Comparison of electrocoagulation and physicochemical coagulation/ flocculation in the treatment of synthetic textile wastewater

Authors

DOI:

https://doi.org/10.5327/Z2176-94781803

Keywords:

navy blue dye; coagulation/flocculation; electrochemical treatment; textile wastewater.

Abstract

This study aimed to compare the efficiency of coagulation/flocculation and electrocoagulation treatments applied to synthetic textile wastewater containing navy blue dye (AM-16). For the coagulation/flocculation process, polyaluminum chloride (PAC 18%) and aluminum sulfate (Al2(SO4)3) were used as coagulants, and cationic polymer (CP) as a coagulation aid. Coagulation/flocculation treatments were assessed at the concentrations of 150–350 mg L-1 for dye, 10–50 mg L-1for PAC 18%, and 0.1–0.5 mg L-1 for CP, with initial pH ranging from 5 to 9. The same ranges were applied for the Al2(SO4)3 tests, except for initial pH, which ranged between 4 and 8. Aluminum electrodes were used for electrocoagulation, as well as the same dye concentration range (150–350 mg L-1) and applied current of 0.3–0.9 A. The response variables were contaminant (AM-16) removal, color removal, chemical oxygen demand, total organic carbon, and reduced toxicity using the microcrustacean Artemia salina as bioindicator. The aim was to compare the performance of different treatment methods (coagulation/flocculation and electrocoagulation) and assess how all independent variables and their interactions affected process efficiency. The results obtained through statistical analysis demonstrated that the most influential factor in coagulation/flocculation in removing AM-16 dye concentration was the initial pH, for both PAC 18% and Al2(SO4)3. However, for aluminum sulfate, dye concentration also had an influence, indicating that an increase in pH and dye concentration favored the removal of contaminant. With respect to wastewater toxicity after treatments, there was a maximum average reduction of approximately 11% for treatment with Al2(SO4)3. Electrocoagulation showed no significant variables at the levels studied but good average performance in removing dye (83.68%) and color (95.1%) from the wastewater. Both treatments (coagulation/flocculation and electrocoagulation) demonstrated efficiency for the variables studied and their levels. However, coagulation/flocculation performed better considering the removals obtained in the set of response variables assessed.

Downloads

Download data is not yet available.

References

Al-Ansari, M.M.; Li, Z.; Masood, A.; Rajaselvam, J., 2022. Decolourization of azo dye using a batch bioreactor by an indigenous bacterium Enterobacter aerogenes ES014 from the wastewater dye effluent and toxicity analysis. Environmental Research, v. 205, 112189. https://doi.org/10.1016/j.envres.2021.112189

Albahnasawi, A., 2023. Removal of reactive red 141 and disperse red 13 dyes from aqueous solutions using different coagulants: an optimization and comparison study. Duzce University Journal of Science and Technology, v. 11, (3), 1269-1281. https://doi.org/10.29130/dubited.1183818

Alderete, B.; Silva, J.; Godoi, R. S.; Silva, F.; Taffarel, S.; Silva, L.; Garcia, A.; Mitteregger Júnior, H.; Amorim, H.; Picada, J.; 2021. Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. Chemosphere, v. 263, 128291. https://doi.org/10.1016/j.chemosphere.2020.128291

American Public Health Association (APHA); American Water Works Association (Awwa); Water Environment Federation (WEF), 2012. Standard methods for the exami- nation of water and wastewater. APHA, Awwa, WEF, [s.l.].

Ardhan, N.; Tongpadungrod, P.; Phalakornkule, C., 2022. Effects of auxiliary hemicals and dye solubility on chemical oxygen demand reduction of dyes by electrocoagulation with Fe electrode. Materials Today: Proceedings, v. 52, 2529-2533. https://doi.org/10.1016/j.matpr.2021.10.446

Arl, M.; Nogueira, D.J.; Schveitzer Köerich, J.; Mottim Justino, N.; Schulz Vicentini, D.; Gerson Matias, W., 2019. Tattoo inks: characterization and in vivo and in vitro toxicological evaluation. Journal of Hazardous Materials, v. 364, 548-561. https://doi.org/10.1016/j.jhazmat.2018.10.072

Asfaha, Y.; Zewge, F.; Yohannes, T.; Kebede, S., 2022. Investigation of cotton textile industry wastewater treatment with electrocoagulation process: performance, mineralization, and kinetic study. Water Science and Technology, v. 85, (5), 1549-1567. https://doi.org/10.2166/wst.2022.061

Associação Brasileira da Indústria Têxtil e de Confecção (ABIT). Indústria têxtil e de confecção faturou R$ 194 bilhões em 2021. [Relatório comercial]. São Paulo: ABIT, 2022 (Accessed May 09, 2023) at:. https://www.abit.org.br/noticias/industria-textil-e-de-confeccao-faturou-r-194-bilhoes-em-2021.

