Fire effect on bamboo-dominated forests in Southwestern Amazon: impacts on tree diversity and forest structure
DOI:
https://doi.org/10.5327/Z2176-94781755Keywords:
aboveground biomass; burned forests; tree species; tropical forests.Abstract
Severe droughts increase the forest flammability, especially if fires are recurrent. Considering that fires tend to alter the forest structure and reduce biological diversity, we analyzed the fire effect on the tree plant community and forest structure over a 10-year post-fire period. The study was carried out in two tropical forest fragments located in the eastern Acre State in southwestern Brazilian Amazon. In each fragment, we established three plots of 250 × 10 m2 in an unburned forest and three in a burned forest. In these plots, we collected all tree individuals with DBH≥10 following the RAINFOR protocol, with censuses made in 2011, 2014, 2016, 2017, 2019, 2020 and 2021. The fire significantly reduced the abundance, basal area, and aboveground biomass of tree species, and altered the species composition along the post-fire temporal gradient. The absence of differences in the species richness and species diversity between unburned and burned forests is probably related to the life cycle of bamboo. The results suggest that, 10 years after the fire, the structure and phytosociology of the forest have not yet fully recovered.
Downloads
References
Alencar, A.; Brando, P.M.; Asner. G.P.; Putz, F.E., 2015. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Application (Online), v. 25, (1), 1493-1505. https://doi.org/10.1890/14-1528.1
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology (Online), v. 26, (1), 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Andrade, D.F.C.; Gama, J.R.V.; Ruschel, A.R.; Melo, L.O.; Avila, A.L.; Carvalho, J.O.P., 2019. Post-fire recovery of a dense ombrophylous forest in Amazon. Anais da Academia Brasileira de Ciências. (Online), v. 92, (1), 1-12. https://doi.org/10.1590/0001-3765201920170840
Andrade, D.F.C.; Ruschel, A.R.; Schwartz, G.; De Carvalho, J.O.P.; Humphries, S.; Gama, J.R.V., 2020. Forest resilience to fire in eastern Amazon depends on the intensity of pre-fire disturbance. Forest Ecology and Management (Online), v. 472, (1), 1-10. https://doi.org/10.1016/j.foreco.2020.118258
Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Arai, E.; Barlow, J.; Berenguer, E.; Deeter, M.N.; Domingues, L.G.; Gatti, L.; Gloor, M.; Malhi, Y.; Marengo, J.A.; Miller, J.B.; Phillips, O.L.; Saatchi, S., 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications (Online), v. 9, (536), 1-11. https://doi.org/10.1038/s41467-017-02771-y
Aragão, L.E.O.C.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, O.L; Saatchi, S., 2008. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B. (Online), v. 363, (1), 1779-1785. https://doi.org/10.1098/rstb.2007.0026
Aragão, L.E.O.C.; Malhi, Y.; Cuesta-Roman, R.M.; Saatchi, S.; Anderson, O.L.; Shimabukuro, Y., 2007. Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters (Online), v. 34, (7), 1-5. https://doi.org/10.1029/2006GL028946
Araujo, H.J.B.; Oliveira, L.C.; Vasconcelos, S.S; Correia, M.F., 2013. Danos provocados pelo fogo sobre a vegetação natural em uma floresta primária no estado do acre, Amazônia brasileira. Ciência Florestal (Online), v. 23, (2), 297-308. https://doi.org/10.5902/198050989276
Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gomez-Dans, J., 2013. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Global Change Biology (Online), v. 19, (1), 173-183. https://doi.org/10.1111/gcb.1204
Barlow, J.; Berenguer, E.; Carmenta, R.; França, F., 2020. Clarifying Amazonia's burning crisis. Global Ghange Biology (Online), v. 26, (2), 319-321. https://doi.org/10.1111/gcb.14872
Barlow, J.; Parry, L.; Gardner, T.A.; Ferreira, J.; Aragão, L.E.O.C.; Carmenta, R.; Berenguer, E.; Vieira, I.C.G.; Cochrane, M.A., 2012. The critical importance of considering fire in REDD+ programs. Biological Conservation (Online), v. 154, (1), 1-8. https://doi.org/10.1016/j.biocon.2012.03.034
Barlow, J.; Peres, C.A., 2008. Fire-mediated dieback and compositional cascade in an Amazonian Forest. Philosophical Transactions of the Royal Society B (Online), v. 363, (1498), 1787-1794. https://doi.org/10.1098/rstb.2007.0013
Barlow, J.; Peres, C.A.; Lagan, B.O.; Haugaasen, T., 2002. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters (Online), v. 6 (1), 6-8. https://doi:10.1046/j.1461-0248.2003.00394.x
Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R. H. B.; Singmann, H.; Dai, B.; Grothendieck, G.; Green, P., 2017. Package lme4: Linear mixed-effects models using 'Eigen' and S4 (Accessed March 15, 2022) at: https://cran.r-project.org/web/packages/lme4/lme4.pdf.
