Microplastics on the surface of marine waters of the coast of Santa Catarina (Brazil): identification by stereomicroscope and FTIR-ATR spectrophotometer

Authors

DOI:

https://doi.org/10.5327/Z2176-94781900

Keywords:

polímeros; águas; resíduos; metodologia; monitoramento

Abstract

The oceans are one of the final destinations for the vast majority of plastic waste; in this sense, particles smaller than 5 mm, classified as microplastics (MPs), represent an environmental challenge with global impact on several ecosystems. The work evaluated the presence of MPs in marine waters off the northern coast of Santa Catarina (Brazil), addressing sampling procedures, opening, characterization, and polymer identification. A low-cost equipment developed with easily accessible materials was tested in the sampling, showing excellent results in terms of buoyancy, stability, and mechanical strength. The concentration of MPs obtained in the study was 0.01 MPs per m3. The particles found were analyzed by stereomicroscopy and classified according to morphological aspects in relation to shape into fragments 58,00%, films 25,00%, and lines 17,00%, and regarding the aspect related to color, blue was predominant. The characterization and polymeric identification was performed by Fourier transform infrared spectroscopy coupled to the total attenuated reflectance module (FTIR-ATR). The types of polymers identified were: polyethylene 33,33%; polypropylene 25,00%; butadiene-styrene copolymer 25,00%, and cellulose 16,66%. The work contributed to the evaluation of an area not yet studied in relation to the presence of MPs in marine waters, while at the same time described in detail the methodologies for analyzing microplastics proposed in the specialized literature.

Downloads

Download data is not yet available.

References

Alam, F.C.; Sembiring, E.; Muntalif, B.S.; Suendo, V., 2019. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere, v. 224, 637-645. https://doi.org/10.1016/j.chemosphere.2019.02.188

Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin, v. 62, (8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

Auta, H.S.; Emenike, C.U.; Fauziah, S.H., 2017. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environment International, v. 102, 165-176. https://doi.org/10.1016/j.envint.2017.02.013

Carpenter, E.J.; Smith, K.L., 1972. Plastics on the Sargasso Sea surface. Science, v. 175, (4027), 1240-1241. https://doi.org/10.1126/science.175.4027.1240

Castro, R.O.; Silva, M.L.; Marques, M.R.C.; Araújo, F.V., 2020. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Marine Pollution Bulletin, v. 160, 111537. https://doi.org/10.1016/j.marpolbul.2020.111537

Catoggio, K., 2022. ATR Sampling Accessories for the Agilent Cary 630 FTIR Spectrometer. Agilent Technologies, Santa Clara, CA.

Comnea-Stancu, I.R.; Wieland, K.; Ramer, G.; Schwaighofer, A.; Lendl, B., 2017. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using fourier transform infrared spectroscopy. Applied Spectroscopy, v. 71, (5), 939-950. https://doi.org/10.1177/0003702816660725

Çobanoğlu, H.; Belivermiş, M.; Sıkdokur, E.; Kılıç, Ö.; Çayır, A., 2021. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere, v. 272, 129805. https://doi.org/10.1016/j.chemosphere.2021.129805

da Costa, I.D.; Costa, L.L.; Zalmon, I.R., 2023. Microplastics in water from the confluence of tropical rivers: Overall review and a case study in Paraiba do Sul River basin. Chemosphere, v. 338, 139493. https://doi.org/10.1016/j.chemosphere.2023.139493

de Castilhos, J.A.; Gré, J.C.R., 2006. Beach morphodynamics and sediment transport along the northern coast of Santa Catarina, Brazil. Journal of Coastal Research, v. 39, 1756-1761.

