Biotechnological potential of growth-promoting bacteria in cotton (Gossypium hirsutum L.) crop




plant growth-promoting bacteria; biostimulants and biofertilizers; Bacillus subtilis; Priestia megaterium; Priestia aryabhattai.


Studies involving plant growth-promoting bacteria are attracting increasing attention in the agricultural sector due to their potential to improve growth and production, and to protect plants from biotic and abiotic stresses. The present study aimed to evaluate the effects of three species of plant growth-promoting bacteria (Bacillus subtilis, Priestia megaterium, and Priestia aryabhattai) on the growth and morphological and biochemical aspects of Gossypium hirsutum L. (cotton) seedlings. The experiment was conducted in a greenhouse with four treatments (one control and three inoculations) and five replications per treatment. The seeds were inoculated by immersion in bacterial suspensions (109CFU/mL) and then sown in pots. The plants were monitored for 60 days. During collection, the plants were measured for the fresh mass of roots and shoots, the height of the shoots, stem diameter, and number of leaves. Leaf samples were collected and used for biochemical analyses. The results obtained showed that seeds treated with P. aryabhattaihad significant improvements in the parameters of fresh mass, plant height, stem diameter, and number of leaves, and in the contents of chlorophyll (a, b, and total), nitrogen, and proteins concerning plants in the control treatment. Plants treated with P. megaterium also achieved improvements in fresh mass, stem diameter, nitrogen, and protein contents. These results indicate the potential of these plant growth-promoting bacteria for use in cotton crops and can be employed in the preparation of biostimulants and biofertilizers.


Download data is not yet available.


Ahmad, I.; Ahmad, M.; Bushra; Hussain, A.; Mumtaz, M.Z.; Najm-ul-Seher; Abbasi, G.H.; Nazli, F.; Pataczek, L.; Ali, H.M., 2023. Mineral-solubilizing bacteria-mediated enzymatic regulation and nutrient acquisition benefit cotton’s (Gossypium hirsutum L.) vegetative and reproductive growth. Microorganisms, v. 11, (4), 861.

Alves, F.A.L.; Cavalcante, F.S.; Oliveira-Júnior, I.S.; Ferraz, I.; Silva, S.M.S., 2019. Competição de variedades de algodão herbáceo para cultivo no agreste pernambucano. Pesquisa Agropecuária Pernambucana, v. 24, (1), 1-8.

Antunes, J.E.L.; Lyra, M.C.C.P.; Ollero, F.J.; Freitas, A.D.S.; Oliveira, L.M.S.; Araújo, A.S.F.; Figueiredo, M.V.B., 2017. Diversity of plant growth-promoting bacteria associated with sugarcane. Genetics and Molecular Research, v. 16, (2), gmr16029662.

Aquino, J.P.A.; Antunes, J.E.L.; Bonifácio, A.; Rocha, S.M.B.; Amorim, M.R.; Alcântara Neto, F.; Araujo, A.S.F., 2021. Plant growth-promoting bacteria improve growth and nitrogen metabolism in maize and sorghum. Theoretical and Experimental Plant Physiology, v. 33, (3), 249-60.

Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, v. 24, (1), 1-15.

Baethgen, W.E.; Alley, M.M., 1989. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Communications in Soil Science and Plant Analysis, v. 20, (9-10), 961-969.

Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H., 2021. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, v. 13, (3), 1440.

Bataeva, Y.; Magzanova, D.; Baimukhambetova; A.; Grigoryan, L.; Vilkova, D., 2022. Influence of Bacillus megaterium to promote growing of cotton (Gossypium Hirsutum L.). Dela Press Publishing House, v. 2, (6), 1-7.

Bavaresco, L.G.; Osco, L.P.; Araujo, A.S.F.; Mendes, L.W.; Bonifacio, A.; Araújo, F.F., 2020. Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology, v. 32, (2), 99-108.

Bloom, A.J., 2015. The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology, v. 25, 10-16.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, (1-2), 248-254.

Breedt, G.; Labuschagne, N.; Coutinho, T.A., 2017. Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, v. 171, (2), 229-36.

Costa Neto, V.P.; Mendes, J.B.S.; Araújo, A.S.F.; Alcântara Neto, F.; Bonifacio, A.; Rodrigues, A.C., 2017. Symbiotic performance, nitrogen flux and growth of lima bean (Phaseolus lunatus L.) varieties inoculated with different indigenous strains of rhizobia. Symbiosis, v. 73, (2), 117-24.

Diaz, P.A.E.; Baron, N.C.; Rigobelo, E.C., 2019. ‘Bacillus’ spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science, v. 13, (12), 2003-14.

Farahat, M.G.; Mahmoud, M.K.; Youseif, S.H.; Saleh, S.A.; Kamel, Z., 2020. Alleviation of salinity stress in wheat by ACC deaminase-producing Bacillus aryabhattai EWR29 with multifarious plant growth-promoting attributes. Plant Archives, v. 20, (1), 417-429.

