Microcrystalline cellulose: an alternative to increase the resistance of kraft packaging with recycled fiber





sustainable packaging; product development; mechanical properties; Pinus spp.


The consumption of paper packaging is increasing. On the contrary, the planted areas of Pinus spp. are showing a trend tendency of imbalance between supply and demand. Therefore, many companies are prioritizing the use of recycled fiber (RF). However, its inclusion can influence the quality of the product. This study aimed to evaluate whether the combination of RF with microscale cellulose will enable the production of resistant paper. The first step involved producing bench-scale samples of Kraft paper (with different percentages of virgin and RF) and characterized it physically (grammage, moisture, Gurley porosity, Z-traction, SCT, and Mullen). The second stage involved replicating the first stage with the inclusion of microcrystalline cellulose (MCC) and the elimination of Pinus spp. (LF). All formulations were approved for the physical characterization tests, except for the porosity analysis and grammage for F5. In the first test (MCC=0%), there was a reduction in tensile, compression, and burst index of 13.2, 7.3, and 19.5%, respectively, showing that the higher the percentage of RF, the lower the paper’s strength. In the second test for Formulation 3 (MCC=6%), there was an increase in the tensile, compression, and burst index of 9.5, 2.6, and 2.7%, respectively, when compared with Formulation 2 (LF=MCC=0%). This study demonstrates that the addition of up to 6% MCC strengthens the RFs and decreases the dependence on Pinus spp., making it a promising alternative for the production of sustainable and resistant packaging.


Download data is not yet available.


Ahola, T., 2006. Intelligent estimation of web break sensitivity in paper machines. Doctoral Thesis, University of Oulu, Finland. Retrieved 2023-23-07, from https//jultika.oulu.fi/Record/isbn951-42-7957-3

Akter, T.; Nayeem, J.; Quadery, A. H.; Razzaq, M.A.; Uddin, M.T.; Bashar, M.S.; Jahan, M.S., 2020. Microcrystalline cellulose reinforced chitosan coating on Kraft paper. Cellulose Chemistry and Technology, v. 54, (1-2), 95-102.

Associação Brasileira de Embalagem (ABRE), 2022. Dados do Setor (Accessed June 29, 2023) at:. https://www.abre.org.br/dados-do-setor/.

Bajpai, P., 2011. Biotechnology for pulp and paper processing. Springer, New York.

Bortolan, R.H., 2012. Estudo do efeito do tipo de celulose utilizada e da intensidade de refino no processo de refino da polpa celulósica. Monografia, Pós-Graduação Lato Sensu em Tecnologia de Celulose e Papel, Universidade Presbiteriana Mackenzie, São Paulo. Retrieved 2023-03-03, from https//dspace.mackenzie.br/handle/10899/243

Castanho, C.G., 2002. Utilização de rejeito fibroso industrial da polpação Kraft de eucalipto para produção de papéis. Dissertação de Mestrado em Ciência Florestal, Universidade Federal de Viçosa, Viçosa. Retrieved 2023-10-06, from http://locus.ufv.br/handle/123456789/3189

Ceron, A., 2021. Santa Catarina terá programa voltado ao desenvolvimento florestal (Accessed July 25, 2023) at:. https://www.agricultura.sc.gov.br/santa-catarina-tera-programa-voltado-ao-desenvolvimento-florestal/.

Clark, J.d’A., 1985. Pulp technology and treatment for paper. Miller Freeman Publications, Inc., San Francisco.

D’Almeida, M.L.O., 1988. Celulose e papel: tecnologia de fabricação de pasta celulósica. 2. ed. v. 2. IPT-SENAI, São Paulo, 559 p.

