Comparative life cycle assessment in wastewater treatment plants: scenario analysis with OpenLCA
DOI:
https://doi.org/10.5327/Z2176-94782330Keywords:
sustainability; OpenLCA; environmental viability; environmental impact.Abstract
Although they play a crucial environmental role, wastewater treatment plants (WWTPs) also generate environmental impacts due to resource consumption and waste production. Therefore, the application of the life cycle assessment (LCA) methodology is of fundamental importance for a comprehensive analysis of the impacts associated with these systems. This work aims to perform an LCA of a tertiary-level WWTP, consisting of an anaerobic reactor followed by activated sludge, in order to select the most sustainable scenario. Open Source Life Cycle Assessment (OpenLCA) was the software used, along with the Ecoinvent, BIOENERGIEDAT_18, ELCD, and NEEDS databases. The reference methods for calculating impact categories were CML-IA and ReCiPe. Three scenarios were simulated: CT_Base, CT_Solar, and CT_Reuse. All models considered the operation and maintenance (O&M) phase. The CT_Base scenario assumed the WWTP operates as it currently does (electricity from hydropower), the CT_Solar scenario operated entirely on solar energy, and the CT_Reuse scenario established the reusing of 25% of the treated effluent. The functional unit (FU) adopted corresponded to the volume of wastewater treated over 15 years of O&M of the WWTP. For both methods applied, the CT_Solar scenario was the most environmentally advantageous. The amount of gases emitted in the CT_Reuse scenario during the transportation of treated effluent to reuse points increased negative impacts and consequently environmental degradation across various categories, making it the least sustainable scenario.
Downloads
References
Alizadeh, S.; Zafari-Koloukhi, H.; Rostami, F.; Rouhbakhsh, M.; Avami, A., 2020. The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, v. 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327
Al-Anbari, M.A.; Altaee, S.A.; Kareem, S.L., 2022. Using life cycle assessment (LCA) in appraisal sustainability indicators of Najaf wastewater treatment plant. Egyptian Journal of Chemistry, v. 65 (9), 513-519. https://doi.org/10.21608/EJCHEM.2022.113093.5139
Araújo, M.C.; Medeiros, D.L.; Cohim, E., 2022. Desempenho energético e pegada de carbono de um sistema de esgotamento sanitário centralizado no Nordeste brasileiro. Engenharia Sanitária e Ambiental, v. 27 (1), 205-221. https://doi.org/10.1590/S1413-415220200325
Associação Brasileira de Normas Técnicas (ABNT). 2009a. NBR ISO 14040: Gestão ambiental – avaliação do ciclo de vida – princípios e estrutura. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas (ABNT). 2009b. NBR ISO 14044: Avaliação do ciclo de vida: requisitos e orientações. ABNT, Rio de Janeiro.
Awad, H.; Mossad, M.; Mahanna, H.; Foad, M.; El-Badawy, A.; Alalm, M.G., 2024. Performance and life cycle assessment of moving-bed biofilm and integrated fixed-film reactors to upgrade activated sludge systems. Journal of Cleaner Production, 449, 141624. https://doi.org/10.1016/j.jclepro.2024.141624
Batool, M.; Shahzad, L.; Tahir, A., 2023. Review on municipal wastewater to energy generation; a favorable approach for developing countries. Proceedings of the Institution of Civil Engineers-Energy.
Boldrin, M.T.N.; Formiga, K.T.M.; Pacca, S.A., 2022. Environmental performance of an integrated water supply and wastewater system through life cycle assessment—A Brazilian case study. Science of The Total Environment, v. 835, 155213. https://doi.org/10.1016/j.scitotenv.2022.155213
Brasil, 2020. Lei Federal 14.026, de 15 de julho de 2020. Diário Oficial da República do Brasil.
Daskiran, F.; Gulhan, H.; Guven, H.; Ozgun, H.; Ersahin, M.E., 2022. Comparative evaluation of different operation scenarios for a full-scale wastewater treatment plant: Modeling coupled with life cycle assessment. Journal of Cleaner Production, v. 341, 130864. https://doi.org/10.1016/j.jclepro.2022.130864
De Carvalho, C.H.R., 2011. Emissões relativas de poluentes do transporte motorizado de passageiros nos grandes centros urbanos brasileiros, Texto para Discussão, No. 1606. Instituto de Pesquisa Econômica Aplicada (IPEA), Brasília.
