Association between microplastics and biofilm: a new perspective for monitoring microplastics in urban rivers
DOI:
https://doi.org/10.5327/Z2176-94782333Keywords:
emerging contaminants; aquatic matrices; surface water; biofilm.Abstract
Biofilm has an enormous capacity to accumulate pollutants, reflecting what happens for days in the water column of a river. However, there is a gap in using biofilm as a matrix for monitoring microplastics, especially in urban rivers. This study proposed using biofilms in environmental monitoring investigations of microplastic occurrence as a significant contribution to water and sediment analysis. To this end, a bibliographic review was carried out on databases regarding: monitoring microplastics in Brazilian rivers; and adsorption of emerging contaminants in microplastics associated with biofilms in fresh water. Additionally, the relevance of biofilms as bioaccumulators of pollution in their environment was highlighted. Based on the studies analyzed, it was observed that the evaluation of biofilms could broaden the view of microplastic pollution occurring within a water body, especially when compared to the analysis of water and sediment in the same period and environment.
Downloads
References
Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N., 2018. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science & Technology, v. 52 (4), 1704-1724. https://doi.org/10.1021/acs.est.7b05559.
Amaral-Zettler, L.A.; Zettler, E.R.; Mincer, T.J., 2020. Ecology of the plastisphere. Nature Reviews. Microbiology, v. 18, 139-151. https://doi.org/10.1038/s41579-019-0308-0.
Andrus, J.M.; Winter, D.; Scanlan, M.; Sullivan, S.; Bollman, W.; Waggoner, J.B.; Hosmer, A J.; Brain, R.A., 2013. Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment. Science of The Total Environment, v. 458-460, 125-139. https://doi.org/10.1016/j.scitotenv.2013.03.070.
Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I., 2016. The ecology and biogeochemistry of streambiofilms. Nature Reviews Microbiology. v. 14 (4), 251-263. https://doi.org/10.1038/nrmicro.2016.15.
Bechtold, H.A.; Marcarelli, A.M.; Baxter, C.V.; Inouye, R.S., 2012. Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnology and Oceanography. 57 (5), 1544-1554. https://doi.org/10.4319/lo.2012.57.5.1544.
Bertoldi, C.; Lara, L.Z.; Fernandes, A. N., 2023. Revealing microplastic dynamics: the impact of precipitation and depth in urban river ecosystems. Environmental Science and Pollution Research, v. 30, 111231-111243. https://doi.org/10.1007/s11356-023-30241-0.
Bertoldi, C.; Lara, L.Z.; Mizushima, F.A.L.; Martins, F.C.G.; Battisti, M.A.; Hinrichs, R.; Fernandes, A.N., 2021. First evidence of microplastic contamination in the freshwater of Lake Guaíba, Porto Alegre, Brazil. Science of the Total Environment, v. 759, 1-12. https://doi.org/10.1016/j.scitotenv.2020.143503.
Biamont-Rojas, I.E.; Cardoso-Silva, S.; Pompêo, M., 2022. Heterogeneidade espacial e ecotoxicidade de metais no sedimento em três reservatórios paulistas aplicando um enfoque geoestatístico. Aspectos da ecotoxicidade em ambientes aquáticos. Tradução . São Paulo: Instituto de Biociências, Universidade de São Paulo (Accessed October 27, 2024) at:. http://ecologia.ib.usp.br/portal/ecotoxicidade/index_arquivos/0_all_book_ecotoxicidade.pdf.
Blettler, M.C.M.; Ulla, M.A.; Rabuffetti, A.P.; Garello, N., 2017. Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake. Environmental Monitoring and Assessment, v. 189, 1-13. https://doi.org/10.1007/s10661-017-6305-8.
Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.; Kirkham, M.B., 2019. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, v. 131, 1-18. https://doi.org/10.1016/j.envint.2019.104937.
Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J., 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, v. 178, 189-195. https://doi.org/10.1016/j.ecss.2015.12.003.
Cardoso Neto, H.H.L.; Silvestre, R.C.M.; Jean, R.N.P.; Santos, A.V.A.; Silva, F.C., 2023. A primeira avaliação de microplásticos no Rio Xingu. Revista de Gestão de Água da América Latina, v. 20 (e17), 1-20. https://doi.org/10.21168/rega.v20e17.
