Application of a convolutional neural network for automated multiclass identification of field-collected microplastics and diatom algae from optical microscopy images

Authors

DOI:

https://doi.org/10.5327/Z2176-94782491

Keywords:

deep learning; microalgae; freshwater; plastics.

Abstract

Microplastics are present all around the globe, and they are a major threat to the environment because of the challenges they pose. Their sampling, isolation, and analysis processes are laborious and difficult due to their size, shape, and spreading dynamics. Furthermore, the lack of standardized protocols in microplastic research makes it difficult to compare results and unify the progress of the field. In this context, this work proposes and evaluates a model architecture based on deep learning to classify microplastic images using a dataset of real microplastics sampled from a freshwater reservoir, with convolutional neural network and transfer learning. Moreover, the model identifies diatom algae frustules, which can persist in the hydrogen peroxide degradation during the process of microplastic isolation due to their biosilica composition. The model was developed in Python using the Google Colab environment. A total of 1,140 images were used, and to ensure a robust and generalized evaluation, 5-fold cross-validation was applied. The model achieved 93% accuracy, with a recall of 97, 95, 92, and 90% for algae, microplastic filaments, fragments, and pellets, respectively. Overall, the accuracy of the model is encouraging considering the dataset size and all the challenges that involve the automatic identification of microplastics, with all their shape variations and nuances; thus the results are promising. To our knowledge, this is the first work addressing diatom presence after one of the most common microplastic isolation techniques and their automated classification among microplastics as well.

Downloads

Download data is not yet available.

References

Annable, C., 2024. Python machine learning: a step-by-step journey with scikit-learn and tensor flow for beginners.

Ansari, H., 2024. Mastering tensorflow: unleashing the power of deep learning: a hands-on guide to building neural networks, image processing, and natural language understanding with tensorflow (Accessed August 14, 2025) at:. https://sciarium.com/file/632232/

Barsanti, L.; Gualtieri, P., 2023. Algae: anatomy, biochemistry, and biotechnology, Third edition. CRC Press, Boca Raton. https://doi.org/10.1201/9781003187707

Benson, N.U.; Agboola, O.D.; Fred-Ahmadu, O.H.; De-La-Torre, G.E.; Oluwalana, A.; Williams, A.B., 2022. Micro(nano)plastics prevalence, food web interactions, and toxicity assessment in aquatic organisms: a review. Frontiers in Marine Science, v. 9, 851281. https://doi.org/10.3389/fmars.2022.851281

Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.Z.; Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S., 2023. Toxicity assessment of microplastic (MPs). Environmental Research, v. 234, 116523. https://doi.org/10.1016/j.envres.2023.116523

California State Policy Evidence Consortium (CalSPEC), 2023. Microplastics occurrence, health effects, and mitigation policies: an evidence review for the California state legislature. CalSPEC, United States of America.

Castro, D.G.D.; Silva, A.L.L.D.; Lopes, M.D.N.; Freire, A.S.; Leite, N.K., 2024. Effect of urbanization and water quality on microplastic distribution in Conceição Lagoon watershed, Brazil. Environmental Science and Pollution Research, 31, 28870-28889. https://doi.org/10.1007/s11356-024-33029-y

Chollet, F., 2018. Deep learning with python. Manning Publications Co., Shelter Island.

Citterich, F.; Giudice, A.L.; Azzaro, M., 2023. A plastic world: A review of microplastic pollution in the freshwaters of the Earth's poles. Science of The Total Environment, v. 869, 161847. https://doi.org/10.1016/j.scitotenv.2023.161847

Corcoran, P.L.; Belontz, S.L.; Ryan, K.; Walzak, M.J., 2019. Factors controlling the distribution of microplastic particles in benthic sediment of the Thames River, Canada. Environmental Science & Technology, v. 54 (2), 818-825. https://doi.org/10.1021/acs.est.9b04896

Costa, J.P.; Duarte, A.C., 2022. Introduction to the analytical methodologies for the analysis of microplastics. In: Rocha-Santos, T.AP., Costa, M.F.; Mouneyrac, C. (Eds.), Handbook of microplastics in the environment. Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_1