Calzavara, A.K.; Bianchini, E.; Pimenta, J.A.; Oliveira, H.C.; Stolf-Moreira, R., 2019. Photosynthetic light-response curves of light-demanding and shade-tolerant seedlings of neotropical tree species. Photosynthetica (Online), v. 57, (2), 470-474. https://dx.doi.org/10.32615/ps.2019.061
Carvalho, S.; Oliveira, A.; Pedersen, J.S.; Manhice, H.; Lisboa, F.; Norguet, J.; de Wit, F.; Santos, F.D., 2020. A changing Amazon rainforest: Historical trends and future projections under post-Paris climate scenarios. Global and Planetary Change (Online), v. 195, (1), 2-37. https://doi.org/10.1016/j.gloplacha.2020.103328
Castro, W.; Salimon, C.I.; Herison Medeiros, H.; Silva, I.B.; Silveira, M., 2013. Bamboo abundance, edge effects, and tree mortality in a forest fragment in Southwestern. Scientia Forestalis, v. 41, (98), 159-164. https://www.bibliotecaflorestal.ufv.br/handle/123456789/15716.
Cochrane, M.A., 2003. Fire science for rainforests. Nature (Online), v. 421, (1), 913-919. https://doi.org/10.1038/nature01437
Clement, C.R.; Denevan, W.M.; Heckenberger, M.J.; Junqueira, A.B.; Neves, E.G.; Teixeira, W.G.; Woods, W.I., 2015. The domestication of Amazonia before European conquest. Proceedings of the Royal Society B: Biological Sciences (Online), v. 282, (1812), 1-9. https://doi.org/10.1098/rspb.2015.0813
Crawley, M. J., 2012. The R book. John Wiley & Sons, Chichester, UK, 1050 p.
Dalagnol, R.; Wagner, F.M.H.; Galvão, L.S; Nelson, B.W.; Aragão, L.E.O.C., 2018. Cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences (Online), v. 15, (20), 6087-6104. https://doi.org/10.5194/bg-15-6087-2018
Debiasi, T.V.; Calzavara A.K.; Sodek, L.; Oliveira, H.C., 2021. Nitrogen use plasticity in response to light intensity in neotropical tree species of distinct functional groups. Physiologia Plantarum (Online), v. 172, (4), 2226-2237. https://doi.org/10.1111/ppl.13470
Duarte, F.A., 2006. Aspectos da climatologia do Acre, Brasil, com base no intervalo 1971-2000. Revista Brasileira de Meteorologia (Online), v. 21, (3), 308-317.
Dutra, D.J.; Anderson, L.O.; Fearnside, P.M.; Graça, P.M.L.D.A.; Yanai, A.M.; Dalagnol, R.; Burton, C.; Jones, C.; Betts, R.; Aragão, L.E.O.C., 2023. Fire dynamics in an emerging deforestation frontier in Southwestern Amazonia, Brazil. Fire (Online), v. 6 (2), 1-24. https://doi.org/10.3390/fire6010002
Ferreira, I.J.M.; Campanharo, W.A.; Barbosa, M.L F.; Silva, S.S.; Selaya, G.; Aragão, L.E.O.C.; Anderson, L.O., 2023. Assessment of fire hazard in Southwestern Amazon. Frontiers in Forests and Global Change (Online), v. 6 (1), 1-17. https://doi.org/103389//ffgc.2023.1107417
Fischer, R., 2021. The long-term consequences of forest fires on the carbon fluxes of a tropical forest in Africa. Applied Sciences (Online), v. 11, (10), 1-17. https://doi.org/10.3390/app11104696
Florian, H., 2017. Package DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (Accessed March 15, 2022) at: https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf
Fonseca-Morello, T.; Ramos, R.; Steil, L.; Parry, L.; Barlow, J.; Markusson, N.; Ferreira, A., 2017. Queimadas e incêndios florestais na Amazônia. Ambiente & Sociedade (Online), v. 20, (4), 1-20. https://doi.org/10.1590/1809-4422asoc0232r1v2042017
Haugaasen, T.; Barlow, J.; Peres, C.A., 2003. Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management (Online), v. 179, (1-3), 321-333. https://doi.org/10.1016/S0378-1127(02)00548-0.
