Initial establishment of Erythrina velutina Willd seedlings under water deficit: physiological and biochemical aspects
DOI:
https://doi.org/10.5327/Z2176-94781712Keywords:
antioxidant enzymatic activity; biochemical adaptations; drought; mulungu; physiological adaptations.Abstract
For plant species to establish and survive in semiarid regions, such as the Caatinga plant domain, they need to present biochemical versatility. Thus, the objective of this study was to evaluate through physiological and biochemical indicators the sensitivity of seeds and seedlings of Erythrina velutina Willd to water deficit, as this species is used in the recovery of degraded areas in the Brazilian semiarid region. The seeds were submitted to five osmotic potentials (-0.1; -0.2; -0.3; -0.4; and -0.5 MPa), evaluating the percentage of germination (normal seedlings), germination speed index, length of aerial parts and root system, total dry mass, the concentration of photosynthetic pigments (chlorophylls a, b, and carotenoids) in aerial parts and root system, soluble carbohydrates and proteins, proline, and the enzymes ascorbate peroxidase, catalase, superoxide dismutase, peroxidase, and polyphenoloxidase. The water deficit reduced the germination speed index and percentage, aerial parts and root length, aerial parts and root dry mass, and photosynthetic pigment content in seedlings; however, there was an increase in the levels of total carbohydrate, proline, and protein, and a reduction in superoxide dismutase. The water potential from -0,4 MPa was a limiting factor for the seedling and/or seedling formation process. The direct sowing of E. velutinawould only be indicated up to the potential of -0,3 MPa for the regeneration of degraded areas in semiarid regions. The species in the seedling formation stage present less biochemical plasticity to overcome limiting conditions of water availability.
Downloads
References
Agarwal, S.; Pandey, V., 2003. Stimulation of stress-related antioxidative enzymes in combating oxidative stress in Cassia seedlings. Indian Journal of Plant Physiology, v. 8, (3), 264-269.
Barakat, N.; Laudadio, V.; Cazzato, E.; Tufarelli, V., 2013. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum) treated with phytohormones under salt-stress condition. International Journal of Agriculture and Biology, v. 15, (5), 843-849. ISSN Online: 1814-959612-991/2013/15-5-843-849
Barbosa, M.R.; Silva, M.M.; Willadino, L.; Ulisses, C.; Camara, T.R., 2014. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, v. 44, (3), 453-460. https://doi.org/10.1590/S0103-84782014000300011
Bates, L.S., 1973. Rapid determination of free proline for water stress studies. Plant Soil, v. 39, 205-207. https://doi.org/10.1007/BF00018060
Bewley, J.D.; Black, M., 1994. Seeds: physiology of development and germination. Plenum Press, New York and London, 445 p.
Braccini, A.L.; Ruiz, H.A.; Braccini, M.C.L.; Reis, M.S., 1996. Germinação e vigor de sementes de soja sob estresse hídrico induzido por soluções de cloreto de sódio, manitol e polietileno glicol. Revista Brasileira de Sementes, v. 18, (2), 10-16.
Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, v. 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Brasil, 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes/Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. MAPA/ACS, Brasília, 399 p.
Brito, N.D.S.; Medeiros, M.J.S.; Souza, E.S.; Lima, A.L.A., 2022. Drought response strategies for deciduous species in the semiarid Caatinga derived from the interdependence of anatomical, phenological and bio-hydraulic atributes. Flora, v. 288, 152009. https://doi.org/10.1016/j.flora.2022.152009
Carón, M.M.; Frenne, P.D.; Brunet, J.; Chabrerie, O.; Cousins, S.A.O., 2015. Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides. Plant Biology, v. 17, 52-62. https://doi.org/10.1111/plb.12177
Carvalho, P.E.R., 2008. Espécies Arbóreas Brasileiras: Mulungu Erythrina velutina. Colombo, PR: Embrapa Florestas, v. 3, 385-391.
Chaves, M.M.; Oliveira, M.M., 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, v. 55, (407), 2365-2384. https://doi.org/10.1093/jxb/erh269
Chunyang, L., 1998. Some aspects of leaf water relations in four provenances of Eucalyptus michrotheca seedlings. Forest Ecology and Management, v. 111, 303-308. https://doi.org/10.1016/S0378-1127(98)00336-3
Cruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species. Plant Signaling & Behavior, v. 3, 156-165. https://doi.org/10.4161/psb.3.3.5536
Dantas, B.F.; Angelotti, F., 2022. Sementes nativas da Caatinga e clima futuro. In: Giongo, V.; Angelotti, F. (Eds.), Agricultura de baixa emissão de carbono em regiões semiáridas: experiência brasileira. Embrapa, Brasília, pp. 169-183.
Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. https://doi.org/10.1021/ac60111a017
Fernandes, MF.; Queiroz, L.P., 2018. Vegetação e flora da Caatinga. Ciência e Cultura, v. 70, (4), 51-56. https://doi.org/10.21800/2317-66602018000400014
Ferreira, D.F., 2011. SISVAR: um programa para análises e ensino de estatística. Revista Ciência e Agrotecnologia, v. 35, (6), 1039-1042. https://doi.org/10.1590/S1413-70542011000600001
Foyer, C.H., 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, v. 154, 134-142. https://doi.org/10.1016/j.envexpbot.2018.05.003
Giannopolitis, C.N.; Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, v. 59, (2), 309-314. https://doi.org/10.1104/pp.59.2.309
Gomes-Junior, R.A.; Moldes, C.A.; Delite, F.S.; Gratão, P.L.; Mazzafera, P.; Lea, P.J.; Azevedo, R.A., 2006. Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiology and Biochemistry, v. 44, 420-429. https://doi.org/10.1016/j.plaphy.2006.06.002
Guimarães, M.J.M.; Simões, W.L.; Camara, T.J.R.; Silva, C.U.C.; Willadino, L.G., 2018. Antioxidant defenses of irrigated forage sorghum with saline aquaculture effluent. Revista Caatinga, v. 31, (1), 135-142. https://doi.org/10.1590/1983-21252018v31n116rc
Havir, E.A.; McHale, N.A., 1987. Biochemical and developmental Characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, v. 84, 450-455. https://doi.org/10.1104/pp.84.2.450
Hsiao, T.C.; Xu, L.K., 2000. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, v. 51, (350), 1595-1616. https://doi.org/10.1093/jexbot/51.350.1595
Ivanov, Y.V.; Kartashov, A.V.; Zlobin, I.E.; Sarvin, B.; Stavrianidi, A.N.; Kuznetsov, V.V., 2019. Water deficit-dependent changes in non-structural carbohydrate profiles, growth and mortality of pine and spruce seedlings in hydroculture, Environmental and Experimental Botan, v. 157, 151-160. https://doi.org/10.1016/j.envexpbot.2018.10.016
Jeltsch, F.; Moloney, K.A.; Schurr, F.M.; Kȍchy, M.; Schwager, M., 2008. The state of plant population modelling in light of environmental change. Perspectives in Plant Ecology, v. 9, 171-189. https://doi.org/10.1016/j.ppees.2007.11.004
Kar, M.; Mishra, D., 1976. Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology, v. 57, 315-319. https://doi.org/10.1104/pp.57.2.315
Kerbauy, G.B., 2019. Fisiologia vegetal. 3. ed. Guanabara Koogan S.A., Rio de Janeiro, 430 p.
Kilic, S.; Kahraman, A., 2016. The mitigation effects of exogenous hydrogen peroxide when alleviating seed germination and seedling growth inhibition on salinityinduced stress in barley. Polish Journal Environmental Studies, v. 25, (3), 1053-1059. https://doi.org/10.15244/pjoes/61852
Krzyzanowski, F.C.; Vieira, R.D.; França-Neto, J.B. (Eds.), 1999. Vigor de sementes: Conceitos e Testes. ABRATES, Londrina, 1.1-1.24.