Dehaut, A.; Cassone, A.L.; Frere, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Riviere, G.; Lambert, C.; Soudant, P.; Huvet, A.; Duflos, G.; Paul-Pont, I., 2016. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution, v. 215, 223-233. https://doi.org/10.1016/j.envpol.2016.05.018

Edo, C.; Gonz, M.; Gonzalez-Pleiter, M.; Leganez, F.; Fernandez-Piñas, F.; Rosal, R., 2020. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, v. 259, 113837. https://doi.org/10.1016/j.envpol.2019.113837

Fernandes, A.N.; Bertoldi, C.; Lara, L.Z.; Stival, J.; Alves, N.M.; Cabrera, P.M.; Grassi, M.T., 2022. Microplastics in Latin America ecosystems: a critical review of the current stage and research needs. Journal of the Brazilian Chemical Society, v. 33, (4), 303-326. https://doi.org/10.21577/0103-5053.20220018

Ferraz, M.; Bauer, A.L.; Valiati, V.H.; Schulz, U.H., 2020. Microplastic concentrations in raw and drinking water in the Sinos River, Southern Brazil. Water (Switzerland), v. 12, (11), 1-10. https://doi.org/10.3390/w12113115

Frias, J.P.G.L.; Nash, R., 2019. Microplastics: finding a consensus on the definition. Marine Pollution Bulletin, v. 138, 145-147. https://doi.org/10.1016/j.marpolbul.2018.11.022

Grillo, J.F.; Guerrero Rebolledo, A.; Sabino, M.A.; Ramos, R., 2022. Microplastics in Latin America and the Caribbean: On the adoption of reporting standards and quality assurance and quality control protocols. Environmental Advances, v. 8, 100236. https://doi.org/10.1016/j.envadv.2022.100236

Haque, M.R.; Ali, M.; Ahmed, W.; Siddique, A.B.; Akbor, A.; Islam, S.; Rahman, M.L., 2023. Assessment of microplastics pollution in aquatic species (fish, crab, and snail), water, and sediment from the Buriganga River, Bangladesh: An ecological risk appraisals. Science of the Total Environment, v. 857. https://doi.org/10.1016/j.scitotenv.2022.15

Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C., 2012. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, v. 10, (7), 524-537. https://doi.org/10.4319/lom.2012.10.524

Issac, M.N.; Kandasubramanian, B., 2021. Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research Springer Nature, v. 28, 19544-19562. https://doi.org/10.1007/s11356-021-13184-2.

Jambeck, J.R.; Geyer, R.; Wilcox C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science, v. 347, (6223), 768-771. https://doi.org/10.1126/science.1260352

Jung, Y.S.; Sampath, V.; Prunicki, M.; Aguilera, J.; Allen, H.; Labeaud, D.; Veidis, E.; Barry, M.; Erny, B.; Patel, L.; Akdis, C.; Akdis, M.; Nadeau, K., 2022. Characterization and regulation of microplastic pollution for protecting planetary and human health. Environmental Pollution, v. 315, 120442. https://doi.org/10.1016/j.envpol.2022.120442

Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.J.; Voit, B., 2016. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, v. 408, (29), 8377-8391. https://doi.org/10.1007/s00216-016-9956-3

Kershaw, P.J.; Turra, A.; Galgani, F., 2019. GESAMP — Guidelines on the monitoring and assessment of plastic litter and microplastics in the ocean. UNEP. Nairobi, 130 p.

Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C., 2020. Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. Environmental Pollution, v. 267, 115463. https://doi.org/10.1016/j.envpol.2020.115463

Lebreton, L.; van der Zwet, J.; Damsteeg, JW.; Slat, B.; Andrady, A.; Reisser, J., 2017. River plastic emissions to the world’s oceans. Nature Communications, v. 8, 15611. https://doi.org/10.1038/ncomms15611

Liu, K.; Zhang, F.; Song, Z.; Zong, C.; Wei, N.; Li, D., 2019. A novel method enabling the accurate quantification of microplastics in the water column of deep ocean. Marine Pollution Bulletin, v. 146, 462-465. https://doi.org/10.1016/j.marpolbul.2019.07.008

Liu, L.; Xu, M.; Ye, Y.; Zhanget, B., 2022. On the degradation of (micro)plastics: degradation methods, influencing factors, environmental impacts. Science of the Total Environment, v. 806, part 3. https://doi.org/10.1016/j.scitotenv.2021.151312

Lusher, A.L.; Brate, I.L.; Munno, K.; Hurley, R.R.; Welden, N.A., 2020a. Is it or isn’t it: the importance of visual classification in microplastic characterization. Applied Spectroscopy, v. 74, (9), 1139-1153. https://doi.org/10.1177/0003702820930733

Mecozzi, M.; Pietroletti, M.; Monakhova, Y.B., 2016. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Pollution Bulletin, v. 106, (1-2), 155-161. https://doi.org/10.1016/j.marpolbul.2016.03.012