Drabinski, T.L.; Carvalho, D.G.D.; Gaylarde, C.C.; Lourenço, M.F.P.; Machado, W.T.V.; Fonseca, E.M.; Silva, A.L.C.D.; Baptista Neto, J.A., 2023. Microplastics in freshwater river in Rio de Janeiro and its role as a source of microplastic pollution in Guanabara Bay, SE Brazil. Micro, v. 3 (1), 208-223. https://doi.org/10.3390/micro3010015

Duan, L.; Luo, L.; Zhang, L.; Li, D.; Li, H.; Xu, T.; Xu, J.; Zhang, H., 2024. The occurrence of microplastics pollution in the surface water and sediment of Lake Chenghai in Southwestern China. Water, v. 16 (18), 2672. https://doi.org/10.3390/w16182672

Egessa, R.; Nankabirwa, A.; Ocaya, H.; Pabire, W.G., 2020. Microplastic pollution in surface water of Lake Victoria. Science of the Total Environment, v. 741, 140201. https://doi.org/10.1016/j.scitotenv.2020.140201

Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; Semensatto, D., 2020. Microplastics in sediments from Amazon rivers, Brazil. Science of the Total Environment, v. 749, 141604. https://doi.org/10.1016/j.scitotenv.2020.141604

Giardino, M.; Balestra, V.; Janner, D.; Bellopede, R., 2023. Automated method for routine microplastic detection and quantification. Science of The Total Environment, vol. 859 (Part 2), 160036. https://doi.org/10.1016/j.scitotenv.2022.160036

Gosh, T.; Math, S.K.B., 2023. Practical mathematics for AI and deep learning. BPB Publications, India.

Hasnine, M.D.T.; Anik, A.H.; Alam, M.; Yuan, Q., 2024. Navigating microplastic challenges: separation and detection strategies in wastewater treatment. In: Kumar, A.; Singh, V. (Eds.), Microplastics pollution and its remediation. Springer, Cham.

He, D.; Luo, Y., 2020. Microplastics in terrestrial environments emerging contaminants and major challenges. In: Barceló, D.; Kostianoy, A.G. (Eds.), The handbook of environmental chemistry (Vol. 95). Springer, Cham. https://doi.org/10.1007/978-3-030-56271-7

Ivanic, F.M.; Guggenberger, G.; Woche, S.K.; Bachmann, J.; Hoppe, M.; Carstens, J.F., 2023. Soil organic matter facilitates the transport of microplastic by reducing surface hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 676 (Part B), 132255. https://doi.org/10.1016/j.colsurfa.2023.132255

Kurki-Fox, J.J.; Doll, B.A.; Monteleone, B.; West, K.; Putnam, G.; Kelleher, L.; Krause, S.; Schneidewind, U., 2023. Microplastic distribution and characteristics across a large river basin: Insights from the Neuse River in North Carolina, USA. Science of the Total Environment, 878, 162940. https://doi.org/10.1016/j.scitotenv.2023.162940

Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C., 2021. How well-protected are protected areas from anthropogenic microplastic contamination? Trends in Environmental Analytical Chemistry, (32), e00147. https://doi.org/10.1016/j.teac.2021.e00147

Lee, S.; Jeong, H.; Hong, S.M.; Yun, D.; Lee, J.; Kim, E.; Cho, K.H., 2023. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model. Water Research, v. 246, 120710. https://doi.org/10.1016/j.watres.2023.120710

Lemos, C.F.; Fiori, A.P.; Oka-Fiori, C.; Tomazoni, J.C., 2014. Assoreamento da represa de Alagados pela contribuição de sedimentos da bacia hidrográfica do alto curso do rio Pitangui/PR. Geociências, v. 33 (4), 549-557 (Accessed August 14, 2025) at:. https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/9501