Leite, T.S.; Dias, N.S.; Freitas, R.M.O.; Dombroski, J.L.D.; Leite, M.S.; Farias, R.M., 2022. Ecophysiological and biochemical responses of two tree species from a tropical dry forest to drought stress and recovery. Journal of Arid Environments, v. 200, 104720. https://doi.org/10.1016/j.jaridenv.2022.104720
Lichtenthaler, H.K.; Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, v. 11, 591-592. https://doi.org/10.1042/bst0110591
Liu, C.; Liu, Y.; Guo, K.; Fan, D.; Li, G.; Zheng, Y.; Yu, L.; Yang, R., 2011. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, v. 71, 174-183. https://doi.org/10.1016/j.envexpbot.2010.11.012
Luo, Y.; Cheng, J.; Yan, X.; Zhang, J.; Zhang, J. 2022. Germination of seeds subjected to temperature and water availability: Implications for Ecological Restoration. Forests, v.13, (11), 1854. https://doi.org/10.3390/f13111854
Maguire, J.D., 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, v. 2, (1), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D., 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, v. 262, 1432-1436. https://doi.org/10.1126/science.7902614
Martins, M.V., 2020. Erythrina in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro (Accessed July 24, 2023) at:. https://floradobrasil2020.jbrj.gov.br/FB29679
McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? Tansley review. New Phytologist, v. 178, 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
McLaren, KP; McDonald, MA., 2003. The effects of moisture and shade on seed germination and seedling survival in a tropical dry forest in Jamaica. Forest Ecology and Management, v. 183, 61-75. https://doi.org/10.1016/S0378-1127(03)00100-2
Medeiros, F.S.; Souza, M.P.; Cerqueira, C.L.; Alves, A.R.; Souza, M.D.; Borges, C.H.A., 2018. Florística, fitossociologia e modelagem da distribuição diâmétrica em um fragmento de Caatinga em São Mamede-PB. Agropecuária Científica no Semiárido, v. 14, (2), 85-95. https://doi.org/10.30969/acsa.v14i2.900
Mhamdi, A.; Noctor, G.; Baker, A., 2012. Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and Biophysics, v. 525, (2), 181-194. https://doi.org/10.1016/j.abb.2012.04.015
Milbau, A.; Graae, B.J.; Shevtsova, A.; Nijs, I., 2009. Effects of a warmer climate on seed germination in the subarctic. Annals of Botany, v. 104, 287-296. https://doi.org/10.1093/aob/mcp117
Nakano, Y.; Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, v. 22, (5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Novaes, L.R.; Calixto, E.S.; Oliveira, M.L.; Alves-de-Lima, L.; Almeida, O.; Torezan-Silingardi, H.M., 2020. Environmental variables drive phenological events of anemocoric plants and enhance diaspore dispersal potential: A new wind-based approach. Science of the Total Environment, v. 730, 139039. https://doi.org/10.1016/j.scitotenv.2020.139039
Nunes, F.S.M.; Soares Filho, B.S.; Rajão, R.; Merry, F., 2017. Enabling largescale forest restoration in Minas Gerais state, Brazil. Environmental Research Letters, v. 12, (4), 044022. https://doi.org/10.1088/1748-9326/aa6658
Nxele, X.; Klein, A.; Ndimba, B.K., 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, v. 108, 261-266. https://doi.org/10.1016/j.sajb.2016.11.003
Palumbo, C.F.G.; Gardin, N.E.; Nakamura, M.U., 2016. Erythrina mulungu Mart. ex Benth e Erythrina velutina Willd. – Aspectos farmacológicos e perspectiva antroposófica de plantas brasileiras. Arte Médica Ampliada, v. 36, (4), 152-61. https://doi.org/10.34117/bjdv6n6-026
Parvin, S.; Lee, O.R.; Sathiyaraj, G.; Khorolragchaa, A.; Kim, Y.; Yang, D., 2014. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, v. 537, (1), 70-78. https://doi.org/10.1016/j.gene.2013.12.021
Pelegrini, L.L.; Borcioni, E.; Nogueira, A.C.; Koehler, H.S.; Quoirin, M.G.G., 2013. Efeito do estresse hídrico simulado com NaCl, Manitol e PEG (6000) na germinação de sementes de Erythrina falcata Benth. Ciência Florestal, v. 23, (2), 511-519. https://doi.org/10.5902/198050989295
Pesoli, P.; Gratani, L.; Larcher, W., 2003. Responses of Quercus ilex from different provenances to experimentally imposed water stress. Biologia Plantarum, v. 46, (4), 577-581. https://doi.org/10.1023/A:1024823830225
Pompelli, M.F.; Barata-Luís, R.; Vitorino, H.S.; Gonçalves, E.R.; Rolim, E.V.; Santos, M.G.; Almeida-Cortez, J.S.; Ferreira, V.M.; Lemos, E.E.P.; Endres, L., 2010. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass and Bioenergy, v. 34, 1207-1215. https://doi.org/10.1016/j.biombioe.2010.03.011
