Application of electroc hemical processes in aerobic biological systems used for textile wastewater treatment: effects on mixed liquor characteristics and pollutant removal

Authors

DOI:

https://doi.org/10.5327/Z2176-94782145

Keywords:

textile industry; membrane bioreactors; electrocoagulation; advanced treatment.

Abstract

This study evaluated the influence of electrochemical process application on pollutant removal and changes in the characteristics of mixed liquor in aerobic biological systems used for textile wastewater treatment. For this purpose, samples of mixed liquor containing synthetic textile wastewater (nitrogen, phosphorus, acetate, and Drimaren Red CL-7B dye) were introduced into bench-scale reactors operated under two experimental conditions: in the first condition, the application was performed with a current density of 20 A m⁻², using an intermittent exposure mode of 6 min on / 30 min off (Strategy 1 – S1), while in the second, the same current density was applied but under continuous exposure (Strategy 2 – S2). A control reactor was operated simultaneously for comparison purposes, evaluating pollutant removal and the filterability of the mixed liquor. The results indicated that electrochemical processes improved the filterability of the mixed liquor by 35% in S1 and 44% in S2. Dye removal ranged from 40 to 50% in the control reactor, reaching 67% in S1 and 93% in S2 with the application of electric current. Regarding phosphorus, the application of electric current increased removal from 30% in the control reactor to 67% in S1 and 96% in S2. No significant changes were identified in the content of total suspended solids with intermittent application. However, under continuous exposure, an increase of approximately 30% was observed. It was concluded that the application of electrochemical processes can be a promising alternative to enhance the performance and stability of biological treatment systems applied to textile wastewater treatment.

Downloads

Download data is not yet available.

References

Albahnasawi, A.; Yüksel, E.; Gürbulak, E.; Duyum, F., 2020. Fate of aromatic amines through decolorization of real textile wastewater under anoxic-aerobic membrane bioreactor. Journal of Environmental Chemical Engineering, v. 8 (5), 104226. https://doi.org/10.1016/j.jece.2020.104226.

American Public Health Association (APHA), 2005. Standard methods for the examination of water and wastewater. 21. ed. APHA, Washington, 1274 p.

Asif, M.B.; Maqbool, T.; Zhang, Z., 2020. Electrochemical membrane bioreactors: State-of-the-art and future prospects. Science of the Total Environment, v. 741, 140233. https://doi.org/10.1016/j.scitotenv.2020.140233.

Associação Brasileira da Indústria Têxtil e de Confecção (ABIT), 2023. Perfil do Setor. ABIT (Accessed March 7, 2024) at:. https://www.abit.org.br/cont/perfil-do-setor.

Battistelli, A.A.; Belli, T.J.; da Costa, R.E.; Justino, N.M.; Lobo-Recio, M.Á.; Lapolli, F.R., 2019a. Efeitos da eletrocoagulação na modificação das características de lodos ativados: aplicação em biorreatores a membrane. Revista DAE, v. 67, 103-114. https://doi.org/10.4322/dae.2019.048.

Battistelli, A.A.; Belli, T.J.; Costa, R.E.; Justino, N.M., Silveira, D.D.; Lobo-Recio, M.A.; Lapolli, F.R., 2019b. Application of low-density electric current to performance improvement of membrane bioreactor treating raw municipal wastewater. International Journal of Environmental Science and Technology, v. 16, 3949-3960. https://doi.org/10.1007/s13762-018-1949-7.

Belli, T.J.; Bassin, J.P.; de Sousa Vidal, C.M.; Hassemer, M.E.N.; Rodrigues, C.; Lapolli, F.R., 2023. Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. Environmental Science and Pollution Research, v. 30, (20), 58412-58427. https://doi.org/10.1007/s11356-023-26593-2.

Belli, T. J.; Battistelli, A. A.; Costa, R. E.; Vidal, C. M. S.; Schlegel, A. E.; Lapolli, F. R., 2019. Evaluating the performance and membrane fouling of an electro-membrane bioreactor treating textile industrial wastewater. International Journal of Environmental Science and Technology, v. 16, 6817-6826. https://doi.org/10.1007/s13762-019-02245-2.

Belli, T.J.; Dalbosco, V.; Bassin, J.P.; Lunelli, K.; da Costa, R.E.; Lapolli, F.R., 2024. Treatment of azo dye-containing wastewater in a combined UASB-EMBR system: Performance evaluation and membrane fouling study. Journal of Environmental Management, v. 365, 121701. https://doi.org/10.1016/j.jenvman.2024.121701.

