Surface water and groundwater in a waste disposal area from dimension stone processing
DOI:
https://doi.org/10.5327/Z2176-94782184Keywords:
abrasive mud, water quality, environmental monitoring.Abstract
Processing of dimension stones involves the transformation of rock blocks into plates. This process generates a very fine-grained residue as mud, composed of rock powder, abrasive inputs, and water. During the polishing of plates, this residue can acquire phenolic resins, chlorides, and other chemical compounds. The effluent from polishing is usually mixed with sawdust and disposed of in industrial landfills and, eventually, clandestine deposits. This study presents an assessment of the quality of surface water and groundwater around an old deposit of residues from the processing of dimension stones located in the municipality of Cachoeiro de Itapemirim, south of the State of Espírito Santo, Southeast region of Brazil. Groundwater samples were collected in monitoring wells, and surface water was collected in drainage channels located upstream and downstream of the deposit. The study analyzed the pH, total dissolved solids, alkalinity, total phenols, chlorides, and dissolved metals. Considering the Resolutions of the National Environmental Council nº 357/05—for surface waters—and 396/08—for groundwater, the contents of Fe, Mn, and phenols are above the permitted limit, while Cu and Pb are close to it. The other parameters are within the permitted range but indicate an entry of pollutants from the drainage of urban effluents into the phreatic aquifer, which is also observed by monitoring rainfall, groundwater level depth, pH, and electrical conductivity. The study indicates that, if stored per current environmental regulations, residues from the processing of dimension stones present a controllable risk concerning environmental quality. On the other hand, the most significant impact on water quality in the studied area is that of domestic effluents.
Downloads
References
Ahmed, Z.; Alam, R.; Akter, S.A.; Kadir, A., 2020. Environmental sustainability assessment due to stone quarrying and crushing activities in Jaflong, Sylhet. Environmental Monitoring Assessement, v. 192, 778. https://doi.org/10.1007/s10661-020-08754-9
Alansi, R.Q.; Mohammed, A.M.A.; Ali, M.M.; Ghalib, W.A.M.; Ponnappa, S.C., 2021. Determination of heavy metals in groundwater around Al-Buraihi sewage station in Taiz City, Yemen. Journal of Health & Pollution, v. 11, (30), 1-12. https://doi.org/10.5696/2156-9614-11.30.210604
Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF), 2022. Standard methods for the examination of water and wastewater. 24th ed. AWWA, Washington, D.C., 1516 p.
Associação Brasileira de Normas Técnicas (ABNT), 1987. NBR 9898: preservação e técnicas de amostragem de efluentes líquidos e corpos receptores. ABNT, Rio de Janeiro, 22 p.
Associação Brasileira de Normas Técnicas (ABNT), 1997. NBR 13895: construção de poços de monitoramento e amostragem. ABNT, Rio de Janeiro, 21 p.
Barros, M.M.; Oliveira, M.F.L.; Ribeiro, R.C.C.; Bastos, D.C.; Oliveira, M.G., 2020. Ecological bricks from dimension stone waste and polyester resin. Construction and Building Materials, v. 232, 117252. https://doi.org/10.1016/j.conbuildmat.2019.117252
Bon, A.F.; Ngoss, T.A.M.N.; Mboudou, G.E.; Banakeng, L.A.; Ngoupayou, J.R.N.; Ekodeck, G.E., 2021. Groundwater flow patterns, hydrogeochemistry and metals background levels of shallow hard rock aquifer in a humid tropical urban area in sub-Saharan Africa - A case study from Ol´ezoa watershed (Yaound’e-Cameroon). Journal of Hydrology: Regional Studies, v. 37, 100904. https://doi.org/10.1016/j.ejrh.2021.100904
Brasil, 2005. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução CONAMA nº 357, de 18 de março de 2005. Diário Oficial da União.
Brasil, 2008. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução CONAMA nº 396, de 3 de abril de 2008. Diário Oficial da União.
Brasil, 2010. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. Decreto nº 7.217, de 21 de junho de 2010. Diário Oficial da União.
Brasil, 2020. Presidência da República. Secretaria Geral. Subchefia para Assuntos Jurídicos. Lei nº 14.026, de 15 de julho de 2020. Diário Oficial da União.