Azarian, G.; Rahmani, A.R.; Masoudi Khoram, M.; Atashzaban, Z.; Nematollahi, D., 2018. New batch electro-coagulation process for treatment and recovery of high organic load and low volume egg processing industry wastewater. Process Safety and Environmental Protection, v. 119, 96-103. https://doi.org/10.1016/j.psep.2018.07.025

Barcellos, I.; Dos Santos, V.L.V.F.; Piccoli, H.H., 2016. Pre-alvejamento de materiais têxteis com ozônio e avaliação de suas propriedades de superfície, físicas e tintoriais. Revista Matéria, v. 22, (1), 1-14. https://doi.org/10.1590/S1517-707620170001.0122

Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G., 2019. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, v. 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010

Bharti, V.; Vikrant, K.; Goswami, M.; Tiwari, H.; Sonwani, R.K.; Lee, J.; Tsang, D.C.W.; Kim, K.H.; Saeed, M.; Kumar, S.; Rai, B.N.; Giri, B.S.; Singh, R.S., 2019. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental Research, v. 171, 356-364. https://doi.org/10.1016/j.envres.2019.01.051

Brasil. Conselho Nacional do Meio Ambiente (CONAMA), 2011. Resolução CONAMA nº 430, de 13 de maio de 2011. Diário Oficial da União, Brasília.

Cavalcanti, A.M.; Santos, G.F., 2021. A indústria têxtil no Brasil: uma análise da importância da competitividade frente ao contexto mundial. Exacta, v. 20, (3), 706-726. https://doi.org/10.5585/exactaep.2021.17784

Dalvand, A.; Ehrampoush, M.H.; Ghaneian, M.T.; Mokhtari, M.; Ebrahimi, A.A.; Malek Ahmadi, R.; Mahvi, A.H., 2017. Application of chemical coagulation process for direct dye removal from textile wastewater. Journal of Environmental Health and Sustainable Development, v. 2, (3), 333-339. https://doaj.org/20.1001.1.24766267.2017.2.3.4.2

De Maman, R.; Behling, L.; Da Luz, V.; Dervanoski, A.; Dalla Rosa, C.; Pasquali, G.D.L, 2022a. Oxidation of textile dye through electrocoagulation process using scrap iron electrodes. Water, Air, And Soil Pollution, v. 233, (3), 90. https://doi.org/10.1007/s11270-022-05564-2

De Maman, R.; Da Luz, V.; Behling, L.; Dervanoski, A.; Dalla Rosa, C.; Pasquali, G.D.L., 2022b. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. Environmental Science and Pollution Research International, v. 29, (21), 31713-31722. https://doi.org/10.1007/s11356-021-18456-5

Gao, B.; Wang, Y.; Yue, Q.; Wei, J.; Li, Q., 2007. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and polydimethyldiallyl ammonium chloride. Separation and Purification Technology, v. 54, (2), 157-163. https://doi.org/10.1016/j.seppur.2006.08.026

Iloamaeke, I.; Nnaji, N.; Okpala, E.; Eboatu, A.; Onuegbu, T.U., 2021. Mercenaria mercenaria shell: coagulation-flocculation studies on colour removal by Response Surface Methodology and nephlometric kinetics of an industrial effluent. Journal of Environmental Chemical Engineering, v. 9, (4), 105715. https://doi.org/105715. 10.1016/j.jece.2021.105715

Islam, M.R.; Mostafa, M.G., 2020. Characterization of textile dyeing effluent and its treatment using polyaluminum chloride. Applied Water Science, v. 10, 1-10. https://doi.org/10.1007/s13201-020-01204-4

Kabdaslı, I.; Gurel, M.; Tunay, O., 2000. Characterization and Treatment of Textile Printing Wastewaters. Environmental Technology, v. 21, 1147-1155. https://doi.org/10.1080/09593330.2000.9619001

