Life cycle analysis of anaerobic digestion processes of poultry litter

Authors

DOI:

https://doi.org/10.5327/Z2176-94781671

Keywords:

poultry bed; chicken waste; environmental assessment; sustainability; thermal treatment; waste management.

Abstract

This article presents results of life-cycle assessment of anaerobic digestion processes of poultry litter (PL) preceded or not by thermal pretreatment (autohydrolysis). For this, the environmental impact categories, greenhouse gas (GHG) emissions, eutrophication, and soil acidification were evaluated using the ReCiPe Midpoint (H) method. Based on primary data provided by a partner company, life-cycle inventories were constructed for three forms of poultry waste management: i. disposal of in natura PL into the soil, which is the commonly used management technique; ii. anaerobic digestion of in natura PL; and iii. thermal pre-treatment by autohydrolysis of PL before its anaerobic digestion. It is concluded that anaerobic digestion of PL reduces GHG emissions compared to the “business as usual” scenario of soil disposal. The use of digestate (liquid fraction generated by PL anaerobic digestion) as soil fertilizer would result in avoided GHG emissions of 34%, while thermal pre-treatment by autohydrolysis of PL prior to its anaerobic digestion would result in a slightly lower reduction (27%) in GHG. Anaerobic digestion of in natura PL would also reduce the eutrophication potential by 98.2% (kg eq PO4-3/t litter) and the acidification potential by 98.4% (kg eq SO2/t litter) compared to its soil disposal. These results show that anaerobic digestion is a more sustainable way to manage PL than its environmental discharge.

Downloads

Download data is not yet available.

References

Beausang, C.; McDonnell, K.; Fionnuala, M., 2020. Anaerobic digestion of poultry litter – a consequential life cycle assessment. Science of The Total Environment, v. 735, 139494. https://doi.org/10.1016/j.scitotenv.2020.139494

BRASIL. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução CONAMA no 498, de 19 de agosto de 2020. Define critérios e procedimentos para produção e aplicação de biossólido em solos, e dá outras providências. Brasília, DF, 2020.

Carneiro, G.N.B.V., 2020. Análise de ciclo de vida de processos de digestão anaeróbia da cama de aviário. Master Thesis, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto. Retrieved 2022-12-15, from https://www.repositorio.ufop.br/jspui/handle/123456789/16076

Crippen, T.L.; Sheffield, C.L.; Byrd, J.A.; Esquivel, J.F.; Beier, R.C.; Yeater, K., 2016. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition. Science of the Total Environment, v. 553, 650-661. https://doi.org/10.1016/j.scitotenv.2016.02.077

ECOINVENT. Ecoinvent version 3.7 (Accessed December 22, 2022) at:. https://www.ecoinvent.org/.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 2018. Apresentação. Embrapa suínos e aves. Portal Embrapa v.3.59.2, p. 01 (Accessed April 05, 2023) at:. https://www.embrapa.br/suinos-e-aves/apresentacao

Food and Agriculture Organization of the United Nations (FAO), 2020. World Food and Agriculture - Statistical Yearbook 2020. FAO, Rome. https://doi.org/10.4060/cb1329en

Gavrilova, O.; Leip, A.; Dong, H.; Macdonald, J.; Gomez-Brvo, C.A.; Amon, B.; Barahona, R.; Del Prado, A.; Lima, M.A.; Oyhantçabal, W.; Van Der Weerden, T.; Widiwati, Y., 2019. Emissions from livestock and manure management. In: Calvo Buendia, E.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyroshenko, Y. Shermanau, P.; Federici, S. (Eds.), 2019 Refinement to the 2006 guidelines for National Greenhouse Gas Inventories. Agriculture, forestry and other land use. IPCC, Geneve, pp. p. 10.9-10.167.

Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A. Struijs, J.; Zelm, R., 2013. ReCiPe (2008) – a life cycle impact assessment method which comprises harmonized category indicators at the midpoint end endpoint level. Ministry of Housing, Spatial Planning and Environment, Boca Raton (FL).