Brasil, 2023. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental. Sistema Nacional de Informações sobre Saneamento – SNIS. Secretaria Nacional de Saneamento Ambiental, Brasília.
Chiara, Z.; Conte, S.; Chiara, M.; Roberto, S.; Michele, D., 2020. Waste recycling in ceramic tiles: a technological outlook. Resources Conservation and Recycling, v. 168, 105289. https://doi.org/10.1016/j.resconrec.2020.105289
Dantas, M.S.; Barroso, G.R.; Oliveira, S.C., 2021. Performance of sewage treatment plants and impact of effluent discharge on receiving water quality within an urbanized area. Environmental Monitoring and Assessment, v. 193, 289. https://doi.org/10.1007/s10661-021-09075-1
Delaunay, N.; Marques, E.D; Nummer, A.R.; Kutter, V.T.; Silva-Filho, E.V.; Lage, I.C., 2024. Hydrogeochemical characterization and indicators of anthropogenic influence in groundwater around Guanabara Bay, Rio de Janeiro, Brazil. Journal of South American Earth Sciences, v. 148, 105175. https://doi.org/10.1016/j.jsames.2024.105175
Delgado, J.; Vázquez, A.; Juncosa, R.; Barrientos, V., 2006. Geochemical assessment of the contaminant potential of granite fines produced during sawing and related processes associated to the dimension stone industry. Journal of Geochemical Exploration, v. 88, (1-3), 24-27. https://doi.org/10.1016/j.gexplo.2005.08.009
Espírito Santo, 2016. Instituto Estadual de Meio Ambiente e Recursos Hídricos. Instrução Normativa 11/2016, de 11 de outubro de 2016. Diário Oficial dos Poderes do Estado.
Espírito Santo, 2023a. Instituto Estadual de Meio Ambiente e Recursos Hídricos. Instrução Normativa 12/2023, de 22 de agosto de 2023. Diário Oficial dos Poderes do Estado.
Espírito Santo, 2023b. Instituto Estadual de Meio Ambiente e Recursos Hídricos. Instrução Normativa 13/2023, de 22 de agosto de 2023. Diário Oficial dos Poderes do Estado.
European Commission, 2006. Extractive Waste Directive 2006/21/EC. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries and Amending Directive 2004/35/EC. European Commission, Brussels.
Federação das Indústrias do Estado do Espírito Santo (FINDES), 2023. Findes em Dia: por que o ES é referência mundial no setor de rochas ornamentais? FINDES (Accessed January 11, 2024) at:. https://findes.com.br/es-referencia-mundial-no-setor-de-rochas-ornamentais/
Freitas, J.J.G.; Raymundo, V.; Jesus, H.C., 2012. Características químicas dos resíduos de serragem segregados de rochas ornamentais do estado do Espírito Santo. Revista Brasileira de Geociências, v. 42, (3), 615-624. https://doi.org/10.5327/Z0375-75362012000300014
Gautam, L.; Jain, J.K.; Kalla, P.; Danish, M., 2021. Sustainable utilization of granite waste in the production of green construction products: A review. Materials Today, v. 44, (part 6), 4196-4203. https://doi.org/10.1016/j.matpr.2020.10.532
Hem, J.D., 1989. Study and interpretation of chemical characteristics of natural water. USGS, Alexandria, 264 p. (Accessed October 31, 2023) at:. https://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf
Hounslow, A.W., 1995. Water quality data: analysis and interpretation. Lewis Publishers, Boca Raton, 397 p.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2022. Cachoeiro de Itapemirim. IBGE (Accessed January 11, 2024) at:. https://cidades.ibge.gov.br/brasil/es/cachoeiro-de-itapemirim/panorama
Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper), 2023. Dados médios da série histórica da estação meteorológica localizada no município de Cachoeiro de Itapemirim/ES (Pacotuba). Incaper (Accessed January 8, 2024) at:. https://meteorologia.incaper.es.gov.br/graficos-da-serie-historica-cachoeiro_de_itapemirim
Jalalian, M.H.; Bagherpour, R.; Khoshouei, M., 2021. Wastes production in dimension stones industry: resources, factors, and solutions to reduce them. Environmental Earth Sciences, v. 80, 560. https://doi.org/10.1007/s12665-021-09890-2
Kalu, I.E.; Ogbonna, N.J., 2021. Investigation of environmental effect of stone quarrying activities on soil and water in Akpoha and Ishiagu communities of Ebonyi state, Nigeria. International Journal of Construction Management, v. 21, (12), 1185-1199. https://doi.org/10.1080/15623599.2019.1604115
Lachassagne, P.; Dewandel, B.; Wyns, R., 2021. Review: Hydrogeology of weathered crystalline/hard-rock aquifers - guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal, 29, 2561-2594. https://doi.org/10.1007/s10040-021-02339-7
Liu, R.; Mabury, S.A., 2020. Synthetic phenolic antioxidants: a review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science Technology, v. 54, (19), 11706-11719. https://doi.org/10.1021/acs.est.0c05077
Michalowicz, J.; Duda, W., 2007. Phenols: sources and toxicity. Polish Journal of Environmental Studies, v. 16, (3), 347-362.