Chen, Y.; Wen, D.; Pei, J. Fei, Y.; Ouyang, D.; Zhang, D.; Luo, Y., 2020. Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects. Current Opinion in Environmental Science & Health, v. 18, 14-19. https://doi.org/10.1016/j.coesh.2020.05.004.
Costa, I.D.; Costa, L.L.; Zalmon, I.R., 2023. Microplastics in water from the confluence of tropical rivers: Overall review and a case study in Paraiba do Sul River basin. Chemosphere, v. 338, 1-11. https://doi.org/10.1016/j.chemosphere.2023.139493.
Costa, I.D.; Nunes, N.N.S.; Costa, L.L.; Zalmon, I.R., 2022. Is the Paraíba do Sul River colourful? Prevalence of microplastics in freshwater, south-eastern Brazil. Marine and Freshwater Research, v. 73 (12), 1439-1449. https://doi.org/10.1071/MF22109.
Drabinski, T.L.; Carvalho, D.G. de; Gaylarde, C.C.; Lourenço, M.F.P.; Machado, W.T.V.; Fonseca, E.M.; da Silva, A.L.C.; Baptista Neto, J., 2023. Microplastics in Freshwater River in Rio de Janeiro and Its Role as a Source of Microplastic Pollution in Guanabara Bay, SE Brazil. Micro, v. 3 (1), 208-223. https://doi.org/10.3390/micro3010015.
Dunck, B.; Felisberto, S.A.; Nogueira, I.D.S., 2019. Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia, v. 837 (1), 195-204. https://doi.org/10.1007/s10750-019-03971-x.
Escrobot, M.; Pagioro, T.A.; Martins, L.R.R.; Freitas, A.M., 2024. Microplastics in Brazilian coastal environments: a systematic review. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 59, e1719. https://doi.org/10.5327/Z2176-94781719.
Fahrenfeld, N.L.; Arbuckle-Keil, G.; Beni, N.N.; Bartelt-Hunt, S.L., 2019. Source tracking microplastics in the freshwater environment. TrAC Trends in Analytical Chemistry, v. 112, 248-254. https://doi.org/10.1016/j.trac.2018.11.030.
Faria, E.; Girard; P.; Nardes; C.S.; Moreschi, A.; Christo, S.W.; Ferreira Junior, A.L.; Costa, M.F., 2021. Microplastics pollution in the South American Pantanal. Case Studies in Chemical and Environmental Engineering, v. 3, 1-6. https://doi.org/10.1016/j.cscee.2021.100088.
Fernandes, A.N.; Bertoldi, C.; Lara, L.Z.; Stival, J.; Alves, N.M.; Cabrera, P.M.; Grassi, M.T., 2022. Microplastics in Latin America ecosystems: a critical review of the current stage and research needs. Journal of the Brazilian Chemical Society, v. 33 (4), 303-326. https://doi.org/10.21577/0103-5053.20220018.
Ferraz, M.; Bauer, A.L.; Valiati, V.H.; Schulz, U.H., 2020. Microplastic concentrations in raw and drinking water in the Sinos River, Southern Brazil. Water, v. 12 (11), 3115. https://doi.org/10.3390/w12113115.
Flemming, H.C., 2020. Biofouling and me: my Stockholm syndrome with biofilms. Water Research, v. 173, 1-15. https://doi.org/10.1016/j.waters.2020.115576.
Galloway, T., Cole, M.; Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, v. 1 (5), 116. https://doi.org/10.1038/s41559-017-0116.
Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; Semensatto, D., 2020. Microplastics in sediments from Amazon rivers, Brazil. Science of the Total Environment, v. 749, 1-6. https://doi.org/10.1016/j.scitotenv.2020.141604.
Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), 2019. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean. Journal Series GESAMP Reports and Studies (Accessed August 26, 2024) at:. https://www.gesamp.org/site/assets/files/2002/rs99e.pdf.
Guan, J.; Qi, K.; Wang, J.; Wang, W.; Wang, Z.; Lu, N.; Qu, J., 2020. Microplastics as an emerging anthropogenic vector of trace metals in freshwater: Significance of biofilms and comparison with natural substrates. Water Research, v. 184, 1-11. https://doi.org/10.1016/j.watres.2020.116205.