Departamento de Trânsito do Estado do Rio de Janeiro (Detran); Fundação Estadual de Engenharia e Meio Ambiente (Feema), 2001. Poluição veicular no estado do Rio de Janeiro. Detran, Feema, Rio de Janeiro.
Dufner, L.; Selvam, T.S.S.; Otto, N.; Neuffer, D.; Santos, H.R.D., 2022. Performance evaluation of a solar-powered wastewater treatment plant (two-stage SBR) operated in tropical climate regions. Engenharia Sanitária e Ambiental, v. 27 (6), 1123-1132. https://doi.org/10.1590/S1413-415220210261
Gallego-Schmid, A.; Tarpani, R.R.Z., 2019. Life cycle assessment of wastewater treatment in developing countries: a review. Water Research, v. 153, 63-79. https://doi.org/10.1016/j.watres.2019.01.010
Jamaludin, M.; Tsai, Y.C.; Lin, H.T.; Huang, C.Y.; Choi, W.; Chen, J.G.; Sean, W.Y., 2024. Modeling and control strategies for energy management in a wastewater center: a review on aeration. Energies, v. 17 (13), 3162. https://doi.org/10.3390/en17133162
Kalbar, P.P.; Karmakar, S.; Asolekar, S.R., 2013. Assessment of wastewater treatment technologies: life cycle approach. Water and Environment Journal, v. 27 (2), 261-268. https://doi.org/10.1111/wej.12006
Kar, S.; Singh, R.; Gurian, P.L.; Hendricks, A.; Kohl, P.; Mckelvey, S.; Spatari, S., 2023. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment. Science of The Total Environment, v. 857 (Part 3), 159499. https://doi.org/10.1016/j.scitotenv.2022.159499
Karolinczak, B.; Walczak, J.; Bogacka, M.; Zubrowska-Sudol, M., 2024. Life Cycle Assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant. Science of the Total Environment, v. 907, 167801. https://doi.org/10.1016/j.scitotenv.2023.167801
Leite, C.H.P.; Moita Neto, J.M.; Bezerra, A.K.L., 2022. Novo marco legal do saneamento básico: alterações e perspectivas. Engenharia Sanitária e Ambiental, v. 27 (5), 1041-1047. https://doi.org/10.1590/S1413-415220210311
Lima, P.D.M.; Lopes, T.A.D.S.; Queiroz, L.M.; Mcconville, J.R., 2022. Resource-oriented sanitation: Identifying appropriate technologies and environmental gains by coupling Santiago software and life cycle assessment in a Brazilian case study. Science of the Total Environment, v. 837, 155777. https://doi.org/10.1016/j.scitotenv.2022.155777
Lopes, T.A.D.S.; Kiperstok, A.; Zanta, V.M.; Queiroz, L.M., 2017. Revisão crítica da literatura sobre aplicação da Avaliação de Ciclo de Vida ao tratamento de esgotos. Revista DAE, v. 65 (208), 47-55. https://doi.org/10.4322/dae.2017.005
Maktabifard, M.; Zaborowska, E.; Makinia, J., 2020. Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants. Bioresource Technology, v. 300, 122647. https://doi.org/10.1016/j.biortech.2019.122647
Mancini, G.; Lombardi, L.; Luciano, A.; Bolzonella, D.; Viotti, P.; Fino, D., 2024. A reduction in global impacts through a waste-wastewater-energy nexus: A life cycle assessment. Energy, v. 289, 130020. https://doi.org/10.1016/j.energy.2023.130020
Marami, H.; Tsapekos, P.; Khoshnevisan, B.; Madsen, J.A.; Andersen, J.K.; Rafiee, S.; Angelidaki, I., 2022. Going beyond conventional wastewater treatment plants within circular bioeconomy concept–a sustainability assessment study. Water Science and Technology, v. 85 (6), 1878-1903. https://doi.org/10.2166/wst.2022.096
Parra-Saldivar, R.; Bilal, M.; Iqbal, H.M.N., 2020. Life cycle assessment in wastewater treatment technology. Current Opinion in Environmental Science & Health, v. 13, 80-84. https://doi.org/10.1016/j.coesh.2019.12.003
Pasciucco, F.; Pecorini, I.; Iannelli, R., 2023. A comparative LCA of three WWTPs in a tourist area: Effects of seasonal loading rate variations. Science of The Total Environment, v. 863, 160841. https://doi.org/10.1016/j.scitotenv.2022.160841
