Bio-oil from coconut fibers: fractionation by preparative liquid chromatography for phenols isolation

Authors

DOI:

https://doi.org/10.5327/Z2176-94781875

Keywords:

agricultural waste; biomass; fast pyrolysis; PLC; gas chromatography.

Abstract

The great potential of bio-products generated from agro-industrial residues from the biomass processing, as is the case with the green coconut fibers (Cocos nucifera L. var. dwarf), makes Brazil stand out in the field of transformation of these residues, mainly due to its high biodiversity and favorable climatic conditions. In this work, residual green coconut fibers were used in the production of bio-oil by pyrolysis. The bio-oil was fractionated using preparative liquid chromatography (PLC) in silica using solvents of different polarities: hexane, hexane/toluene, toluene/dichloromethane, dichloromethane/acetone, and methanol. Bio-oil and its fractions were analyzed by gas chromatograph /quadrupole mass spectrometer (GC/qMS). The concentration of each compound was carried out by multiplying the percentage area of the corresponding peak by the mass yield of the respective fraction. PLCof bio-oil increased the number of compounds identified by about 170% compared to the original bio-oil (non-fractionated), besides allowing the isolation of nonpolar compounds (mostly hydrocarbons) from polar compounds (mainly phenols, aldehydes, and ketones). Anotheradvantage of PLC was the increase in the number of hydrocarbons identified in the fractions, as opposed to the crude bio-oil analysis. Among the major compounds, phenols can be highlighted, besides furfural derivatives and hydrocarbons, which indicates the potential use of bio-oil mainly for industrial purposes.

Downloads

Download data is not yet available.

References

Aboulkas, A.; Hammani, H.; Achaby, M.E.; Bila, E.; Barakat, A.; Harfi, K.E., 2017. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Bioresource Technology, v. 243, 400-408. https://doi.org/10.1016/j.biortech.2017.06.098

Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.P.B.; Barros, L.; Ferreira, I.C., 2021. Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function, v. 12, (1), 14-29. https://doi.org/10.1039/D0FO02324H

Almeida, T.M.; Bispo, M.D.; Cardoso, A.R.T.; Migliorini, M.V.; Schena, T.; Campos, M.C.V.; Machado, M.E.; López, J.A.; Krause, L.C.; Caramão, E.B., 2013. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers. Journal of Agricultural and Food Chemistry, v. 61, (28), 6812-6821. https://doi.org/10.1021/jf401379s

Barros, J.A.; Schneider, J.K.; Farrapeira, R.O.; Andrade, Y.B.; Krause, L.C.; Bjerk, T.R.; Caramão, E.B., 2021. Recovery of waste biomass: pyrolysis and characterization of sugarcane residues and their bio-oils. Biofuels, v. 13, (7), 843-852. https://doi.org/10.1080/17597269.2021.1992954

Bispo, M.D.; Barros, J.A.S.; Tomasini, D.; Primaz, D.; Caramão, E.B.; Dariva, C.; Krauze, L.C., 2016. Pyrolysis of agroindustrial residues of coffee, sugarcane straw and coconut-fibers in a semi-pilot plant for production of bio-oils: gas chromatographic characterization. Journal of Earth Science and Engineering, v. 6, (5), 235-244. https://doi.org/10.17265/2159-581X/2016.05.001

Bordoloi, N.; Narzari, R.; Sut, D.; Saikia, R.; Chutia, R.S.; Kataki, R., 2016. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renewable Energy, v. 98, 245-253. https://doi.org/10.1016/j.renene.2016.03.081

Cai, J.; He, Y.; Yu, X.; Banks, S. W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A., 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, v. 76, 309-322. https://doi.org/10.1016/j.rser.2017.03.072

Chan, Y.H.; Loh, S.K.; Chin, B.L.F.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.M.; Gwee, Y.L.; Lo, S.L.Y.; Yusup, S.; Lam, S.S., 2020. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: recent advances and future prospects. Chemical Engineering Journal, v. 397, 125406. https://doi.org/10.1016/j.cej.2020.125406

Da Cunha, M.E.; Schneider, J.K.; Brasil, M.C.; Cardoso, C.A.; Monteiro, L.R.; Mendes, F.L.; Pinho, A.; Jacques, R.A.; Machado, M.E.; Freitas, L.S.; Caramão, E.B., 2013. Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC× GC/qMS). Microchemical Journal, v. 110, 113-119. https://doi.org/10.1016/j.microc.2013.03.004

Del Olmo, J.A.; Pérez-Álvarez, L.; Pacha-Olivenza, M.A.; Ruiz-Rubio, L.; Gartziandia, O.; Vilas-Vilela, J.L.; Alonso, J.M., 2021. Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. International Journal of Biological Macromolecules, v. 183, 1222-1235. https://doi.org/10.1016/j.ijbiomac.2021.05.034

Figueirêdo, M.B.; Hita, I.; Deuss, P.J.; Venderbosch, R.H.; Heeres, H.J., 2022. Pyrolytic lignin: a promising biorefinery feedstock for the production of fuels and valuable chemicals. Green Chemistry, v. 24, (12), 4680-4702. https://doi.org/10.1039/d2gc00302c

Kanaujia, P.K.; Naik, D.V.; Tripathi, D.; Singh, R.; Poddar, M.K.; Konathala, L.S.K.; Sharma, Y.K., 2016. Pyrolysis of Jatropha curcas seed cake followed by optimization of liquid-liquid extraction procedure for the obtained bio-oil. Journal of Analytical and Applied Pyrolysis, v. 118, 202-224. https://doi.org/10.1016/j.jaap.2016.02.005