Guan, Y.; Gong, J.; Song, B.; Li, J.; Fang, S.; Tang, S.; Cao, W.; Li, Y.; Chen, Z.; Ye, J.; Cai, Z., 2022. The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment. Chemosphere, v. 286, 1-9. https://doi.org/10.1016/j.chemosphere.2021.131777.
Hartmann, N.B; Rist, S.; Bodin, J.; Jensen, L.H.S; Schmidt, S.N; Mayer, P.; Meibom, A.; Baun, A., 2017. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota, Integrated Environmental Assessment and Management, v 13 (3), 488-493. https://doi.org/10.1002/ieam.1904.
Hataley, E.K.; Shahmohamadloo, R.S.; Almirall, X.O.; Harrison, A.L.; Rochman, C.M.; Zou, S.; Orihel, D.M., 2022. Experimental evidence from the field that naturally weathered microplastics accumulate cyanobacterial toxins in eutrophic lakes. Environmental Toxicology and Chemistry, v. 41 (12), 3017-3028. https://doi.org/10.1002/etc.5485.
He, S.; Tong, J.; Xiong, W.; Xiang, Y.; Peng, H.; Wang, W.; Yang, Y.; Ye, Y.; Hu, M.; Yang, Z.; Zeng, G., 2023. Microplastics influence the fate of antibiotics in freshwater environments: biofilm formation and its effect on adsorption behavior. Journal of Hazardous Materials, v. 442, 1-11. https://doi.org/10.1016/j.jhazmat.2022.130078.
He, Y.; Wei, G.; Tang, B.; Salam, M.; Shen, A.; Wei, Y.; Zhou, X.; Liu, M.; Yang, Y.; Li, H.; Mao, Y., 2022. Microplastics benefit bacteria colonization and induce microcystin degradation. Journal of Hazardous Materials, v. 431, 1-10. https://doi.org/10.1016/j.jhazmat.2022.128524.
International Organization for Standardization (ISO), 2020. ISO/TR 21960:2020 Plastics — environmental aspects — state of knowledge and methodologies. ISO, Geneva, pp. 1-41.
Ji, H.; Wan, S.; Liu, Z.; Xie, X.; Xiang, X.; Liao, L.; Zheng, W.; Fu, Z.; Liao, P.; Chen, R., 2024. Adsorption of antibiotics on microplastics (MPs) in aqueous environments: the impacts of aging and biofilms. Journal of Environmental Chemical Engineering, v. 12, 1-11. https://doi.org/10.1016/j.jece.2024.111992.
Johansen, M.P.; Cresswell, T.; Davis, J.; Howard, D.L.; Howell, N.R.; Prentice, E., 2019. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods. Water Research, v. 158, 392-400. https://doi.org/10.1016/j.watres.2019.04.029.
José, S.; Jordao, L., 2022. Exploring the interaction between microplastics, polycyclic aromatic hydrocarbons and biofilms in freshwater. Polycyclic Aromatic Compounds, v. 42 (5), 2210-2221. https://doi.org/10.1080/10406638.2020.1830809.
Kalčíková, G.; Skalar, T.; Marolt, G.; Kokalj, A.J., 2020. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Research, v. 175, 1-9. https://doi.org/10.1016/j.watres.2020.115644.
Khoironi, A.; Hadiyanto, H.; Anggoro, S.; Sudarno, S., 2020. Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang,Indonesia. Marine Pollution Bulletin, v. 151, 1-10. https://doi.org/10.1016/j.marpolbul.2019.110868.
Kiki, C.; Qiu, Y.; Wang, Q.; Ifon, B.E.; Qin, D.; Chabi, K.; Yu, C.P.; Zhu, Y.G.; Sun, Q., 2022. Induced aging, structural change, and adsorption behavior modifications of microplastics by microalgae. Environment International, v. 166, 1-12. https://doi.org/10.1016/j.envint.2022.107382.