Hassanein, A.; Moss, A.; Cloyd, N.; Lansing, S., 2022. Evaluation and life cycle assessment of a poultry litter anaerobic digester with nutrient capture. Bioresource Technology Reports, v. 19, 101186. https://doi.org/10.1016/j.biteb.2022.101186

Hossain, S.; Akter, S.; Saha, C.K.; Reza, T.; Kabir, K.B.; Kirtania, K., 2023. A comparative life cycle assessment of anaerobic mono- and co-digestion of livestock manure in Bangladesh. Waste Management, v. 157, 100-109. https://doi.org/10.1016/j.wasman.2022.12.011

Intergovernmental Panel on Climate Change (IPCC). Appendix 4: Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments: Basis for Future Methodological Development, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Geneva.

Jeswani, H.K.; Whiting, A.; Martin, A.; Azapagic, A., 2019. Environmental impacts of poultry litter gasification for power generation. Energy Procedia, v. 161, 32-37. https://doi.org/10.1016/j.egypro.2019.02.055

Nusselder, S.; De Graaff, L.G.; Odegard, I.Y.R.; Vandecasteele, C.; Croezen, H.J., 2020. Life cycle assessment and nutrient balance for five different treatment methods for poultry litter. Journal of Cleaner Production, v. 267, 121862. https://doi.org/10.1016/j.jc lepro.2020.121862

Organisation for Economic Co-operation and Development (OECD), 2023. OECD-FAO Agricultural Outlook 2023-2032. https://doi.org/https://doi.org/10.1787/08801ab7-en

Paranhos, A.G.O. Efeitos da tilosina na digestão anaeróbia do resíduo avícola: produção de biogás, resistência a antibióticos e comunidade microbiana. Doctoral Thesis, Núcleo de Pesquisas e Pós-Graduação em Recursos Hídricos, Universidade Federal de Ouro Preto, Ouro Preto. Retrieved 2021-04-30, from https://www.repositorio.ufop.br/jspui/handle/123456789/13305

Paranhos, A.G.O.; Adarme, O.F.H.; Barreto, G.F.; Silva, S.Q.; Aquino, S.F., 2020. Methane production by co-digestion of poultry manure and lignocellulosic biomass: kinetic and energy assessment. Bioresource Technology, v. 300, 122588. https://doi.org/10.1016/j.biortech.2019.122588

Rajendran, K.; Murthy, G.S., 2019. Techno-economic and life cycle assessments of anaerobic digestion – A review, (2019). Biocatalysis and Agricultural Biotechnology, v. 20, 101207. https://doi.org/10.1016/j.bcab.2019.101207

Valenti, F.; Liao, W.; Porto, S.M.C., 2020. Life cycle assessment of agro-industrial by-product reuse: a comparison between anaerobic digestion and conventional disposal treatments. Green Chemistry, v. 22, 7119-7139. https://doi.org/10.1039/D0GC01918F

Weindl, I.; Ost, M.; Wiedmer, P.; Schreiner, M.; Neugart, S.; Klopsch, R.; Kühnhold, H.; Kloas, W.; Henkel, I. M.; Schlüter, O.; Bußler, S.; Bellingrath-Kimura, S. D.; Ma, H.; Grune, T.; Rolinski, S.; Klaus, S., 2020. Sustainable food protein supply reconciling human and ecosystem health: a Leibniz position. Global Food Security, v. 25 (March), 100367. https://doi.org/10.1016/j.gfs.2020.100367

Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, v. 21, (9), 1218-1230. https://doi.org/10.1007/s11367-016-1087-8

Downloads

Published

2024-05-10

How to Cite

Carneiro, G. N. B. V., Aquino, S. F. de, & Adarme, O. F. H. (2024). Life cycle analysis of anaerobic digestion processes of poultry litter. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e1671. https://doi.org/10.5327/Z2176-94781671