Horta, J.; Bello, F.; Diniz-Filho, J.A.; Lewinsohn, T.M.; Lobo, J.M.; Ladle, R.J., 2015. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology Evolution and Systematics (Online), v. 46, (1), 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
Juárez-Orozco, S.M.; Siebe, C.; Fernandez, F.D., 2017. Causes and effects of forest fires in tropical rainforests. Tropical Conservation Science (Online), v. 10, (104), 1-14. https://doi.org/10.1177/1940082917737207
Ludwig, J.A.; Reynolds, J.F., 1988. Statistical ecology: a primer on methods and computing. John Wiley & Sons, New York, 337 p.
Magalhães, P.M.; Lima, C.G.P.; Santos, S.R.; Maia, R.R.; Schmidt, M.; Barbosa, P.A.C.; Fonseca, A.J.O., 2019. Holoceno inferior e a antropogênese amazônica na longa história indígena da Amazônia oriental (Carajás, Pará, Brasil). Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas (Online), v. 14, (2), 291-325. https://doi.org/10.1590/1981.81222019000200004
Marengo, A.; Nobre, C.A.; Tomasella, J.; Cardoso, M.F.; Oyama, M.D., 2008. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of the Royal Society B. (Online), v. 21, (1), 495-516. https://doi.org/10.1098/rstb.2007.0015
Martins, F.R., 1993. Estrutura de uma floresta mesófila. 2. ed. Editora da Unicamp, Campinas, 246 p.
Mataveli, G.; Pereira, G.; Sanchez, A.; de Oliveira, G.; Jones, M.W.; Freitas, S.R.; Aragão, L.E.O.C., 2023. Updated land use and land cover information improves biomass burning emission estimates. Fire (Online), v. 6, (426), 1-15. https://doi.org/10.3390/fire6110426
McMichael, C.H.; Bush, M.B.; Silman, M.R.; Piperno, D.R.; Raczka, M.; Lobato, L.C.; Zimmerman, M.; Hagen, S.; Palace, M., 2012. Historical fire and bamboo dynamics in western Amazonia. Journal of Biogeography (Online), v. 40, (2), 299-309. https://doi.org/10.1111/jbi.12002
Medeiros, H.; Castro, W.; Salimon, C.I.; Silva, I.B.; Silveira, M., 2013. Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica (Online), v. 13, (2), 30-34. https://doi.org/10.1590/S1676-06032013000200002
Minchin, P.R., 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetation (Online), v. 69, (1), 89-107. https://doi.org/10.1007/978-94-009-4061-1_9
Morton, D.C.; Page, L.E.; Defries, R.; Collatz, G.J.; Hurtt, G.C., 2013. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical Transsactions of the Royal Society B. (Online), v. 368, (1619), 1-8. https://doi.org/10.1098/rstb.2012.0163
Nascimento, H.E.M.; Dias, A.S.; Tabanez, A.A.J; Viana, V.M., 1999. Estrutura e dinâmica de populações arbóreas de um fragmento de floresta estacional semidecidual na região de piracicaba, sp. Revista Brasileira de Biologia (Online), v. 59, (2), 329-342. https://doi.org/10.1590/S0034-71081999000200015
Nascimento, M.E.H.; Laurance, F.W., 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Ecology and Management (Online), v. 168, (1-3), 311-321. https://doi.org/10.1016/S0378-1127(01)00749-6
Nóbrega, C.C.; Brando, P.M.; Silvério, DV.; Maracahipes, L.; de Marco Jr, P., 2019. Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management (Online), v. 450, (1), 1-7. https://doi.org/10.1016/j.foreco.2019.117497.
Numata. I.; Silva, S.S.; Cochrane, M.A.; D’Oliveira, M.V., 2017. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Forest Ecology and Management (Online), v. 401, (1), 135-146. https://doi.org/10.1016/j.foreco.2017.07.010
Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Guillaume Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; Wagner, H.; Barbour, M.; Bedward, M.; Bolker, B.; Borcard, D.; Carvalho, G.; Chirico, M.; De Caceres, M.; Durand, S.; Evangelista, H.B.A.; FitzJohn, R.; Friendly, M.; Furneaux, B.; Hannigan, G.; Hill, M.O.; Lahti, L.; McGlinn, D.; Ouellette, M.-H.; Cunha, E.R.; Smith, T.; Stier, A.; Ter Braak, C.J.F.; Weedon, J., 2017. Package vegan: community ecology package (Accessed March 15, 2022) at: https://cran.r-project.org/web/packages/vegan/vegan.pdf.