Lambert, S.; Wagner, M., 2018. Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Lambert, S.; Wagner, M. (Eds.), Freshwater Microplastics — Emerging Environmental Contaminants? Springer International Publishing, Cham, pp. 1-23. https://doi.org/10.1007/978-3-319-61615-5_1
Lang, M.; Yu, X.; Liu, J.; Xia, T.; Wang, T.; Jia, H.; Guo, X., 2020. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Science of the Total Environment, v. 722, 1-9. https://doi.org/10.1016/j.scitotenv.2020.137762.
Li, J.; Liu, H.; Chen, J.P., 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, v. 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056.
Li, Z.; Hu, X.; Qin, L.; Yin, D., 2020. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons. Water Research, v. 170, 1-12. https://doi.org/10.1016/j.watres.2019.115290.
Liu, J.; Xie, Y.; Zhou, L.; Lu, G.; Li, Y.; Gao, P.; Hou, J., 2024. Co-accumulation characteristics and interaction mechanism of microplastics and PFASs in a large shallow lake. Journal of Hazardous Materials, v. 480, 1-13. https://doi.org/10.1016/j.jhazmat.2024.135780.
Liu, Q.; Wu.; H.; Chen, J.; Guo, B.; Zhao, X.; Lin, H.; Li, W.; Zhao, X.; Lv, S.; Huang, C., 2022. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environmental Research, v. 214, 1-12. https://doi.org/10.1016/j.envres.2022.113777.
Lorenzi, L.; Reginato, B.C.; Mayer, D.G.; Dantas, D.V., 2020. Plastic floating debris along a summer-winter estuarine environmental gradient in a coastal lagoon: how does plastic debris arrive in a conservation unit? Environmental Science and Pollution Research, v. 27, 8797-8806. https://doi.org/10.1007/s11356-020-07708-5.
Lusher, A.L.; Bråte, I.L.N.; Munno, K.; Hurley, R.R.; Welden, N.A., 2020. Is it or isn't it: the importance of visual classification in microplastic characterization. Applied Spectroscopy, v. 74 (9), 1139-1153. https://doi.org/10.1177/0003702820930733.
Magadini, D.L.; Goes, J.I.; Ortiz, S.; Lipscomb, J.; Pitiranggon, M.; Yan, B., 2020. Assessing the sorption of pharmaceuticals to microplastics through in-situ experiments in New York City waterways. Science of the Total Environment, v. 729, 138766. https://doi.org/10.1016/j.scitotenv.2020.138766.
Mani, T.; Burkhardt-Holm, P., 2020. Seasonal microplastics variation in nival and pluvial stretches of the Rhine River – From the Swiss catchment towards the North Sea. Science of The Total Environment, v. 707, 135579. https://doi.org/10.1016/j.scitotenv.2019.135579.
Marques, L.M.T; Reichert, G.; Cesar, R.M.; Cano, T.C.N.; de Azevedo, J.C.R., 2024. Determinação por espectrometria de massas do potencial de bioacumulação de contaminantes emergentes em biofilme. Química Nova, v. 47 (10), e-20240071. http://dx.doi.org/10.21577/0100-4042.20240071.
Meijer, L.J.J.; Van Emmerik, T.; Van Der Ent, R.; Schmidt, C.; Lebreton, L., 2021. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, v.7, 1-13. https://doi.org/10.1126/sciadv.aaz5803.
Montagner, C.C.; Dias, M.A.; Paiva, E.M.; Vidal, C., 2021. Microplásticos: ocorrência ambiental e desafios analíticos. Química Nova, v. 44 (10), 1328-1352. https://doi.org/10.21577/0100-4042.20170791.
Montagner, C.C.; Vidal, C.; Acayaba, R.D., 2017. Contaminantes emergentes em matrizes aquáticas do Brasil: Cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova, v. 40 (9), 1094-1110. https://doi.org/10.21577/0100-4042.20170091.
Moraes, N.G.; Olivatto, G.P.; Lourenço, F.M.O.; Lourenço, A.L.A; Garcia, G.M.; Pimpinato, R.F.; Tornisielo, V.L., 2024. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon, v. 10 (16), 1-11. https://doi.org/10.1016/j.heliyon.2024.e36047.
Moschini-Carlos, V.; Henry, R.; Pompêo, M.L.M., 2000. Seasonal variation of biomass and productivity of the periphytic community on artificial substrata in the Jurumirim Reservoir. Hydrobiologia, 434 (1/3), 35-40. https://doi.org/10.1023/a:1004086623922.