Pottosin, I.; Shabala, S., 2016. Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Molecular Plant, v. 9, (3). 356-370. https://doi.org/10.1016/j.molp.2015.10.006
Ribeiro, R.C.; Dantas, B.F.; Pelacani, C.R., 2012. Mobilization of reserves and germination of seeds of Erythrina velutina Willd. (Leguminosae - Papilionoideae) under different osmotic potentials. Revista Brasileira de Sementes, v. 34, (4), 580-588. https://doi.org/10.1590/S0101-31222012000400008
Ribeiro, R.C.; Matias, J.R.; Pelacani, C.R.; Dantas, B.F., 2014. Activity of antioxidant enzymes and proline accumulation in Erythrina velutina Willd. seeds subjected to abiotic stresses during germination. Journal of Seed Science, v. 36, (2), 231-239. https://doi.org/10.1590/2317-1545v32n2956
Rodrigues, C.M.; Alves, E.U.; Silva, R.S.; Cruz, F.R.S.; Silva, M.L.M.; Ursulino, M.M.; Santos, E.N.; Moura, M.F., 2020. Seeds of Caesalpinia echinata Lam. under water stress at different temperatures. Journal of Agricultural Science, v. 12, (7). https://doi.org/10.5539/jas.v12n7p66
Rodrigues, D.R.; Silva, A.F.; Cavalcanti, M.I.P.; Escobar, I.E.C.; Fraiz, A.C.R.; Ribeiro, P.R.A.; Ferreira Neto, R.A.; Freitas, A.D.S.; Fernandes-Júnior, P.I., 2018. Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Brazilian Journal of Microbiology, v. 49, 503-512. https://doi.org/10.1016/j.bjm.2017.09.007
Rodrigues, G.A.G.; Ribeiro, M.I.; Luz, E.M.Z.; Porto, E.C.; Matias, G.L.; Corsato, J.M.; Fortes, A.M.T., 2019. Drought stress effects on germination and reserve degradation of Aspidosperma polyneuron seeds. Revista Brasileira de Ciências Agrárias, v. 14, (4), e5903. https://doi.org/10.5039/agraria.v14i4a5903
Santos, P.C.S.; Benedito, C.P.; Alves, T.R.C.; Paiva, E.P.; Sousa, E.C.; Afonso, L.A.; Freires, A.L.A., 2018. Water stress and temperature on germination and vigor of Handroanthus impetiginosus (Mart. ex DC). Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, (5), 349-354. https://doi.org/10.1590/1807-1929/agriambi.v22n5p349-354
Sartori, A.V.S.; Oliveira, C.M.G.; Zucareli, C.; Pereira, A.R.; Kitzberger, C.S.G.; Santos, E.D.; Araújo, F.O., 2023. Effect of combined thermal and water stress on germination of wheat seeds. Revista Ciência Agronômica, v. 54, e20218253. https://doi.org/10.5935/1806-6690.20230003
Schiave, A.L.P.S.; Pacheco, T.J., 2022. Revisión de Literatura del potencial terapéutico ansiolítico de la Erythrina mulungu. Epicentro Ciencias Salud, v. 2, (3), 74-81. https://doi.org/10.59085/2789-7818.2022.37
Shaygan, M.; Arnold, S.; Baumgartl, T., 2017. Germination of Atriplex halimus seeds under salinity and water stress. Ecological Engineering, v. 102, 636-640. https://doi.org/10.1016/j.ecoleng.2017.02.050
Silva, A.P.M.; Schweizer, D.; Marques, H.R.; Teixeira, A.M.C.; Santos, T.V.M.N.; Sambuichi, R.H.R.; Badari, C.G.; Gaudare, U.; Brancalion, P.H.S., 2017. Can current native tree seedling production and infrastructure meet an 53 increasing forest restoration demand in Brazil? Restoration Ecology, v. 25, (4), 509-515. https://doi.org/10.1111/rec.12470
Silva, B.N., Paula, S.O., Oliveira, J.V.; Silva, J.S., Magalhães, C.H.C.; Gomes-Filho, E.; Mesquita, R.O., 2019. Traditional varieties of caupi submitted to water deficit: physiological and biochemical aspects. Journal of Agricultural Science, v. 11, (6), 424-436. https://doi.org/10.5539/jas.v11n6p424
Silva, P.A.; Silva, L.L.; Brito, L., 2020. Using bird-flower interactions to select native tree resources for urban afforestation: the case of Erythrina velutina. Urban Forestry & Urban Greening, v. 51, 126677. https://doi.org/10.1016/j.ufug.2020.126677
Singh, P.K.; Gautam, S., 2013. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35(8). 2345-2353. https://doi.org/10.1007/s11738-013-1279-9
Springer, T.L., 2005. Germination and early seedling growth of shaffy-seeded grasses at negative water potentials. Crop Science, v. 45, 2075-2080. https://doi.org/10.2135/cropsci2005.0061
Stavi, I.; Shem-Tov, R.; Shlomi, Y.; Bel, G.; Yizhaq, H., 2015. Recruitment and decay rate of Acacia seedlings in the hyper-arid Arava Valley, Israel. Catena, v. 131, 14-21. https://doi.org/10.1016/j.catena.2015.03.004
Taiz, L.; Zeiger, E.; Moller, I.; Murphy, A., 2017. Fisiologia e desenvolvimento vegetal. 6. ed. Artmed, Porto Alegre, 888 p.