Gedik, G.; Avinc, O., 2020. Hemp fiber as a sustainable raw material source for textile industry: can we use its potential for more eco-friendly production? In: Muthu, S.S.; Gardetti, M.A. (Eds.), Sustainability in the textile and apparel industries: sourcing natural raw materials. Springer International Publishing, New York, pp. 87-109.

Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M., 2020. World cotton production and consumption: an overview. In: Ahmad, S.; Hasanuzzaman, M. (Eds.), Cotton production and uses: agronomy, crop protection, and postharvest technologies. Springer Singapore, New York, pp. 1-7.

Lee, S.; Ka, J.O.; Song, H.G., 2012. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. The Journal of Microbiology, v. 50, (1), 45-49.

Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurosset, L.; Faucher, M.; Girousse, C.; Lemonnier, P.; Parrilla, J.; Durant, M., 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, v. 4.

Lichtenthaler, H.K.; Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, v. 11, (5), 591-592.

Lima, B.C.; Moro, A.L.; Santos, A.C.P.; Bonifacio, A.; Araujo, A.S.F.; Araujo, F.F., 2019. Bacillus subtilis ameliorates water stress tolerance in maize and common bean. Journal of Plant Interactions, v. 14, (1), 432-439.

Mendes, J.B.S.; Costa Neto, V.P.; Sousa, C.D.A.; Carvalho Filho, M.R.; Rodrigues, A.C.; Bonifacio, A., 2020. Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis, v. 80, (2), 133-143.

Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z., 2022. Bio-Priming of Soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to Improve Seed Germination and the Initial Seedling Growth. Plants, v. 11, (15), 1927.

Miyazawa, M.; Pavan, M.A.; Muraoka, T.; Carmo, C.A.F.S.; Melo, W.J. 2009. Análise química de tecido vegetal. In: Silva, F.C. (Ed), Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Informação Tecnológica, Brasília-DF, pp. 193-233.

Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S., 2020. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, v. 225, (3), 1091-1096.

Nascimento, F.X.; Hernández, A.G.; Glick, B.R.; Rossi, M.J., 2020. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, v. 25, e00406.

Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J., 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of The Total Environment, v. 743, 140682.

Peres, A.R.; Rodrigues, R.A.F.; Arf, O.; Portugal, J.R.; Corsini, D.C.D.C., 2016. Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths. Revista Ceres, v. 63, (2), 198-207.

Santos, A.A.; Silveira, J.A.G.; Guilherme, E.A.; Bonifacio, A.; Rodrigues, A.C.; Figueiredo, M.V.B., 2018. Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress. Brazilian Journal of Microbiology, v. 49, (4), 685-694.

Silva, L.V.D.; Oliveira,S.B.R.D.; Azevedo, L.A.D.; Rodrigues, A.C.; Bonifacio, A., 2019. Coinoculation with bradyrhizobium and trichoderma alleviates the effects of salt stress in cowpea. Revista Caatinga, v. 32, (2), 336-344.

Singh, H.B.; Sarma, B.K.; Keswani, C., 2017. Advances in PGPR research. CABI, Wallingford, 448 p.

Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L., 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, v. 9, (8), 1011.

Sousa, S.M.; Oliveira, C.A.; Andrade, D.L.; Carvalho, C.G.; Ribeiro, V.P.; Pastina, M.M.; Marriel, I.E.; Lana, U.G.P.; Gomes, E.A., 2021. Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation, v. 40, (2), 867-877.

Sultana, S.; Alam, S.; Karim, M.M., 2021. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, v. 4, 100150.

Sun, B.; Bai, Z.; Bao, L.; Xue, L.; Zhang, S.; Wei, Y.; Zhang, Z.; Zhuang, G.; Zhuang, X., 2020. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environment International, v. 144, 105989.

Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A., 2021. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, v. 26, 100203.

Tahir, H.A.; Gu, Q.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Colman, M.V.; Gao, X.., 2017. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2. Frontiers in Microbiology, v. 8.

Taiz, L.; Zeiger, E., 2017. Fisiologia vegetal. 6. ed. Artmed, Porto Alegre. 888 p.

Zeffa, D.M.; Perini, L.J.; Silva, M.B.; Sousa, N.V.; Scapim, C.A.; Oliveira, A.L.M.; Júnior, A.T.A.; Gonçalves, L.S.A., 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One, v. 14, (4), e0215332.




How to Cite

Farias, M. H. F., Melo, A. R. P. de, Freitas, E. M. de, Lima, M. A. B., Silveira, F. A. da, & Ferreira, Éder G. (2024). Biotechnological potential of growth-promoting bacteria in cotton (Gossypium hirsutum L.) crop. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1906.



Bioprocesses and Sustainability