Brasil, 2005. Conselho Nacional de Recursos Hídricos (CNRH). Resolução nº 54, de 28 de novembro de 2005. Estabelece diretrizes para o aproveitamento de águas residuárias tratadas em todo o território nacional. Diário Oficial da União, Brasília, DF, 28 de nov. de 2005 (Accessed December 17, 2024) at:. https://www.gov.br/mdr/pt-br/assuntos/seguranca-hidrica/cnrh.

Brasil, 2011. Conselho Nacional do Meio Ambiente (CONAMA). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes. Diário Oficial da União, Brasília, DF, 16 de maio de 2011 (Accessed December 17, 2024) at:. https://conama.mma.gov.br/atos-normativos-sistema.

Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U., 2020. A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes, v. 10 (2), 24. https://doi.org/10.3390/membranes10020024.

Environmental Protection Agency (EPA), 2012. Guidelines for Water Reuse. U.S. EPA, Washington (Accessed December 17, 2024) at:. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100FS7K.TXT.

Follmann, H.V.D.M.; Souza, E.; Battistelli, A.A.; Lapolli, F.R.; Lobo-Recio, M.Á., 2020. Determination of the optimal electrocoagulation operational conditions for pollutant removal and filterability improvement during the treatment of municipal wastewater. Journal of Water Process Engineering, v. 36, 101295. https://doi.org/10.1016/j.jwpe.2020.101295.

Giwa, A.; Dindi, A.; Kujawa, J., 2019. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: recent developments. Journal of Hazardous Materials, v. 370, 172-195. https://doi.org/10.1016/j.jhazmat.2018.06.025.

Guo, Y.; Liu, C.; Ye, R.; Duan, Q., 2020. Advances on water quality detection by uv-vis spectroscopy. Applied Sciences, v. 10 (19), 6874. https://doi.org/10.3390/app10196874.

Harif, T.; Khai, M.; Adin, A., 2012. Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics. Water research, v. 46 (10), 3177-3188. https://doi.org/10.1016/j.watres.2012.03.034.

Hasan, S.W.; Elektorowicz, M.; Oleszkiewicz, J.A., 2014. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater. Chemosphere, v. 97, 71-77. https://doi.org/10.1016/j.chemosphere.2013.11.009.

Hua, L.C.; Huang, C.; Su, Y.C.; Chen, P.C., 2015. Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor. Journal of Membrane Science, v. 495, 29-36. https://doi.org/10.1016/j.memsci.2015.07.062.

Ibeid, S.; Elektorowicz, M.; Oleszkiewicz, J.A., 2013. Novel electrokinetic approach reduces membrane fouling. Water Research, v. 47 (16), 6358-6366. https://doi.org/10.1016/j.watres.2013.08.007.

Jegatheesan, V.; Pramanik, B.K.; Chen, J.; Navaratna, D.; Chang, C.Y.; Shu, L., 2016. Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, v. 204, 202-212. https://doi.org/10.1016/j.biortech.2016.01.006.

Jenkins, D.; Richard, M.G.; Daigger, G.T., 2003. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. 3. ed. CRC Press, Boca Raton. https://doi.org/10.1201/9780203503157.

Khan, R; Bhawana, P.; Fulekar, M.H., 2013. Microbial decolorization and degradation of synthetic dyes: A review. Reviews in Environmental Science and Biotechnology, v. 12 (1), 75-97. https://doi.org/10.1007/s11157-012-9287-6.

Metcalf, L.A.; Eddy, H., 2014. Wastewater engineering – treatment and reuse. 5. ed. McGraw-Hill, Boston, 2018 p.

Mollah, M.Y.; Morkovsky, P.; Gomes, J.A.; Kesmez, M.; Parga, J.; Cocke, D.L., 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, v. 114 (1), 199-210. https://doi.org/10.1016/j.jhazmat.2004.08.009.

Otto, I.M.; Morselli, L.B.G.A.; Bunde, D.A.B.; Pieniz, S.; Quadro, M.S.; Andreazza, R., 2021. Adsorption of methylene blue dye by different methods of obtaining shrimp residue chitin. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 56 (4), 589-598. https://doi.org/10.5327/Z217694781170.