Teixeira Oliveira, M.; Matzek, V.; Dias Medeiros, C.; Rivas, R.; Marinho Falcão, H.; Santos, M.G., 2014. Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest. PLoS ONE, v. 9, (8), e105514. https://doi.org/10.1371/journal.pone.0105514
Urbanek, H.; Kuzniak-Gebarowska, E.; Herka, H., 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologia Plantarum, v. 13, 43-50. ISSN 0137-5881
Vilela, A.A.; Del Claro, V.T.S.; Torezan-Silingardi, H.M.; Del-Claro, K., 2018. Climate changes affecting biotic interactions, phenology, and reproductive success in a savanna community over a 10-year period. Arthropod-plant interactions, v. 12, (2), 215-227. https://doi.org/10.1007/s11829-017-9572-y
Wang, P.; Mo, B.; LONG, Z.; Fan, S.; Wang, H.; Wang, L., 2016. Factors affecting seed germination and emergence of Sophora davidii. Industrial Crops and Products, v. 87, 261-265. https://doi.org/10.1016/j.indcrop.2016.04.053
Yang, Y.; Liu, Q.; Wang, G.X., 2010. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New Forests, v. 39, 231-243. https://doi.org/10.1007/s11056-009-9167-2
Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cádenas, A., 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, v. 162, (1), 2-12. https://doi.org/10.1111/ppl.12540
Zeng, Y.J.; Wang, Y.R.; Zhang, J.M., 2010. Is reduced seed germination due to water limitation a special survival strategy used by xerophytes in arid dunes? Journal of Arid Environments, v. 74, (4), 508-511. https://doi.org/10.1016/j.jaridenv.2009.09.013
Zhang, G.; Zhang, M.; Zhao, Z.; Ren, Y.; Li, Q.; Wang, W., 2017. Wheat TaPUB1 modulates plant dro ught stress resistance by improving antioxidant capability. Scientific Reports, v. 7, (1), 1-13. https://doi.org/10.1038/s41598-017-08181-w
Zhang, S.S.; Shi, F.Q.; Yang, W.Z.; Xiang, Z.Y.; Kang, H.M.; Duan, Z.L., 2015. Autotoxicity as a cause for natural regeneration failure in Nyssa yunnanensis and its implications for conservation. Israel Journal of Plant Sciences, v. 62, 187-197. https://doi.org/10.1080/07929978.2015.1064630
Zheng, C.; Jiang, D.; Fulai, L.; Dai, T.; Liu, W.; Jing, Q.; Cai, W., 2009. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, v. 67, (1), 222-227. https://doi.org/10.1016/j.envexpbot.2009.05.002
Zhenyi, W.; Xia, P.; Zhongjv, M.; Yong, D.; Xiaohong, D.; JI, W., 2019. Response of Chamecytisus palmensis to drought stress induced by polyethylene glycol during germination, Journal of Plant Nutrition, v. 42, (20), 2814-2823. https://doi.org/10.1080/01904167.2019.1659335
Zhu, J.; Li, Z.; Kang, H.; Fan, Y., 2005. Effects of polyethylene glycol (PEG)-simulated drought stress on Pinus sylvestris var. mongolica seed germination on sandy land. Ying Yong Sheng Tai Xue Bao, v. 16, (5), 801-804. PMID: 16110648
Zouaoui, R.; Ammari, Y.; Abassi, M.; Ahmed, H.B.; Amenismaoui, A.; Hilali, K., 2019. Physiological and biochemical responses of Rhus tripartita (Ucria) grande under water stress. Pakistan Journal of Botany, v. 51, (4), 1215-1221. https://doi.org/10.30848/PJB2019-4(22)
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Environmental Sciences (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.