Niu, L.; Hu, J.; Li, Y.; Wang, C.; Zhang, W.; Hu, Q.; Wang, L.; Zhang, H., 2022. Effects of long-term exposure to silver nanoparticles on the structure and function of microplastic biofilms in eutrophic water. Environmental Research, v. 207, 1-10. https://doi.org/10.1016/j.envres.2021.112182.
Oliveira, L.S.; Oliveira-Junior, J.M.B.; Cajado, R.A.; Silva, F.K.S; Zacardi D.M., 2023. Ichthyoplankton and plastic waste drift in a river in the Amazon Basin, Brazil. Frontiers in Environmental Science, v. 11, 1-10. https://doi.org/10.3389/fenvs.2023.1068550.
Osorio, V.; Proia, L.; Ricart, M.; Pérez, S.; Ginebreda, A.; Luís, J.; Sabater, S.; Barceló, D., 2015. Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. Science of the Total Environment, v. 472, 1052-1061. https://doi.org/10.1016/j.scitotenv.2013.11.069.
Peng, J.; Wang, J.; Cai, L., 2017. Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, v. 13 (3), 476-482. https://doi.org/10.1002/ieam.1912.
Pu, Y.; Ngan, W.Y.; Yao, Y.; Habimana, O., 2019. Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health? Environmental Pollution, v. 252, 440-449. https://doi.org/10.1016/j.envpol.2019.05.111.
Qi, K.; Lu, N.; Zhang, S.; Wang, W.; Wang, Z.; Guan, J., 2021. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. Journal of Hazardous Materials, v. 411, 1-12. https://doi.org/10.1016/j.jhazmat.2021.125115.
Queiroz, L.G.; Pompêo, M.; de Moraes, B.R.; Ando, R.A.; Rani-Borges, B., 2024. Implications of damming and morphological diversity of microplastics in the sediment from a tropical freshwater reservoir. Journal of Environmental Chemical Engineering v. 12, 1-11. https://doi.org/10.1016/j.jece.2024.112234.
Reichert, G.; Hilgert, S.; Alexander, J.; Azevedo, J.C.R.; Morck, T.; Fuchs, S.; Schwartz, T., 2021. Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality. Science of the Total Environment, v. 768, 1-9. https://doi.org/10.1016/j.scitotenv.2020.144526.
Richardson, S.D.; Kimura, S. Y., 2020. Water analysis: rmerging contaminants and current issues. Analytical Chemistry, v. 92 (1), 473-505. https://doi.org/10.1021/acs.analchem.9b05269.
Rico, A.; Redondo-Hasselerharm, P.E.; Vighi, M.; Waichman, A.V.; Nunes, G.S.S.; de Oliveira, R.; Singdahl-Larsen, C.; Hurley, R.; Nizzetto, L.; Schell T., 2023. Large-scale monitoring and risk assessment of microplastics in the Amazon River. Water Research, v. 232, 1-10. https://doi.org/10.1016/j.watres.2023.119707.
Santos, V.S.; Vidal, C.; Bisinoti, M.C.; Moreira, A.B.; Montagner, C.C., 2024. Integrated occurrence of contaminants of emerging concern, including microplastics, in urban and agricultural watersheds in the State of São Paulo, Brazil. Science of The Total Environment, v. 932, 1-12. https://doi.org/10.1016/j.scitotenv.2024.173025.
Sentenac, H.; Loyau, A.; Leflaive, J.; Schmeller, D.S., 2021. The significance of biofilms to human, animal, plant, and ecosystem health. Functional Ecology, v. 36 (2), 294-313. https://doi.org/10.1111/1365-2435.13947.
Silva, P.H.S.; de Sousa, F.D.B., 2021. Microplastic pollution of Patos Lagoon, south of Brazil. Environmental Challenges, v. 4, 1-11. https://doi.org/10.1016/j.envc.2021.100076.
Silva-Cavalcanti, J.S. Silva, J.C.P.; Andrade, F.M.; Brito, A.M.S.S.; Costa, M.F., 2023. Microplastic pollution in sediments of tropical shallow lakes. Science of the Total Environment, v. 855, 1-9. https://doi.org/10.1016/j.scitotenv.2022.158671.