Lazzari, E.; Schena, T.; Marcelo, M.C.A.; Primaz, C.T.; Silva, A.N.; Ferrão, M.F.; Bjerk, T.R.; Caramão, E.B., 2018. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Industrial Crops and Products, v. 11, 856-864. https://doi.org/10.1016/j.indcrop.2017.11.005

Machado, H.; Cristino, A.F.; Orisková, S.; Santos, R.G., 2022. Bio-oil: the next-generation source of chemicals. Reactions, v. 3, (1), 118-137. https://doi.org/10.3390/reactions3010009

Michailof, C.M.; Kalogiannis, K.G.; Sfetsas, T.; Patiaka, D.T.; Lappas, A.A., 2016. Advanced analytical techniques for bio‐oil characterization. Wiley Interdisciplinary Reviews: Energy and Environment, v. 5, (6), 614-639. https://doi.org/10.1002/wene.208

Onorevoli, B.; Machado, M.E.; Polidoro, A.S.; Corbelini, V.A.; Caramão, E.B.; Jacques, R.A., 2017. Pyrolysis of residual tobacco seeds: characterization of nitrogen compounds in bio-oil using comprehensive two-dimensional gas chromatography with mass spectrometry detection. Energy Fuels, v. 31, (9), 9402-9407. https://doi.org/10.1021/acs.energyfuels.7b00405

Opia, A.C.; Hamid, M.K.B.A.; Syahrullail, S.; Rahim, A.B.A.; Johnson, C.A.N., 2020. Biomass as a potential source of sustainable fuel, chemical and tribological materials – overview. Materials Today Proceedings, v. 39, (Part 2) 922-928. https://doi.org/10.1016/j.matpr.2020.04.045

Qiu, B.; Yang, C.; Sho, Q.; Liu, Y.; Chu, H., 2022. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel, v. 315, 123-218. https://doi.org/10.1016/j.fuel.2022.123218

Schena, T.; Lazzari, E.; Primaz, C.T.; Krause, L.C.; Machado, M.E.; Caramão, E.B., 2020. Upgrading of coconut fibers bio-oil: an investigation by GC× GC/TOFMS. Journal of Environmental Chemical Engineering, v. 8, (2), 103662. https://doi.org/10.1016/j.jece.2020.103662

Serapiglia, M.J.; Mullen, C.A.; Boateng, A.A.; Cortese, L.M.; Bonos, S.A.; Hoffman, L.; 2015. Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield. Industrial Crops and Products, v. 74, 957-968. https://doi.org/10.1016/j.indcrop.2015.06.024

Sheng, C.; Azevedo, J.L.T., 2005. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, v. 28, (5), 499-507. https://doi.org/10.1016/j.biombioe.2004.11.008

Song, C.; Hu, H.; Zhu, S.; Wang, G.; Chen, G., 2004. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels, v. 18, (1), 90-96. https://doi.org/10.1021/ef0300141

Srivastava, N.; Singh, R.; Singh, P.; Ahmad, I.; Singh, R.P.; Rai, A.K.; Asiri, M.; Gupta, V.K., 2023. Recent advances on lignocellulosic bioresources and their valorization in biofuels production: challenges and viability assessment. Environmental Technology & Innovation, v. 29, 103037. https://doi.org/10.1016/j.eti.2023.103037

Tsai, W.T.; Lee, M.K.; Chang, Y.M., 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, v. 76, (1-2), 230-237. https://doi.org/10.1016/j.jaap.2005.11.007

van Den Dool, H.; Kratz, D.J., 1963. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, v. 11, 463-467. https://doi.org/10.1016/S0021-9673(01)80947-X

Varma, A.K.; Mondal, P., 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, v. 95, 704-717. https://doi.org/10.1016/j.indcrop.2016.11.039

Vassilev, S.V.; Baxter, S.; Andersen, L.K.; Vassileva, C.G., 2010. An overview of the chemical composition of biomass. Fuel, v. 89, (5), 913-933. https://doi.org/10.1016/j.fuel.2009.10.022

Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; Murugavelh, S.; Anthony, E.; Bhaskar, T.; Zheng, Y.; Duan, H.; Zhao, Y.; Antunes, E.; Sarmah, A.K.; Leu, S.Y., 2023. Bio-oil and biochar from the pyrolytic conversion of biomass: a current and future perspective on the trade-off between economic, environmental, and technical indicators. Science of The Total Environment, v. 857, (Part 1), 159-155. https://doi.org/10.1016/j.scitotenv.2022.159155

Yaashika, P.R.; Kumar, P.S.; Varjan, S., 2022. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: a critical review. Bioresource Technology, v. 343, 126126. https://doi.org/10.1016/j.biortech.2021.126126

Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, (12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

Zhang, Y.; Liang, Y.; Li, S.; Yuan, Y.; Zhang, D.; Wu, Y.; Xia, C., 2023. A review of biomass pyrolysis gas: forming mechanisms, influencing parameters, and product application upgrades. Fuel, v. 347, 128461. https://doi.org/10.1016/j.fuel.2023.128461

Downloads

Published

2024-04-21

How to Cite

Farrapeira, R. de O., Andrade, Y. B., Conrado, N. M., Schneider, J. K., Krause, L. C., & Caramão, E. B. (2024). Bio-oil from coconut fibers: fractionation by preparative liquid chromatography for phenols isolation. Revista Brasileira De Ciências Ambientais, 59, e1875. https://doi.org/10.5327/Z2176-94781875

Issue

Section

Especial Section: Bioprocesses and Sustainability