Kadam, A. A.; Lade, H.S.; Lee, D.S.; Govindwar, S.P., 2015. Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid-state fermentation: hybrid treatment strategy. Bioresource Technology, 176, 38-46. https://doi.org/10.1016/j.biortech.2014.10.137

Kamiwada, W.Y.; Andrade, P.V.; Reis, A.G., 2020. Emprego do cloreto de polialumínio em estudos de tratabilidade de água de abastecimento via coagulação, floculação e sedimentação. Engenharia Sanitaria e Ambiental, v. 25, (5), 667-676. https://doi.org/10.1590/S1413-4152202020180005

Lach, C.; Pauli, C.; Coan, A.; Simionatto, E.; Koslowski, L., 2022. Investigating the process of electrocoagulation in the removal of azo dye from synthetic textile effluents and the effects of acute toxicity on Daphnia magna test organisms. Journal of Water Process Engineering, v. 45, 102485. https://doi.org/10.1016/j.jwpe.2021.102485

Lara, P.A.; Rodríguez, D.C.; Peñuela, G.A., 2016. Application of coagulation by sweep for removal of metals in natural water used in dairy cattle. Afinidad, v. 73, (576) (Accessed June 01, 2023) at:. https://raco.cat/index.php/afinidad/article/view/318425/408594

Macedo, K.R.; Lima, C.K.M.; Silva Filho, L.F., 2019. Métodos de tratamento de efluentes gerados pela indústria têxtil: uma revisão bibliográfica. Undergraduate thesis, Centro de Ciências Exatas, Universidade Federal do Semiárido, Mossoró - Rio Grande do Norte. Retrieved 2023-09-01, from https://repositorio.ufersa.edu.br/home.

Márquez, A.A.; Coreño, O.; Nava J.L., 2022. Removal of brilliant green tannery dye by electrocoagulation. Journal of Electroanalytical Chemistry, v. 911, 116223. https://doi.org/10.1016/j.jelechem.2022.116223

Martins, J.E.C.A.; Eliezer, F.A.N.; Ribeiro, P.J.; De Lima, A.C.A.; De Souza, F.W.; Oliveira, A.G.; Vidal, C.B.; Nascimento, R.F., 2023. Evaluation of the Toxicity of Textile Effluent Treated by Electrocoagulation. Water Practice and Technology, v. 18, (4), 930-46. https://doi.org/10.2166/wpt.2023.049

Mazzutti, E.A.; Klamt, R.A.; Faro, V P., 2023. Study of the hydro-mechanical behavior of a stabilized soil with water treatment plant sludge for application in sanitary landfills. Soils and Rocks, v. 46, (1). https://doi.org/10.28927/SR.2023.011222

Ma, Z.; Chang, H.; Liang, Y; Meng, Y.; Ren, L.; Liang, H., 2024. Research progress and trends on state-of-the-art membrane technologies in textile wastewater treatment. Separation and Purification Technology, v. 333, 125853. https://doi.org/10.1016/j.seppur.2023.125853

Mcyotto, F.; Wei, Q.; Macharia, D.; Huang, M.; Shen, C.; Chow, C., 2021. Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, v. 405, 126674. https://doi.org/10.1016/j.cej.2020.126674

Meng, X.; Wu, J.; Kang, J.; Gao, J.; Liu, R.; Gao, Y.; Hu, Y., 2018. Comparison of the reduction of chemical oxygen demand in wastewater from mineral processing using the coagulation–flocculation, adsorption and Fenton processes. Minerals Engineering, v. 128, 275-283. https://doi.org/10.1016/j.mineng.2018.09.009

Meyer, B.N.; Frerrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L., 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, v. 45, (5), 31-34. https://doi.org/10.1055/s-2007-971236

Nariyan, E.; Sillanpää, M.; Wolkersdorfer, C., 2017. Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies. Separation and Purification Technology, v. 177, 363-373. https://doi.org/10.1016/j.seppur.2016.12.042

Obiora-Okafo, I.A.; Onukwuli, O.D.; Eli-Chukwu, N.C., 2020. Evaluation of bio-coagulants for colour removal from dye synthetic wastewater: characterization, adsorption kinetics, and modelling approach. Water SA, v. 46, (2), 300-312. https://doi.org/10.17159/wsa.2020.v46i2.8246