Park, H.; Chang, I.; Lee, K., 2015. Principles of membrane bioreactors for wastewater treatment. Taylor & Francis, Group Boca Raton, 445 p.

Quadrelli Neto, J.; de Oliveira Gomes, J.; Bork, C.A.S., 2018. Produto sustentável: utilização de mapa cognitivo para definição de requisitos de sustentabilidade na indústria têxtil. Revista Brasileira de Ciências Ambientais (RBCIAMB), (50), 39-60. https://doi.org/10.5327/Z2176-947820180393.

Ravadelli, M.; Da Costa, R E.; Lobo-Recio, M.A.; Akaboci, T.R.V.; Bassin, J.P.; Lapolli, F.R.; Belli, T.J., 2021. Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater. Journal of Environmental Chemical Engineering, v. 9 (4), 105286. https://doi.org/10.1016/j.jece.2021.105286.

Sahu, O.; Mazumdar, B.; Chaudhari, P.K., 2014. Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, v. 21 (4), 2397-2413. https://doi.org/10.1007/s11356-013-2208-6.

Schippers, J.C.; Verdouw, J., 1980. The modified fouling index, a method of determining the fouling characteristics of water. Desalination, v. 32, 137-148. https://doi.org/10.1016/S0011-9164(00)86014-2.

Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A.J.C.O.I.E., 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, v. 22, 154-169. https://doi.org/10.1016/j.coelec.2020.05.009.

Silva, J.; Fracacio, R., 2021. Toxicological and ecotoxicological aspects of tartrazine yellow food dye: a literature review. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 56 (1), 137-151. https://doi.org/10.5327/Z21769478746.

Soler, C.R.; Xavier, C.R., 2015. Tratamento de efluente de indústria têxtil por reator biológico com leito móvel. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 38, 21-30. https://doi.org/10.5327/Z2176-947820155714.

Sorgato, A.C.; Jeremias, T.C.; Lobo-Recio, M.Á.; Lapolli, F.R., 2023. A comprehensive review of nitrogen removal in an electro-membrane bioreactor (EMBR) for sustainable wastewater treatment. International Journal of Environmental Science and Technology, v. 20 (8), 9225-9248. https://doi.org/10.1007/s13762-022-04717-4.

Spagni, A.; Grilli, S.; Casu, S.; Mattioli, D., 2010. Treatment of a simulated textile wastewater containing the azo-dye reactive orange 16 in an anaerobic-biofilm anoxic-aerobic membrane bioreactor. International Biodeterioration and Biodegradation, v. 64 (7), 676-681. https://doi.org/10.1016/j.ibiod.2010.

Sun, Y.; Wang, Y.; Huang, X., 2007. Relationship between sludge settleability and membrane fouling in a membrane bioreactor. Frontiers of Environmental Science & Engineering in China, v. 1 (2), 221-225. https://doi.org/10.1007/s11783-007-0038-9.

Tong, S.; Liu, H.; Feng, C.; Chen, N.; Zhao, Y.; Xu, B.; Zhao, J.; Zhu, M., 2019. Stimulation impact of electric currents on heterotrophic denitrifying microbial viability and denitrification performance in high concentration nitratecontaminated wastewater. Journal of Environmental Sciences (China), v. 77, 363-371. https://doi.org/10.1016/j.jes.2018.09.014.

Wang, X.; Jiang, J.; Gao, W., 2022. Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Science and Technology, v. 85 (7), 2076-2096. https://doi.org/10.2166/wst.2022.088.

Yan, Z.S.; Wang, S.H.; Kang, X.K.; Ma, Y. 2012. Enhanced removal of organics and phosphorus in a hybrid coagulation/membrane bioreactor (HCMBR) for real textile dyeing wastewater treatment. Desalination and Water Treatment, v. 47 (1-3), 249-257. https://doi.org/10.1080/19443994.2012.696423.

Downloads

Published

2025-05-20

How to Cite

Battistelli, A. A., Zilch, M. H., Machinski, J. H. de S. C., Gavlak, G., Pedroso, C. R., Souza, K. V. de, Souza, J. B. de, & Vidal, C. M. de S. (2025). Application of electroc hemical processes in aerobic biological systems used for textile wastewater treatment: effects on mixed liquor characteristics and pollutant removal. Revista Brasileira De Ciências Ambientais, 60, e2145. https://doi.org/10.5327/Z2176-94782145

More articles by the same author(s)