Oliveira de Morais, T.M.; Berenguer, E.; Barlow, J.; França, F.; Lennox, G. D.; Malhi, Y.; Rossi, C.L.; Seixas, M.M.M.; Ferreira, J., 2021. Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management (Online), v. 496, (1), 1-8. https://doi.org/10.1016/j.foreco.2021.119441
Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; Van der Heijden, G.; Almeida, S.; Amaral, I.; Arroyo, L.; Aymard, G.; Baker, T.R.; Bánki, O.; Blanc, L.; Bonal, D.; Brando, P.; Chave, J.; Alves de Oliveira, Á.C.; Dávila Cardozo, N.; Czimczik, C.I.; Feldpausch, T.R.; Freitas, M.A.; Gloor, E.; Higuchi, N.; Jiménez, E.; Lloyd, G.; Meir, P.; Mendoza, C.; Morel, A.; Neill, D.A.; Nepstad, D.; Patiño, S.; Peñuela, M.C.; Prieto, A.; Ramírez, F.; Schwarz, M.; Silva, J.; Silveira, M.; Sota Thomas, A.; Ter Steege, H.; Stropp, J.; Vásquez, R.; Zelazowski, P.; Álvarez Dávila, E.; Andelman, S.; Andrade, A.; Chao, K.-J.; Erwin, T.; Di Fiore, A.; Honorio C., E.; Keeling, H.; Killeen, T.J.; Laurance, W.F.; Peña Cruz, A.; Pitman, N.C.A.; Núñez Vargas, P.; Ramírez-Angulo, H.; Rudas, A.; Salamão, R.; Silva, N.; Terborgh, J.; Torres-Lezama, A., 2009. Drought sensitivity of the amazon rainforest. Science (Online), v. 323, (5919), 1344-1347. https://doi/10.1126/science.1164033
Pivello, R.V., 2011. The use of fire in the cerrado and amazonian rainforests of Brazil: past and presente. Fire Ecology (Online), v. 7, (1), 24-39. https://doi.org/10.4996/fireecology.0701024
Pontes-Lopes, A.; Dalagnol, R.; Dutra, A.C.; Silva, C.V.J.; Graça, P.M.L.A.; Aragão, L.E.O.C., 2022. Quantifying post-fire changes in the aboveground biomass of an amazonian forest based on field and remote sensing data. Remote Sensing (Online), v. 14, (7), 1-20. https://doi.org/10.3390/rs14071545
Prestes, N.C.C.S.; Massi, K.G.; Silva, E.A.; Nogueira, D.S.; Oliveira, E.A.; Freitas, G.R.; Marimom, B.S.; Marimom-Junior, B.H.; Keller, M.; Feldpausch, T.R., 2020. Fire effects on understory forest regeneration in Southern Amazonia. Frontiers in Forests and Global (Online), v. 3, (1), 1-15. https://doi.org/10.3389/ffgc.2020.00010
R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (Accessed March 15, 2022) at: https://www.R-project.org/.
RAINFOR, 2016 (Accessed Outuber 14, 2021) at: https://www.rainfor.org/upload/ManualsPOR/RAINFOR_field_manual_v2016_PT.pdf.
Reis, C.R.; Jackson, T.D.; Gorgens, E.B.; Dalagnol, R.; Junker, T.; Nunes, M.H.; Ometto, J.P.; Aragão, L.E.O.C.; Rodriguez, L.C.E.; Coomes, D.A., 2022. Forest disturbance and growth processes are reflected in the geographical distribution of large canopy gaps across the Brazilian Amazon. Journal of Ecology (Online), v. 110, (12), 1-13. https://doi.org/10.1111/1365-2745.14003
Resende, A.F.; Nelson, B.W.; Flores, B.M.; Almeida, D.R., 2014. File Damage in Seasonally Flooded and Upland Forests of the Central Amazon. Biotropica (Online), v. 46, (6), 643-646. https://doi.org/10.1111/btp.12153
Ritter, S.M.; Hoffman, C.M.; Battaglia, M.A.; Stevens-Rumann, C.S.; Mell, W.E., 2020. Fine-scale fire patterns mediate forest structure in frequent-fire ecosystems. Ecosphere (Online), v. 11, (7), 1-17. https://doi.org/10.1002/ecs2.3177
Sato, L.Y.; Gomes, V.C.F.; Shimabukuro, Y.E.; Keller, M.; Arai, E.; Dos-Santos, M.N.; Brown, I.F.; Aragão, L.E.O.C., 2016. Post-Fire Changes in Forest Biomass Retrieved by Airborne LIDAR in Amazonia. Remote Sensing (Online), v. 8, (839), 1-15. https://doi.org/10.3390/rs8100839
Silva, C.V.J.; Aragão, L.E.O.C.; Barlow, J.; Espirito-Santo, F.; Young, P.J.; Anderson, L.O.; Berenguer, E.; Brasil, I.; Brown, I.F.; Castro, B.; Farias, R.; Ferreira, J.; França, F.; Graça, P.M.L.A.; Kirsten, L.; Lopes, A.P.; Salimon, C.; Scaranello, M.A.; Seixas, M.; Souza, F.C.; Xaud, H.A.M., 2018. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical transactions of the royal society b-biological sciences (Online), v. 373, (1760), 1-5. https://doi.org/10.1098/rstb.2018.0043
Silva, I.D.B.; Valle, M.E.; Barros, L.C.; Meyer, J.F.C.A., 2020. A wildfire warning system applied to the state of Acre in the Brazilian Amazon. Applied Soft Computing (Online), v. 89, (1), 1-15. https://doi.org/10.1016/j.asoc.2020.106075
Silva, S.S.; Numata, I.; Fearnside, P.M.; Graça, P.M.L.A.; Ferreira, E.L.L.; Santos, E.A.; Lima, P.R.F.; Dias, M.S.S.; Lima, R.C.; Melo, A.W.F., 2021. Impact of fires on an open bamboo forest in years of extreme drought in southwestern Amazonia. Regional Environmental Change (Online), v. 20, (1), 1-13. https://doi.org/10.1007/s10113-020-01707-5.