Mihali, C.; Dippong, T., 2023. Water quality assessment of Remeți watercourse, Maramureș, Romania, located in a NATURA 2000 protected area subjected to anthropic pressure. Journal of Contaminant Hydrology, v. 257, 104216. https://doi.org/10.1016/j.jconhyd.2023.104216
Neves, M.A.; Nadai, C.P.; Fonseca, A.B.; Prado, A.C.A.; Giannotti, J.D.G.; Raymundo, V., 2013. pH e umidade dos resíduos finos de beneficiamento de rochas ornamentais. Revista Escola de Minas, v. 66, (2), 239-244. https://doi.org/10.1590/S0370-44672013000200016
Neves, M.A.; Prado, A.C.A.; Marques, R.A.; Fonseca, A.B.; Machado, M.E.S., 2021. Lama de beneficiamento de rochas ornamentais processadas no Espírito Santo: composição e aproveitamento. Geociências, v. 40, (1), 123-136. https://doi.org/10.5016/geociencias.v40i1.15020
Oliveira, M.S.M.; Neves, M.A.; Caxito, F.A.; Moreira, R.M., 2022. 18O, 2H, and 3H isotopic data for understanding groundwater recharge and circulation systems in crystalline rocks terrain of Southeastern Brazil. Journal of South American Earth Sciences, v. 116, 103794. https://doi.org/10.1016/j.jsames.2022.103794
Paná, S.; Marinelli, M.V.; Bonansea, M.; Ferral, A.; Valente, D.; Valdez, V.C.; Petrosillo, I., 2024. The multiscale nexus among land use‑land cover changes and water quality in the Suquía River Basin, a semi‑arid region of Argentina. Scientific Reports, v. 14, 4670. https://doi.org/10.1038/s41598-024-53604-0
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Ren, G.; Zhou, M.; Zhang, Q.; Xua, X.; Lia, Y.; Su, P., 2020. A novel stacked flow-through electro-Fenton reactor as decentralized system for the simultaneous removal of pollutants (COD, NH3-N and TP) and disinfection from domestic sewage containing chloride ions. Chemical Engineering Journal, v. 387, 124037. https://doi.org/10.1016/j.cej.2020.124037
Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O., 2022. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. Plos One, v. 17, (1), e0262117. https://doi.org/10.1371/journal.pone.0262117
Santiago, R.; Caxito, F.A.; Pedrosa-Soares, A.; Neves, M.A.; Calegari, S.S.; Lana, C., 2022. Detrital zircon U–Pb and Lu–Hf constraints on the age, provenance and tectonic setting of arc-related high-grade units of the transition zone of the Araçuaí and Ribeira orogens (SE Brazil). Journal of South American Earth Sciences, v. 116, 103861. https://doi.org/10.1016/j.jsames.2022.103861
Santos, V.S.; Anjos, J.S.X.; Medeiros, J.F.; Montagner, C.C., 2022. Impact of agricultural runoff and domestic sewage discharge on the spatial–temporal occurrence of emerging contaminants in an urban stream in São Paulo, Brazil. Environmental Monitoring and Assessment, v. 194, 637. https://doi.org/10.1007/s10661-022-10288-1
Simão, L.; Souza, M.T.; Ribeiro, M.J.; Montedo, O.R.K.; Hotza, D.; Novais, R.M.; Raupp-Pereira, F., 2021. Assessment of the recycling potential of stone processing plant wastes based on physicochemical features and market opportunities. Journal of Cleaner Production, v. 319, 128678. https://doi.org/10.1016/j.jclepro.2021.128678
Singhal, A.; Goel, S.; Sengupta, D., 2020. Physicochemical and elemental analyses of sandstone quarrying wastes to assess their impact on soil properties. Journal of Environmental Management, v. 271, 111011. https://doi.org/10.1016/j.jenvman.2020.111011
