Bio-oil from coconut fibers: fractionation by preparative liquid chromatography for phenols isolation




agricultural waste; biomass; fast pyrolysis; PLC; gas chromatography.


The great potential of bio-products generated from agro-industrial residues from the biomass processing, as is the case with the green coconut fibers (Cocos nucifera L. var. dwarf), makes Brazil stand out in the field of transformation of these residues, mainly due to its high biodiversity and favorable climatic conditions. In this work, residual green coconut fibers were used in the production of bio-oil by pyrolysis. The bio-oil was fractionated using preparative liquid chromatography (PLC) in silica using solvents of different polarities: hexane, hexane/toluene, toluene/dichloromethane, dichloromethane/acetone, and methanol. Bio-oil and its fractions were analyzed by gas chromatograph /quadrupole mass spectrometer (GC/qMS). The concentration of each compound was carried out by multiplying the percentage area of the corresponding peak by the mass yield of the respective fraction. PLCof bio-oil increased the number of compounds identified by about 170% compared to the original bio-oil (non-fractionated), besides allowing the isolation of nonpolar compounds (mostly hydrocarbons) from polar compounds (mainly phenols, aldehydes, and ketones). Anotheradvantage of PLC was the increase in the number of hydrocarbons identified in the fractions, as opposed to the crude bio-oil analysis. Among the major compounds, phenols can be highlighted, besides furfural derivatives and hydrocarbons, which indicates the potential use of bio-oil mainly for industrial purposes.


Download data is not yet available.


Aboulkas, A.; Hammani, H.; Achaby, M.E.; Bila, E.; Barakat, A.; Harfi, K.E., 2017. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Bioresource Technology, v. 243, 400-408.

Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.P.B.; Barros, L.; Ferreira, I.C., 2021. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function, v. 12, (1), 14-29.

Almeida, T.M.; Bispo, M.D.; Cardoso, A.R.T.; Migliorini, M.V.; Schena, T.; Campos, M.C.V.; Machado, M.E.; López, J.A.; Krause, L.C.; Caramão, E.B., 2013. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers. Journal of Agricultural and Food Chemistry, v. 61, (28), 6812-6821.

Barros, J.A.; Schneider, J.K.; Farrapeira, R.O.; Andrade, Y.B.; Krause, L.C.; Bjerk, T.R.; Caramão, E.B., 2021. Recovery of waste biomass: pyrolysis and characterization of sugarcane residues and their bio-oils. Biofuels, v. 13, (7), 843-852.

Bispo, M.D.; Barros, J.A.S.; Tomasini, D.; Primaz, D.; Caramão, E.B.; Dariva, C.; Krauze, L.C., 2016. Pyrolysis of agroindustrial residues of coffee, sugarcane straw and coconut-fibers in a semi-pilot plant for production of bio-oils: gas chromatographic characterization. Journal of Earth Science and Engineering, v. 6, (5), 235-244.

Bordoloi, N.; Narzari, R.; Sut, D.; Saikia, R.; Chutia, R.S.; Kataki, R., 2016. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable Energy, v. 98, 245-253.

Cai, J.; He, Y.; Yu, X.; Banks, S. W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A., 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, v. 76, 309-322.

Chan, Y.H.; Loh, S.K.; Chin, B.L.F.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.M.; Gwee, Y.L.; Lo, S.L.Y.; Yusup, S.; Lam, S.S., 2020. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: recent advances and future prospects. Chemical Engineering Journal, v. 397, 125406.

Da Cunha, M.E.; Schneider, J.K.; Brasil, M.C.; Cardoso, C.A.; Monteiro, L.R.; Mendes, F.L.; Pinho, A.; Jacques, R.A.; Machado, M.E.; Freitas, L.S.; Caramão, E.B., 2013. Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC× GC/qMS). Microchemical Journal, v. 110, 113-119.

Del Olmo, J.A.; Pérez-Álvarez, L.; Pacha-Olivenza, M.A.; Ruiz-Rubio, L.; Gartziandia, O.; Vilas-Vilela, J.L.; Alonso, J.M., 2021. Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. International Journal of Biological Macromolecules, v. 183, 1222-1235.

Figueirêdo, M.B.; Hita, I.; Deuss, P.J.; Venderbosch, R.H.; Heeres, H.J., 2022. Pyrolytic lignin: a promising biorefinery feedstock for the production of fuels and valuable chemicals. Green Chemistry, v. 24, (12), 4680-4702.