Sodré, F.F.; Arowojolu, I.M.; Canela, M.C.; Ferreira, R.S.; Fernandes, A.N.; Montagner, C.; Vidal, C.; Dias, M.A.; Abate, G.; da Silva, L.C.; Grassi, M.T.; Bertoldi, C.; Fadini, P.S.; Urban, R.C.; Ferraz, G.M.; Schio, N.S.; Waldman, W.R., 2023. How natural and anthropogenic factors should drive microplastic behavior and fate: the scenario of Brazilian urban freshwater. Chemosphere, v. 340, 1-15. https://doi.org/10.1016/j.chemosphere.2023.139813.
Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J., 2017. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, v. 51 (8), 4368-4376. https://doi.org/10.1021/acs.est.6b06155.
Souza, G.R.; da Silva, N.M.; de Oliveira, D.P., 2023. Distribuição longitudinal, vertical e temporal de microplásticos no Igarapé do Mindu em Manaus, Amazonas. Engenharia Sanitaria e Ambiental, v. 28, 1-8. https://doi.org/10.1590/S1413-415220220234.
Sun, X.L.; Xiang, H.; Xiong, H.Q.; Fang, Y.C.; Wang, Y., 2023. Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. Science of the Total Environment, v. 863, 1-15. https://doi.org/10.1016/j.scitotenv.2022.160953.
Toyama, D.; Fernandes, V.V.; Christoforo, A.L.; Menezes, D.B., 2021. The artificialization in the sediment profiles of the streams in the Água Branca basin – Itirapina, São Paulo, Brazil. Journal of Environmental Management, v. 290, 1-9. https://doi.org/10.1016/j.jenvman.2021.112610.
Vargas-Berrones, K.; Bernal-Jácome, L.; León-Martínez, L.D.; Flores-Ramírez, R., 2020. Emerging pollutants (EPs) in Latin América: a critical review of understudied EPs, case of study -Nonylphenol-. Science of the Total Environment, v. 726, 138493. https://doi.org/10.1016/j.scitotenv.2020.138493.
Wang, J.; Guo, X.; Xue, J., 2021. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environmental Science & Technology, v. 55 (19), 12780-12790. https://doi.org/10.1021/acs.est.1c04466.
Wang, J.; Peng, C.; Dai, Y.; Li, Y.; Jiao, S.; Ma, X.; Liu, X.; Wang, L., 2022. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. Water Research, v. 222, 1-10. https://doi.org/10.1016/j.watres.2022.118920.
Wu, C.; Tanaka, K.; Tani, Y.; Bi, X.; Liu, J.; Yu, Q., 2022. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Science of the Total Environment, v. 821, 1-9. https://doi.org/10.1016/j.scitotenv.2022.153265.
Yao, S.; Li, X.; Wang, T.; Jiang, X.; Song, Y.; Arp, H.P.H., 2023. Soil metabolome impacts the formation of the eco-corona and adsorption processes on microplastic surfaces. Environmental Science & Technology, v. 57 (21), 8139-8148. https://doi.org/10.1021/acs.est.3c01877.
Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A., 2013. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology, v. 47 (13), 7137-7146. https://doi.org/10.1021/es401288x.
Zhang, H.Y.; Zhang, C.Y.; Rao, W.L.; Zhang, H.; Liang, G.H.; Deng, X.; Zhao, J.L.; Guan, Y.F.; Ying, G.G., 2022. Influence of biofilms on the adsorption behavior of nine organic emerging contaminants on microplastics in field-laboratory exposure experiments. Journal of Hazardous Materials, v. 434, 1-7. https://doi.org/10.1016/j.jhazmat.2022.128895.
Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.; Wu, C.; Lam, P.K., 2021. Understanding plastic degradation and microplastic formation in the environment: a review. Environmental Pollution, v. 274, 1-14. https://doi.org/10.1016/j.envpol.2021.116554.
Zorzal-Almeida, S.; Fernandes, V.D.O., 2021. Ecological thresholds of periphytic communities and ecosystems integrity in lower Doce River basin. Science of the Total Environment, v. 796. https://doi.org/10.1016/j.scitotenv.2021.148965.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

This work is licensed under a Creative Commons Attribution 4.0 International License.