Silva-Junior, C.H.L.; Buna, A.T.M.; Bezerra, D.S.; Costa, O.S. Jr.; Santos, A.L.; Basson, L.O.D.; Santos, A.L.S.; Alvarado, S.T.; Almeida, C.T.; Freire, A.T.G.; Rousseau, G.X.; Celentano, D.; Silva, F.B.; Pinheiro, M.S.S.; Amaral, S.; Kampel, M.; Vedovato, L.B.; Anderson, L.O.; Aragão, L.E.O.C., 2022. Forest Fragmentation and fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire (Online), v. 5, (3), 1-17. https://doi.org/10.3390/fire5030077
Silveira, M.A., 2005. floresta aberta com bambu no sudoeste da Amazônia: padrões e processos em múltiplas escalas. ED. UFAC, Rio Branco, 127 p.
Smith, M.; Nelson, B.W., 2011. Fire favours expansion of bamboo-dominated forests in the south-west Amazon. Journal of Tropical Ecology (Online), v. 27, (1), 59-64. https://doi.org/10.1017/s026646741000057x
Tyukavina, A.; Potapov, P.; Hansen, C. M.; Pickens, H. A.; Stehman, V. S.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A., Kommareddy, I.; Song, X.; Wang, L.; Harris, N., 2022. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Frontiers in Remote Sensing (Online), v. 3, (1), 1-20. https://doi.org/10.3389/frsen.2022.825190
Vedovato, L.B.; Carvalho, L.C.S.; Aragão, L.E.O.C.; Bird, M.I.; Phillips, O.L.; Alvarez-Loayza, P.; Barlow, J.; Bartholomew, D.; Berenguer, E.; Castro, W.; Ferreira, J.; França, F.M.; Malhi, Y.; Marimon, B.S.; Marimon-Junior, B.H.; Monteagudo, A.; Oliveira, E.A.; Pereira, L.D.O.; Pontes-Lopes, A.; Quesada, C.A.; Silva, C.V.J.; Silva Espejo, J.E.; Silveira, M.; Feldpausch, T.R., 2023. Ancient fires enhance Amazon forest drought resistance. Forests and Global Change (Online), v. 6, (1), 1-12. https://doi.org/10.3389/ffgc.2023.1024101
Xaud, H.A.M.; Martins, F.S.R.V.; Santos, J.R., 2013. Tropical forest degradation by mega-fires in the northern Brazilian Amazon, Forest Ecology and Management. (Online), v. 294, (1), 97-106. https://doi.org/10.1016/j.foreco.2012.11.036
Zalamea, P.; Sarmiento, C.; Stevenson, P.R.; Rodríguez, M.; Nicoloni, E.; Heur, P., 2013. Effect of rainfall seasonality on the growth of Cecropia sciadophylla: intraannual variation in leaf production and node length. Journal of Tropical Ecology (Online), v. 29, (4), 361-365. https://doi.org/10.1017/S0266467413000394
Ziccardi, L.G.; de Alencastro Graça, P.M.L.; Figueiredo, E.O.; Fearnside, P.M., 2019. Decline of large-diameter trees in a bamboo-dominated forest following anthropogenic disturbances in southwestern Amazonia. Annals of Forest Science (Online), v. 76, (110), 1-6. https://doi.org/10.1007/s13595-019-0901-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.