Patel, K.; Singh, S.K., 2022. A life cycle approach to environmental assessment of wastewater and sludge treatment processes. Water and Environment Journal, v. 36 (3), 412-424. https://doi.org/10.1111/wej.12774
Rashid, S.S.; Harun, S.N.; Hanafiah, M.M.; Razman, K.K.; Liu, Y.Q., Tholibon, D.A., 2023. Life cycle assessment and its application in wastewater treatment: a brief overview. Processes, v. 11 (1), 208. https://doi.org/10.3390/pr11010208
Rufí-Salís, M.; Petit-Boix, A.; Leipold, S.; Villalba, G.; Rieradevall, J.; Moliné, E.; Suárez-Ojeda, M.E., 2022. Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades. Science of the Total Environment, v. 838 (Part 3), 156422. https://doi.org/10.1016/j.scitotenv.2022.156422
Saavedra-Rubio, K.; Thonemann, N.; Crenna, E.; Lemoine, B.; Caliandro, P.; Laurent, A., 2022. Stepwise guidance for data collection in the life cycle inventory (LCI) phase: Building technology-related LCI blocks. Journal of Cleaner Production, v. 366, 132903. https://doi.org/10.1016/j.jclepro.2022.132903
Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K.K, 2022. A sustainable performance assessment framework for circular management of municipal wastewater treatment plants. Journal of Cleaner Production, v. 339, 130657. https://doi.org/10.1016/j.jclepro.2022.130657
Sheikholeslami, Z.; Ehteshami, M.; Nazif, S.; Semiarian, A., 2022. The environmental assessment of tertiary treatment technologies for wastewater reuse by considering LCA uncertainty. Process Safety and Environmental Protection, v. 168, 928-941. https://doi.org/10.1016/j.psep.2022.10.074
Silva, D.A.L.; Nunes, A.O.; Piekarski, C.M.; Da Silva Moris, V.A.; De Souza, L.S.M.; Rodrigues, T.O., 2019. Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustainable Production and Consumption, v. 20, 304-315. https://doi.org/10.1016/j.spc.2019.07.005
Sistema Nacional de Informações sobre Saneamento (SNIS), 2022. Diagnóstico anual de águas e esgotos (Accessed January 26, 2023) at:. https://arquivos-snis.mdr.gov.br/REPUBLICACAO_DIAGNOSTICO_TEMATICO_VISAO_GERAL_AE_SNIS_2022.pdf
Souza, B.D.M.; Duarte, M.A.C.; Tinôco, J.D., 2021. Custos de operação e manutenção de estação de tratamento de esgotos por reator anaeróbio e lodos ativados. Engenharia Sanitária e Ambiental, v. 26 (3), 505-515. https://doi.org/10.1590/S1413-415220190228
Sudarno, S.; Wibowo, M.A.; Andarini, P.; Al Qadar, S., 2024. Assessing the environmental implications of water and wastewater production using life cycle assessment. Ecological Engineering & Environmental Technology, v. 25 (4), 70-80. https://doi.org/10.12912/27197050/183183
Talang, R.P.N.; Sirivithayapakorn, S.; Polruang, S., 2022. Life cycle impact assessment and life cycle cost assessment for centralized and decentralized wastewater treatment plants in Thailand. Scientific Reports, v. 12 (1), 14540. https://doi.org/10.1038/s41598-022-18852-y
Tian, X.; Richardson, R.E.; Tester, J.W.; Lozano, J.L.; You, F., 2020. Retrofitting municipal wastewater treatment facilities toward a greener and circular economy by virtue of resource recovery: techno-economic analysis and life cycle assessment. ACS Sustainable Chemistry & Engineering, v. 8 (36), 13823-13837. https://doi.org/10.1021/acssuschemeng.0c05189
Torre, A.; Vázquez-Rowe, I.; Parodi, E.; Kahhat, R., 2024. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South. Science of the Total Environment, v. 912, 169085. https://doi.org/10.1016/j.scitotenv.2023.169085
Yang, Z.; Ma, S.; Du, S.; Chen, Y.; Li, X.; Wang, R., Tan, Z., 2021. Assessment of upgrading WWTP in southwest China: Towards a cleaner production. Journal of Cleaner Production, v. 326, 129381. https://doi.org/10.1016/j.jclepro.2021.129381
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

This work is licensed under a Creative Commons Attribution 4.0 International License.