Li, J.; Zhang, J.; Ren, S.; Huang, D.; Liu, F.; Li, Z; Zhang, H.; Zhao, M.; Cao, Y.; Mofolo, S.; Liang, J.; Xu, W.; Jones, D.L.; Chadwick, D.R.; Liu, X.; Wang, K., 2023. Atmospheric deposition of microplastics in a rural region of North China Plain. Science of the Total Environment, v. 877, 162947. https://doi.org/10.1016/j.scitotenv.2023.162947

Li, X.; Bao, L.; Wei, Y.; Zhao, W.; Wang, F.; Liu, X.; Su, H.; Zhang, R., 2023. Occurrence, bioaccumulation, and risk assessment of microplastics in the aquatic environment: a review. Water, 15 (9), 1768. https://doi.org/10.3390/w15091768

Lorenzo-Navarro, J.; Castrillón-Santana, M.; Sánchez-Nielsen, E.; Zarco, B.; Herrera, A.; Martínez, I.; Gómez, M., 2021. Deep learning approach for automatic microplastics counting and classification. Science of the Total Environment, v. 765, 142728. https://doi.org/10.1016/j.scitotenv.2020.142728

Lucas-Solis, O.; Moulatlet, G.M.; Guamangallo, J.; Yacelga, N.; Villegas, L.; Galarza, E.; Rosero, B.; Zurita, B.; Sabando, L.; Cabrera, M.; Gimiliani, G.T.; Capparelli, M.V., 2021. Preliminary assessment of plastic litter and microplastic contamination in freshwater depositional areas: The case study of Puerto Misahualli, Ecuadorian Amazonia. Bulletin of Environmental Contamination and Toxicology, v. 107, 45-51. https://doi.org/10.1007/s00128-021-03138-2

Lv, L.; Yan, X.; Feng, L.; Jiang, S.; Lu, Z.; Xie, H.; Sun, S.; Chen, J.; Li, C., 2021. Challenge for the detection of microplastics in the environment. Water Environment Research, v. 93 (1), 5-15. https://doi.org/10.1002/wer.1281

Masura, J.; Baker, J.; Foster, G.; Arthur, C.; Herring, C., 2015. Laboratory methods for the analysis of microplastics in the marine environment. Silver Spring, United States (Accessed August 14, 2025) at:. https://repository.library.noaa.gov/view/noaa/10296

Mathew, J.T.; Inobeme, A.; Adetuyi, B.O.; Falana, Y.O.; Adetunji, C.O.; Shahnawaz, M., 2024. Application of microplastics in toiletry products. In: Shahnawaz, M.; Adetunji, C.O.; Dar, M.A.; Zhu, D. (Eds.), Microplastic pollution. Springer, Singapore. https://doi.org/10.1007/978-981-99-8357-5_5

Mathworks. Resnet50. Website (Accessed November 15, 2024) at:. https://www.mathworks.com/help/de eplearning/ref/resnet50.html

Mitchell, C.; Waterhouse, J., 2023. Microplastics in Arctic Sea ice: a petromodern archive fever. In: Konrad, T. (Ed.), Plastics, environment, culture, and the politics of waste. Edinburgh University Press, Edinburgh. https://doi.org/10.3366/edinburgh/9781399511735.003.0006

Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V., 2020. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environmental Pollution, v. 259, 113865. https://doi.org/10.1016/j.envpol.2019.113865

Nayeri, D.; Mousavi, S. A.; Almasi, A.; Asadi, A., 2023. Microplastic abundance, distribution, and characterization in freshwater sediments in Iran: a case study in Kermanshah city. Environmental Science and Pollution Research, v. 30 (17), 49817-49828. https://doi.org/10.1007/s11356-023-25620-6

Nielsen, M. Neural networks and deep learning (Accessed November 11, 2024) at:. http://neuralnetworksanddeeplearning.com/index.html

Parvin, F.; Hassan, A.; Tareq, S.M., 2022. Risk assessment of microplastic pollution in urban lakes and peripheral Rivers of Dhaka, Bangladesh. Journal of Hazardous Materials Advances, v. 8, 100187. https://doi.org/10.1016/j.hazadv.2022.100187

Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; Carnevali, O.; Giorgini, E., 2022. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers, v. 14 (13), 2700. https://doi.org/10.3390/polym14132700

Saad, D.; Ramaremisa, G.; Ndlovu, M.; Chauke, P.; Nikiema, J.; Chimuka, L., 2024. Microplastic abundance and sources in surface water samples of the Vaal River, South Africa. Bulletin of Environmental Contamination and Toxicology, v. 112 (1), 23. https://doi.org/10.1007/s00128-023-03845-y

Sharifani, K.; Amini, M., 2013. Machine learning and deep learning: a review of methods and applications. World Information Technology and Engineering Journal, v. 10 (7), 3897-3904 (Accessed August 14, 2025) at:. https://ssrn.com/abstract=4458723

Shi, B.; Patel, M.; Yu, D.; Yan, J.; Li, Z.; Petriw, D.; Pruyn, T.; Smyth, K.; Passeport, E.; Miller, R.J.D.; Howe, J.Y., 2022. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning. Science of the Total Environment, v. 825, 153903. https://doi.org/10.1016/j.scitotenv.2022.153903

Strady, E.; Dang, T.H.; Dao, T.D.; Dinh, H.N.; Do, T.T.D.; Duong, T.N.; Duong, T.T.; Hoang, D.A.; Kieu-Le, T.C.; Le, T.P.Q.; Mai, H.; Trinh, D.M.; Nguyen, Q.H; Tran-Nguyen, Q.A.; Tran, Q.V.; Truong, T.N.S.; Chu, V.H.; Vo, V.C., 2021. Baseline assessment of microplastic concentrations in marine and freshwater environments of a developing Southeast Asian country, Viet Nam. Marine Pollution Bulletin, v. 162, 111870. https://doi.org/10.1016/j.marpolbul.2020.111870

Sun, X.; Zhang, M.; Liu, J.; Hui, G.; Chen, X.; Feng, C., 2024. The art of exploring diatom biosilica biomaterials: from biofabrication perspective. Advanced Science, v. 11 (6), 2304695. https://doi.org/10.1002/advs.202304695

Tang, Y.; Liu, Y.; Chen, Y.; Zhang, W.; Zhao, J.; He, S.; Yang, C.; Zhang, T.; Tang, C.; Zhang, C.; Yang, Z., 2020. A review: Research progress on microplastic pollutants in aquatic environments. Science of the Total Environment, v. 766, 142572. https://doi.org/10.1016/j.scitotenv.2020.142572

TESCAN Group. TESCAN MIRA (Accessed September 13, 2024) at:. https://www.tescan.com/pt-br/product/sem-for-materials-science-tescan-mira/

Vidal, A.; Phuong, N.N.; Métais, I.; Gasperi, J.; Châtel, A., 2023. Assessment of microplastic contamination in the Loire River (France) throughout analysis of different biotic and abiotic freshwater matrices. Environmental Pollution, v. 334, 122167. https://doi.org/10.1016/j.envpol.2023.122167

Vithanage, M.; Prasad, M.N.V. (Eds.), 2023. Microplastics in the ecosphere: air, water, soil, and food. John Wiley & Sons, Hoboken.

Wang, C.; O'Connor, D.; Wang, L.; Wu, W.M.; Luo, J.; Hou, D., 2022. Microplastics in urban runoff: Global occurrence and fate. Water Research, v. 225, 119129. https://doi.org/10.1016/j.watres.2022.119129

Zhang, A.; Lipton, Z. C.; Li, M.; Smola, A.J., 2023. Dive into deep learning. Cambridge University Press, Cambridge.

Downloads

Published

2025-09-19

How to Cite

Almeida, V. de, Wiecheteck, G. K., Christo, S. W., Girard , P., Souza , J. B. de, Inglez, J. E. F., Staichak , G., & Ferreira Júnior, A. L. (2025). Application of a convolutional neural network for automated multiclass identification of field-collected microplastics and diatom algae from optical microscopy images. Revista Brasileira De Ciências Ambientais, 60, e2491. https://doi.org/10.5327/Z2176-94782491