Meijer, L.J.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L., 2021. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, v. 7, (18), 1-13. https://doi.org/10.1126/sciadv.aaz5803

Morgado, V.; Gomes, L.; Da Silva, R.J.N.B.; Palma, C., 2021. Validated spreadsheet for the identification of PE, PET, PP and PS microplastics by micro-ATR-FTIR spectra with known uncertainty. Talanta, v. 234, 122624. https://doi.org/10.1016/j.talanta.2021.122624

Montagner, C.C.; Dias, M.A.; Paiva, E.M.; Vidal, C., 2021. Microplastics: environmental occurrence and analytical challenges. Química Nova, v. 44, (10), 1328-1352). https://doi.org/10.21577/0100-4042.20170791

Marine Strategy Framework Directive (MSFD), 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Text with EEA relevance) OJ L 164, 25.6.2008, p. 19-40 (Accessed on 07 August, 2023) at:. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008L0056:en:NOT

Masura, J.; Baker, J.; Foster, G.; Arthur, C.; Herring, C., 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Marine Debris Program. National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Technical Memorandum NOS-OR&R-48. July 2015..

Napper, I.E.; Thompson, R.C., 2020. Plastic debris in the marine environment: history and future challenges. Global Challenges, v. 4, (6), 1900081. https://doi.org/10.1016/j.oneear.2020.10.020.

Olivatto, G.P.; Carreira, R.; Tornisielo, V.L.; Montagner, C.C., 2018. Microplastics: Contaminants of global concern in the Anthropocene. Revista Virtual de Química, v. 10, (6), 1968-1989. https://doi.org/10.21577/1984-6835.20180125

Olivatto, G.P.; Martins, M.C.T.; Montagner, C.C.; Henry, T.B.; Carreira, R.S., 2019. Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil. Marine Pollution Bulletin, v 139, 157-162. https://doi.org/10.1016/j.marpolbul.2018.12.042

Orona-Návar, C.; García-Morales, R.; Loge, F.J.; Mahlknecht, J.; Aguilar-Hernández, I.; Ornelas-Soto, N., 2022. Microplastics in Latin America and the Caribbean: A review on current status and perspectives. Journal of Environmental Management, v. 309, 114698. https://doi.org/10.1016/j.jenvman.2022.114698

Paiva, D.L.; Lampman, D.M.; Kriz, G.S.; Vyvyan, J.R. Introdução à espectroscopia. 4. ed. Cengage Learning, São Paulo.

Pedro, J.S.P.; Vieira C.V., 2018. Evolução do uso e cobertura do solo no município de São Francisco do Sul-Estado de Santa Catarina Evolution of land use in the municipality of São francisco do Sul-Santa Catarina. Boletim Paranaense de Geociências, v. 74, (1), 28-36. https://doi.org/10.5380/geo.v74i1.50945

Pincelli, I.P.; Castilhas Júnior, B.A.; Matias, S.M.; Rutkowski, E.W., 2021. Post-consumer plastic packaging waste flow analysis for Brazil: The challenges moving towards a circular economy. Waste Management, v. 126, 781-790. https://doi.org/10.1016/j.wasman.2021.04.005

Plastics Europe, 2023. Plastics — the Facts 2023 An analysis of European plastics production, demand and waste data. Plastics Europe, Brussels.

Quinn, B.; Murphy, F.; Ewins, C., 2017. Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, v. 9, (9), 1491-1498. https://doi.org/10.1039/C6AY02542K

Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; D’Amore, E.; Rinaldo, D.; Matta, M.; Giorgini, E., 2021. Plasticenta: First evidence of microplastics in human placenta. Environment International, v. 146, 106274. https://doi.org/10.1016/j.envint.2020.106274

Rech, S.; Thiel, M.; Pichs, Y.J.B.; Garcia-Vazquez, E., 2018. Traveling light: Fouling biota on macroplastics arriving on beaches of remote Rapa Nui (Easter Island) in the South Pacific Subtropical Gyre. Marine Pollution Bulletin, v. 137, 119-128. https://doi.org/10.1016/j.marpolbul.2018.10.015

Renner, G.; Schmidt, T.C.; Schram, J., 2018. Analytical methodologies for monitoring micro(nano)plastics: Which are fit for purpose? Current Opinion in Environmental Science and Health, v. 1, 55-61. https://doi.org/10.1016/j.coesh.2017.11.001

Ricardo, E.S.L.; Martins, A.O.; Rossa, U., 2022. Development of a low-cost system for sampling microplastics in water. Naturae, v. 4, (2), 24-31. https://doi.org/10.6008/CBPC2674-6441.2022.002.0004.

Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavli, M.; Mousazadeh, M.; Tiwari, A., 2022. A review on microplastics and nanoplastics in the environment: their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine Pollution Bulletin, v. 181. https://doi.org/10.1016/j.marpolbul.2022.113832

Shim, W.J.; Hong, S.H.; Eo, S.E., 2017 Identification methods in microplastic analysis: a review. Analytical Methods. Royal Society of Chemistry. https://doi.org/10.1039/C6AY02558G

Silverstein, R.M.; Webster, F.X.; Kiemle, D.J., 2006. Identificação espectrométrica de compostos orgânicos. 7. ed. Editora LTC, Rio de Janeiro.

Sodré, F.F.; Arowojolu, I.M.; Canela, M.C.; Ferreira, R.S.; Fernandes, A.N.; Montagner, C.C.; Vidal, C.; Dias, M.A.; Abate, G.; da Silva, L.C.; Grassi, M.T.; Bertoldi, C.; Fadini, P.S.; Urban, R.C.; Ferraz, G.M.; Schio, N.S.; Waldman, W.R., 2023. How natural and anthropogenic factors should drive microplastic behavior and fate: the scenario of Brazilian urban freshwater. Chemosphere, v. 340, 139813. https://doi.org/10.1016/j.chemosphere.2023.139813

Stelmack, E.O.; Vieira, C.V.; Cremer, M.J.; Kroll, C., 2018. Lixo marinho em ambientes costeiros: o caso da Praia Grande na Ilha de São Francisco do Sul/SC, Brasil. Geosul, v. 33, (66), 11-28. https://doi.org/10.5007/2177-5230.2018v33n66p11

Terzi, Y.; Seyhan, K., 2017. Seasonal and spatial variations of marine litter on the south-eastern Black Sea coast. Marine Pollution Bulletin, v. 120, (1-2), 154-158. https://doi.org/10.1016/j.marpolbul.2017.04.041

Tian, W.; Song, P.; Zhang, H.; Duan, X.; Wei, Y.; Wang, H.; Wang, S., 2023. Microplastic materials in the environment: Problem and strategical solutions. Progress in Materials Science, v. 132, 101035. https://doi.org/10.1016/j.pmatsci.2022.101035

Tong, F.; Liu, D.; Zhang, Z.; Chen, W.; Fan, G.; Gao Y.; Gu, X.; Gu, C., 2023. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation. Environmental Research, v. 216. https://doi.org/10.1016/j.envres.2022.114716

Yang, J.; Monnot, M.; Sun, Y.; Asia, L.; Wong-Wah-Chung, P.; Doumenq, P.; Moulin, P., 2023. Microplastics in different water samples (seawater, freshwater, and wastewater): methodology approach for characterization using micro-FTIR spectroscopy. Water Research, v. 232, 119711. https://doi.org/10.1016/j.watres.2023.119711

Zobkov, M.B.; Esiukova, E.E., 2017. Evaluation of the Munich plastic sediment separator efficiency in extraction of microplastics from natural marine bottom sediments. Limnology and Oceanography: Methods, v. 15, (11), 967-978. https://doi.org/10.1002/lom3.10217

Downloads

Published

2024-06-04

How to Cite

Ricardo, E. S. L., Rossa, Überson B., Martins, A. O., Ribeiro, E. A. W., Vischetti, C., Casucci, C., Brunetti, G., De Bernardi, A., Marini, E., & Tagliabue, F. (2024). Microplastics on the surface of marine waters of the coast of Santa Catarina (Brazil): identification by stereomicroscope and FTIR-ATR spectrophotometer. Revista Brasileira De Ciências Ambientais, 59, e1900. https://doi.org/10.5327/Z2176-94781900

More articles by the same author(s)