Didone, M.; Saxena, P.; Brilhuis‐Meijer, E.; Tosello, G.; Bissacco, G.; Mcaloone, T.C.; Pigosso, D.C.A.; Howard, T.J., 2017. Moulded pulp manufacturing: overview and prospects for the process technology. Packaging Technology and Science, v. 30, (6), 231-249. https://doi-org.ez48.periodicos.capes.gov.br/10.1002/pts.2289

Didone, M.; Tosello, G., 2019. Moulded pulp products manufacturing with thermoforming. Packaging Technology and Science, v. 32, (1), 7-22. https://doi-org.ez48.periodicos.capes.gov.br/10.1002/pts.2543

Drummond, D.M.D., 2004. Otimização para o posicionamento dos equipamentos do circuito de massa na fabricação de papel Tissue. Dissertação de Mestrado, Faculdade de Engenharia Química, Desenvolvimento de Processos Químicos, Universidade Estadual de Campinas, São Paulo. doi:10.47749/T/UNICAMP.2004.307744. Retrieved 2023-11-05, from www.repositorio.unicamp.br

Ebeling, K., 2000. Role of softwood fibre form and condition on its reinforcement capability. Cellulosic Pulps, Fibres and Materials, Woodhead Publishing, 209-225. https://doi.org/10.1533/9781845698546.209

Esteves, C.V.; Brännvall, E.; Stevanic, J.S.; Larsson, P.T., 2023. Pulp delignification and refining: impact on the supramolecular structure of softwood fibers. Celulose, v. 30, 10453-10468. https://doi.org/10.1007/s10570-023-05490-4

Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Desbrières, J.; Gandini, A.; Neto, C.P., 2010. Production of coated papers with improved properties by using a water-soluble chitosan derivative. Industrial and Engineering Chemistry Research, v. 49, (14), 6432-6438. https://doi.org/10.1021/ie100573z

Food and Agriculture Organization of the United Nations (FAO), 2021. Forestry Production and Trade (Accessed March 11, 2023) at:. https//www.fao.org/faostat/en/#data/FO

Forest Stewardship Council (FSC), 2015. Principios y Criterios del FSC para el Manejo Forestal Responsible (FSC-STD-01-001 V5-2 ES) (Accessed March 11, 2023) at:. https://br.fsc.org/br-pt/fsc/principios-criterios.

Fouad, H.; Kian, L.K.; Jawaid, M.; Alotaibi, M.D.; Alothman, O.Y.; Hashem, M., 2020. Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber. Polymers, v. 12, (12), 2926-2937. https://doi.org/10.3390/polym12122926

Galati, A.; Gianguzzi, G.; Tinervia, S.; Crescimanno, M.; La Mela Veca, D.S., 2017. Motivations, adoption and impact of voluntary environmental certification in the Italian Forest based industry: The case of the FSC standard. Forest Policy and Economics, v. 83, 169-176. https://doi.org/10.1016/j.forpol.2017.08.002

German, J.D.; Redi, A.A.N.P.; Prasetyo, Y.T.; Persada, S.F.; Ong, A.K.S.; Young, M.N.; Nadlifatin, R., 2022. Choosing a package carrier during COVID-19 pandemic: An integration of pro-environmental planned behavior (PEPB) theory and service quality (SERVQUAL). Journal of Cleaner Production, v. 346, 131123. https://doi.org/10.1016/j.jclepro.2022.131123

Horejs, C., 2020. Solutions to plastic pollution. Nature Reviews Materials, v. 5, 641. https://doi.org/10.1038/s41578-020-00237-0

Huang, X.; Xie, F.; Xiong, X., 2018. Surface-modified microcrystalline cellulose for reinforcement of chitosan film. Carbohydrate Polymers, v. 201, 367-373. https://doi.org/10.1016/j.carbpol.2018.08.085

Hubbe, M.A.; Venditti, R.A.; Rojas, O.J., 2007. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources, v. 2, (4), 739-788.

Indústria Brasileira de Árvores (IBÁ), 2022. Dados Estatísticos. São Paulo (Accessed March 10, 2023) at: https://www.iba.org/dados-estatisticos.

Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C., 2021 Nanofibrillated cellulose as coating agent for food packaging paper. International Journal of Biological Macromolecules, v. 168, 331-338. https://doi.org/10.1016/j.ijbiomac.2020.12.066

Jochem, D.; Bösch, M.; Weimar, H.; Dieter, M., 2021. National wood fiber balances for the pulp and paper sector: An approach to supplement international forest products statistics. Forest Policy and Economics, v. 131, 102540. https://doi.org/10.1016/j.forpol.2021.102540.

Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Grey, D.; Dorris, A., 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, v. 50, ed. 24, 5438-5466. https://doi.org/10.1002/anie.201001273

Lauri, P.; Forsell, N.; Fulvio, F.D.; Snäll, T.; Havlik, P., 2021 Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness. Forest Policy and Economics, v. 132, 1025882021. https://doi.org/10.1016/j.forpol.2021.102588

Lima, A.S., 2012. A química da parte úmida em produção de papel: conceitos e aplicações. Monografia, Pós-graduação em Tecnologia de Celulose e Papel, Universidade Presbiteriana Mackenzie, São Paulo. Retrieved 2023-23-07, from https//dspace.mackenzie.br/handle/10899/146

Lu, J.; Drzal, L.T., 2010. Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. Journal of Polymer Science Parte B: Polymer Physics, v. 48, (2), 153-161. https://doi.org/10.1002/polb.21875

Macleod, M.; Arp, H.P.H.; Jahnke, A., 2021. The global threat from plastic pollution. Science, v. 373, (6550), 61-65. https://doi.org/10.1126/science.abg5433

Menegazzo, M.L., 2012. Características morfológicas de celuloses branqueadas de Pinus e Eucalyptus em analisador óptico automático de fibras. Dissertação de Mestrado, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu. Retrieved 2023-18-06, from http://repositorio.unesp.br/handle/11449/99750

Merci, A.; Urbano, A.; Grossmann, M.V.E.; Tischer, C.A.; Mali, S., 2015. Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Research International, v. 73, 38-43. https://doi.org/10.1016/j.foodres.2015.03.020

Mondal, S., 2018. Review on nanocellulose polymer nanocomposites. Polymer-Plastics Technology and Engineering, v. 57, (13), 1377-1391. https://doi.org/10.1080/03602559.2017.1381253

Mutjé, P.; Pèlach, M.A.; Vilaseca, F.; García, J.C.; Jiménez, L., 2005. A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood. Bioresource Technology, v. 96, (10), 1125-1129. https://doi.org/10.1016/j.biortech.2004.10.001

Nechita, P.; Roman, M., 2020 Review on polysaccharides used in coatings for food packaging papers. Coatings, v. 10, (6), 566. https://doi.org/10.3390/coatings10060566

Sharma, M.; Agudo, R.; Murtinho, D.; Valente, A.J.M.; Sousa, A.P.M.; Ferreira, P.J.T., 2020. A review on cationic starch and nanocellulose as paper coating componentes. International Journal of Biological Macromolecules, v. 162, 578-598. https://doi.org/10.1016/j.ijbiomac.2020.06.131

Smook, G.A., 1989. Handbook for pulp and paper technologists. TAPPI, Atlanta, 419 p.

Starkey, H.; Chenoweth, A.; Johnson, C.; Salem, K.S.; Jameel, H.; Pal, L., 2021. Lignin-containing micro/nanofibrillated cellulose to strengthen recycled fibers for lightweight sustainable packaging solutions. Carbohydrate Polymer Technologies and Applications, v. 2, 100135. https://doi.org/10.1016/j.carpta.2021.100135

Unnikrishnan, A.; Figliozzi, M., 2021. Exploratory analysis of factors affecting levels of home deliveries before, during, and post - COVID-19. Transportation Research Interdisciplinary Perspectives, v. 10, 100402. https://doi.org/10.1016/j.trip.2021.100402

Vaezi, K.; Asadpour, G.; Sharifi, S.H., 2019. Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper. Polymer Testing, v. 80, 106080. https://doi.org/10.1016/j.polymertesting.2019.106080

World Economic Forum, 2022. Top 25 recycling facts and statistics for 2022 (Accessed November 01, 2022) at:. https://www.weforum.org/agenda/2022/06/recycling-global-statistics-facts-plastic-paper/.

Zhang, Y.; Duan, C.; Bokka, S.K,; Ele, Z.; Ni, Y., 2022. Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review. Journal of Bioresources and Bioproducts, v 7, (1), 14-25. https://doi.org/10.1016/j.jobab.2021.10.003




How to Cite

Van Tienen, Y. M. da S., & Rodrigues, S. Ávila. (2024). Microcrystalline cellulose: an alternative to increase the resistance of kraft packaging with recycled fiber. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1688. https://doi.org/10.5327/Z2176-94781688