Kanaujia, P.K.; Naik, D.V.; Tripathi, D.; Singh, R.; Poddar, M.K.; Konathala, L.S.K.; Sharma, Y.K., 2016. Pyrolysis of Jatropha curcas seed cake followed by optimization of liquid-liquid extraction procedure for the obtained bio-oil. Journal of Analytical and Applied Pyrolysis, v. 118, 202-224.

Lazzari, E.; Schena, T.; Marcelo, M.C.A.; Primaz, C.T.; Silva, A.N.; Ferrão, M.F.; Bjerk, T.R.; Caramão, E.B., 2018. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Industrial Crops and Products, v. 11, 856-864.

Machado, H.; Cristino, A.F.; Orisková, S.; Santos, R.G., 2022. Bio-oil: the next-generation source of chemicals. Reactions, v. 3, (1), 118-137.

Michailof, C.M.; Kalogiannis, K.G.; Sfetsas, T.; Patiaka, D.T.; Lappas, A.A., 2016. Advanced analytical techniques for bio‐oil characterization. Wiley Interdisciplinary Reviews: Energy and Environment, v. 5, (6), 614-639.

Onorevoli, B.; Machado, M.E.; Polidoro, A.S.; Corbelini, V.A.; Caramão, E.B.; Jacques, R.A., 2017. Pyrolysis of residual tobacco seeds: characterization of nitrogen compounds in bio-oil using comprehensive two-dimensional gas chromatography with mass spectrometry detection. Energy Fuels, v. 31, (9), 9402-9407.

Opia, A.C.; Hamid, M.K.B.A.; Syahrullail, S.; Rahim, A.B.A.; Johnson, C.A.N., 2020. Biomass as a potential source of sustainable fuel, chemical and tribological materials – overview. Materials Today Proceedings, v. 39, (Part 2) 922-928.

Qiu, B.; Yang, C.; Sho, Q.; Liu, Y.; Chu, H., 2022. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel, v. 315, 123-218.

Schena, T.; Lazzari, E.; Primaz, C.T.; Krause, L.C.; Machado, M.E.; Caramão, E.B., 2020. Upgrading of coconut fibers bio-oil: an investigation by GC× GC/TOFMS. Journal of Environmental Chemical Engineering, v. 8, (2), 103662.

Serapiglia, M.J.; Mullen, C.A.; Boateng, A.A.; Cortese, L.M.; Bonos, S.A.; Hoffman, L.; 2015. Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield. Industrial Crops and Products, v. 74, 957-968.

Sheng, C.; Azevedo, J.L.T., 2005. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, v. 28, (5), 499-507.

Song, C.; Hu, H.; Zhu, S.; Wang, G.; Chen, G., 2004. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels, v. 18, (1), 90-96.

Srivastava, N.; Singh, R.; Singh, P.; Ahmad, I.; Singh, R.P.; Rai, A.K.; Asiri, M.; Gupta, V.K., 2023. Recent advances on lignocellulosic bioresources and their valorization in biofuels production: challenges and viability assessment. Environmental Technology & Innovation, v. 29, 103037.

Tsai, W.T.; Lee, M.K.; Chang, Y.M., 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, v. 76, (1-2), 230-237.

van Den Dool, H.; Kratz, D.J., 1963. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, v. 11, 463-467.

Varma, A.K.; Mondal, P., 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, v. 95, 704-717.

Vassilev, S.V.; Baxter, S.; Andersen, L.K.; Vassileva, C.G., 2010. An overview of the chemical composition of biomass. Fuel, v. 89, (5), 913-933.

Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; Murugavelh, S.; Anthony, E.; Bhaskar, T.; Zheng, Y.; Duan, H.; Zhao, Y.; Antunes, E.; Sarmah, A.K.; Leu, S.Y., 2023. Bio-oil and biochar from the pyrolytic conversion of biomass: a current and future perspective on the trade-off between economic, environmental, and technical indicators. Science of The Total Environment, v. 857, (Part 1), 159-155.

Yaashika, P.R.; Kumar, P.S.; Varjan, S., 2022. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: a critical review. Bioresource Technology, v. 343, 126126.

Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, (12-13), 1781-1788.

Zhang, Y.; Liang, Y.; Li, S.; Yuan, Y.; Zhang, D.; Wu, Y.; Xia, C., 2023. A review of biomass pyrolysis gas: forming mechanisms, influencing parameters, and product application upgrades. Fuel, v. 347, 128461.




How to Cite

Farrapeira, R. de O., Andrade, Y. B., Conrado, N. M., Schneider, J. K., Krause, L. C., & Caramão, E. B. (2024). Bio-oil from coconut fibers: fractionation by preparative liquid chromatography for phenols isolation. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1875.



Bioprocesses and Sustainability