://doi.org/10.3390/molecules25204672.
Lino, F.S.O.; Garg, S.; Li, S.S.; Misiakou, M.A.; Kang, K.; Costa, B.L.V. da.; Beyer-Pedersen, T.S.A.; Giacon, T.G.; Basso, T.O.; Panagiotou, G.; Sommer, M.O.A., 2024. Strain dynamics of contaminating bacteria modulate the yield of ethanol biorefineries. Nature Communications, v. 15 (1), 5323. https://doi.org/10.1038/s41467-024-49683-2.
Mahizan, N.; Yang, S.; Moo, C.; Song, A.; Chong, C.; Chong, C.; Abushelaibi, A.; Lim, S.; Lai, K., 2019. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Moléculas, v. 24 (14), 2631. https://doi.org/10.3390/molecules24142631.
Minitab, 2024. Software informer. version 17.1.0 (Accessed November 1, 2024) at:. https://minitab.informer.com/17.1/
Mota, N.C.J., 2023. Efeito da aplicação foliar de silício na fisiologia e na qualidade da produção da casta Touriga Francesa–Douro Superior. Dissertação (Mestrado) – Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. Retrieved 2025-03-31, from https://repositorio.utad.pt/server/api/core/bitstreams/742fc4bc-b797-4948-85af-50a3d5e5ac55/content.
Nagano, M.S.; Batalini, C., 2021. Phytochemical screening, antioxidant activity and potential toxicity of Azadirachta indica A. Juss (Neem) leaves. Revista Colombiana de Ciências Químico-Farmacéuticas, v. 50 (1), 29-47. https://doi.org/10.15446/rcciquifa.v50n1.95447.
Ortolan, S.A.; Hermes, V.C.; Pedroso, P.S.; Leal, V.L.; Tischer, B.; Possuelo, L.G.; Silva, C.M., 2019. Determinação da atividade antioxidante das matrizes vegetais Capsicum chinense, Capsicum frutescens e Tripodanthus acutifolius. Revista Jovens Pesquisadores, v. 9 (2), 99-105. https://doi.org/10.17058/rjp.v9i2.13419.
Patil S.M.; Shirahatti P.S.; Ramu R., 2022. Azadirachta indica A. Juss (Neem) against diabetes mellitus: a critical review on its phytochemistry, pharmacology, and toxicology. Journal of Pharmacy and Pharmacology, v. 74 (5), 681-710. https://doi.org/10.1093/jpp/rgab098.
Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R., 2015. Introdução à Espectroscopia. Tradução da 5ª edição norte-americana. Cengage Learning, São Paulo.
Prasad, K.; Sasi, S.; Weerasinghe, J.; Levchenko, I.; Bazaka, K., 2023. Enhanced antimicrobial activity through synergistic effects of cold atmospheric plasma and plant secondary metabolites: opportunities and challenges. Molecules, v. 28 (22), 7481. https://doi.org/10.3390/molecules28227481.
Senne de Oliveira Lino, F.; Bajic, D.; Vila, J.C.C.; Sánchez, A.; Sommer, M.O.A, 2021. Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nature Communications, v. 12, 1498. https://doi.org/10.1038/s41467-021-21844-7.
Shaheen, G.; Ashfaq, A.; Shamim, T.; Asif, H.M.; Ali, A.; Rehman, S.-u.; Sumreen, L., 2022. Antioxidant, antimicrobial, phytochemical and FTIR analysis of Peganum harmala (fruit) ethanolic extract from Cholistan Desert, Pakistan. Dose-Response: An International Journal, v. 20 (3), 1-7. https://doi.org/10.1177/15593258221126832.
Silva, F.R.G.; Matias, T.M.S.; Souza, L.I.O.; Matos-Rocha, T.J.; Fonseca, A.S.; Mousinho, K.C.; Santos, A.F., 2019. Triagem fitoquímica e atividades antibacteriana, antifúngica, antioxidante e antitumoral in vitro da própolis vermelha de Alagoas. Revista Brasileira de Biologia, v. 79 (3), 452-459. https://doi.org/10.1590/1519-6984.182959 PMid:30379200.
Silva, H.H.G.D.; Silva, I.G.D.; Santos, R.M.G.D.; Rodrigues Filho, E.; Elias, C.N., 2004. Atividade larvicida de taninos isolados de Magonia pubescens St. Hil. (Sapindaceae) sobre Aedes aegypti (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, v. 37 (5), 396-399. https://doi.org/10.1590/s0037-86822004000500005.
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J., 2019. Identificação espectrométrica de compostos orgânicos. 8. ed. LTC, Rio de Janeiro.
Sousa, J.A.C., 2020. Fitoquímica, citotoxicidade e atividade anti-zika vírus in vitro de extratos etanólicos de espécies da família Rutaceae. Dissertação (Mestrado), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais. Retrieved 2025-02-15, from http://www.repositorio.ufop.br/jspui/handle/123456789/12965
Tasanarong, T.; Patntirapong, S.; Aupaphong, V., 2021. The inhibitory effect of a novel neem paste against cariogenic bacteria. Journal of Clinical and Experimental Dentistry, v. 13 (11), e1083. https://doi.org/10.4317/jced.5878.
Von Zuben, G.; De Souza, E.O., 2022. Identificação de flavonoides em extrato vegetal de Passiflora incarnata Linnaeus utilizando cromatografia em camada delgada (CCD). Revista Eletrônica FACP, (22).
Wagner, H.; Bladt, S., 2009. Plant drug analysis: A thin layer chromatography atlas. 2. ed. Springer Verlag, Berlim Heidelberg.
Wylie, M.R.; Merrell, D.S., 2022. The antimicrobial potential of the neem tree (Azadirachta indica). Frontiers in Pharmacology, v. 13, 891535. https://doi.org/10.3389/fphar.2022.891535.
Yarmohammadi, F.; Mehri S.; Najafi N.; Salar Amoli S.; Hosseinzadeh H., 2021. The Protective Effect of Azadirachta indica (Neem) against Metabolic Syndrome: A Review. Iranian Journal of Basic Medical Sciences, v. 24 (3), 280-292. https://doi.org/10.22038/ijbms.2021.48965.11218.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

This work is licensed under a Creative Commons Attribution 4.0 International License.