Oliveira, A.C.; Baltar, C.A.M., 2020. Influence of the pH regulator on the dolomite hydrophobization process. REM - International Engineering Journal, v. 73, (3), 403-409. https://doi.org/10.1590/0370-44672019730136

Pathak, A.; Khandegar, V.; Kumar, A., 2021. statistical investigation in conjunction with a box–behnken design for the removal of dyes using electrocoagulation. Journal of Hazardous, Toxic and Radioactive Waste, v. 26, (2). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000679

Rodrigues, C.S.D.; Carabineiro, S.A.C.; Maldonado-Hódar, F.J.; Madeira, L.M., 2017. Wet peroxide oxidation of dye-containing wastewaters using nanosized Au supported on Al2O3. Catalysis Today, v. 280, 165-175. https://doi.org/10.1016/j.cattod.2016.06.031

Rosa, C.M., 2020. Análise da aplicabilidade do método de espectrofotometria UV/VIS de calibração específica para monitoramento online e in situ do efluente bruto de uma ETE. Undergraduate thesis, Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina. Retrieved 2023-08-01, from https://repositorio.ufsc.br/bitstream/handle/123456789/211996/TCC_CaioMatosRosa_2020.pdf?sequence=1&isAllowed=y

Schallemberger, J.B.; Libardi, N.; Puerari, R.C.; Matias, W.G.; Nagel-Hassemer, M.E., 2023. Effect of spent mushroom substrate on azo dye removal and effluent treatment. Brazilian Archives of Biology and Technology, v. 66, e23210843. https://doi.org/10.1590/1678-4324-2023210843

Seneda, R.M.; Garcia, G.F.; Reis, A.G., 2021. Cinética da floculação: um estudo comparativo no uso do cloreto de polialumínio com alta e baixa basicidade e o Sulfato de alumínio. Engenharia Sanitária e Ambiental, v. 26, (2), 283-290. https://doi.org/10.1590/S1413-415220190297

Shi, B.; Li, G.; Wang, D.; Feng, C.; Tang, H., 2007. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. Journal of Hazardous Materials, v. 143, (1-2), 567-574. https://doi.org/10.1016/j.jhazmat.2006.09.076

Silva, J.; Fracacio, R., 2021.Toxicological and ecotoxicological aspects of tartrazine yellow food dye: a literature review Revista Brasileira de Ciências Ambientais, v. 56, (1), 137-151. https://doi.org/10.5327/Z21769478746

Soler, C.R.; Xavier, C.R., 2015. Treatment of wastewater from the textile industry by moving bed biofilm reactor. Revista Brasileira de Ciências Ambientais, (38), 21-30. https://doi.org/10.5327/Z2176-947820155714

Stone, C.; Windsor, F.M.; Munday, M.; Durance, I., 2020. Natural or synthetic–how global trends in textile usage threaten freshwater environments. Science of the Total Environment, v. 718, 134689. https://doi.org/10.1016/j.scitotenv.2019.134689

Tones, A.; Eyng, E.; Zeferino, C.; Ferreira, S.; Alves, A.; Fagundes-Klen, M.; Sehn, E., 2020. Spectral deconvolution associated to the Gaussian fit as a tool for the optimization of photovoltaic electrocoagulation applied in the treatment of textile dyes. Science of The Total Environment, v. 713, 136301. https://doi.org/10.1016/j.scitotenv.2019.136301

Tranker, V., 2021. O fitoplâncton no entorno da reserva biológica Marinha do Arvoredo, Santa Catarina. Master's thesis, Instituto Federal de Santa Catarina, Florianópolis. Retrieved 2023-08-01, from https://repositorio.ifsc.edu.br/handle/123456789/2165

Yuksel, E.; Gurbulak, E.; Eyvaz, M., 2012. Decolorization of a reactive dye solution and treatment of a textile wastewater by electrocoagulation and chemical coagulation: Techno-economic comparison. Environmental Progress & Sustainable Energy, v. 31 (4), 524-535. https://doi.org/10.1002/ep.10574

Downloads

Published

2024-07-04

How to Cite

Bressan, L. G., Flores, G. C. P., Biolchi, N. J., Mendes, M. E. M., Dervanoski, A., Korf, E. P., & Pasquali, G. D. L. (2024). Comparison of electrocoagulation and physicochemical coagulation/ flocculation in the treatment of synthetic textile wastewater. Revista Brasileira De Ciências Ambientais, 59, e1803. https://doi.org/10.5327/Z2176-94781803