Theodoro, S.; Medeiros, F.P.; Ianniruberto, M.; Jacobson, T.K.B., 2021. Soil remineralization and recovery of degraded areas: An experience in the tropical region. Journal of South American Earth Sciences, v. 107, 103014. https://doi.org/10.1016/j.jsames.2020.103014
Thorslund, J.; Vliet, M.T.H., 2020. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Scientific Data, v. 7, 231. https://doi.org/10.1038/s41597-020-0562-z
Ullah, Z.; Rashid, A.; Ghani, J.; Nawab, J.; Zeng, X.-C.; Shah, M.; Alrefaei, A.F.; Kamel, M.; Aleya, L.; Abdel-Daim, M.; Iqbal, J., 2022. Groundwater contamination through potentially harmful metals and its implications in groundwater management. Frontiers in Environmental Science, v. 10, 1021596. https://doi.org/10.3389/fenvs.2022.1021596
United States, [n.d.]. Code of Federal Regulations. Title 40: Protection of Environment. Part 257 – Criteria for classification of solid waste disposal facilities and practices. Government Publishing Office, Washington, D.C. (Accessed June 28, 2025) at:. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/part-257
Vasudevan, U.; Gantayat, R.R.; Chidambaram, S.; Prasanna, M.V.; Venkatramanan, S.; Devaraj, N.; Nepolian, M.; Ganesh, N., 2021. Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. Environmental Geochemistry and Health, v. 43, 1069-1088. https://doi.org/10.1007/s10653-020-00712-1
Venturoti, G.P.; Boldrini-França, J.; Kiffer, W.P.; Francisco, A.P.; Gomes, A.S.; Gomes, L.C., 2019. Toxic effects of ornamental stone processing waste effluents on Geophagus brasiliensis (Teleostei: Cichlidae). Environmental Toxicology and Pharmacology, v. 72, 103268. https://doi.org/10.1016/j.etap.2019.103268
Wang, C.; Feng, B.; Wang, P.; Guo, W.; Li, X.; Gao, H.; Zhang, B.; Chen, J., 2022. Revealing factors influencing spatial variation in the quantity and quality of rural domestic sewage discharge across China. Process Safety and Environmental Protection, v. 162, 200-210. https://doi.org/10.1016/j.psep.2022.03.071
Yu, H.; Chen, F.; Ma, J.; Khan, Z.I.; Hussain, M.I.; Javaid, I.; Ahmad, K.; Nazar, S.; Akhtar, S.; Ejaz, A.; Sohail, M.; Nadeen, M.; Hamid, Y.; Rahman, M.H.U., 2022. Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment. Agricultural Water Management, v. 264, 107515. https://doi.org/10.1016/j.agwat.2022.107515
Yurdakul, M., 2020. Natural stone waste generation from the perspective of natural stone processing plants: An industrial-scale case study in the province of Bilecik, Turkey. Journal of Cleaner Production, v. 276, 123339. https://doi.org/10.1016/j.jclepro.2020.123339
Zarate, E.; Hobley, D.; MacDonald, A.M.; Swift, R.T.; Chambers, J.; Kashaigili, J.J.; Mutayoba, E.; Taylor, R.G.; Cuthbert, M.O., 2021. The role of superficial geology in controlling groundwater recharge in the weathered crystalline basement of semi-arid Tanzania. Journal of Hydrology: Regional Studies, v. 36, 100833. https://doi.org/10.1016/j.ejrh.2021.100833
Zichella, L.; Dino, G.A.; Bellopede, R.; Marini, P.; Padoan, E.; Passarella, I., 2020. Environmental impacts, management and potential recovery of residual sludge from the stone industry: The piedmont case. Resources Policy, v. 65, 101562. https://doi.org/10.1016/j.resourpol.2019.101562
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Brasileira de Ciências Ambientais

This work is licensed under a Creative Commons Attribution 4.0 International License.