Using mobile air quality station data to identify critical areas in the city of Rio de Janeiro regarding pollutant concentrations

Authors

DOI:

https://doi.org/10.5327/Z2176-94781650

Keywords:

mobile monitoring stations; air quality management; ozone; fine particulate matter; Rio de Janeiro

Abstract

Recent studies have shown that tropospheric ozone, fine particulate matter and nitrogen dioxide are the urban air pollutants of major concern regarding human health effects. Monitoring air quality is a challenge in several cities, such as Rio de Janeiro, where the number of fixed-site air quality monitoring stations and their spatial distribution are insufficient to assess the extent of atmospheric pollutants. However, despite this lack of resources, the data obtained by mobile stations are a valuable means of determining which areas are experiencing critical air quality conditions, and provide key information for an air quality management program. The main purpose of this study was to conduct a critical analysis of data obtained by the Municipal Department of Environment and Climate (SMAC) mobile station in the period 2010–2018. Concentrations determined for particulate matter with a diameter ≤2.5 μm (PM2.5), O3, NO2, SO2 and CO showed that PM2.5 and O3 are the pollutants of major concern, and that the north of the city has higher air quality indices for these compounds. In addition, the south-west district had relatively high ozone levels, probably owing to low concentrations of NO2 in a volatile organic compound (VOC)-limited ozone formation regime. These factors should be considered by the municipal government in future discussions of control strategies for managing the city’s air quality. This study also shows the value of mobile stations in making a preliminary survey of pollutant concentrations, mainly in countries with limited financial investment in air quality management.

Downloads

Download data is not yet available.

References

Albarracin, K.Y.A.; Consuegra, A.A.; Aguilar-Arias, J., 2023. Particulate matter 10 m (PM10), 2.5 m (PM2.5) datasets gathered by direct measurements, low-cost sensor and by public air quality stations in Fontibón, Bogotá, D.C., Colombia. Data in Brief, v. 49, 109323. https://doi.org/10.1016/j.dib.2023.109323

Arbilla., G.; Dantas, G.; da Silva, C.M., 2023. Tijuca forest contribution to the improvement of air quality and wellbeing of citizens in the city of Rio de Janeiro. Chemosphere, v. 334, 139017. https://doi.org/10.1016/j.chemosphere.2023.139017

Arbilla, G.; Rodrigues, J.R.B.A.; da Silva, C.M., 2022. Fine Particulate Matter: Brazilian Legislation in the Light of the World Health Organization Guidelines. Revista Virtual de Química, v. 14, 359-371. http://doi.org/10.21577/1984-6835.20220082

Blanco, M.N.; Gassett, A.; Gould, T.; Doubleday, A.; Slager, D.L.; Austin, E.; Seto, E.; Larson, T.V.; Marshall, J.D.; Sheppard, L., 2022. Characterization of Annual Average Traffic-Related Air Pollution Concentrations in the Greater Seattle Area from a Year-Long Mobile Monitoring Campaign. Environmental Science and Technology, v. 56, (16), 11460-11472. https://doi.org/10.1021/acs.est.2c01077

Brito, C.N.; Rizzo, L.V., 2022. PM2.5 removal by urban trees in areas with different forestry conditions in São Paulo using a big-leaf modeling approach. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (4), 606-617. https://doi.org/10.5327/Z2176-94781458

Cazorla, M., Herrera, E., Palomeque, E., Saud, N., 2020. What the COVID-19 lockdown revealed about photochemistry and ozone production in Quito, Ecuador. Atmospheric Pollution Research, v. 12, 124-132. https://doi.org/10.1016/j.apr.2020.08.028

CDJ, 2022a. Porto do Rio século XXI (Accessed May 30, 2022) at:. http://www.rj.gov.br/Uploads/Noticias/8614versao-digital-caderno-porto-rio-sec-XXI-200713%20(3).pdf.

CDJ, 2022b. Porto de Itaguaí (Accessed May 30, 2022) at:. http://itaguai.portosrio.gov.br/.

Companhia Ambiental do Estado de São Paulo (CETESB), 2022. Qualidade do ar (Accessed May 30, 2022) at:. https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/.

Conselho Nacional do Meio Ambiente (CONAMA), 1990. Resolução CONAMA nº 3, 28 de junho de 1990 (Accessed May 30, 2022) at:. https://www.ibram.df.gov.br/images/resol_03.pdf.

Conselho Nacional do Meio Ambiente (CONAMA), 2018. Resolução CONAMA nº 491, 19 de novembro de 2018 (Accessed May 30, 2022) at:. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895.

Dantas, G.; Siciliano, B.; da Silva, C.M.; Arbilla, G., 2020. A reactivity analysis of volatile organic compounds in a Rio de Janeiro area impacted by vehicular and industrial emissions. Atmospheric Pollution Research, v. 11, (5), 1018-1027. https://doi.org/10.1016/j.apr.2020.02.017

Dantas, G.; Siciliano, B.; França, B.B.; Estevam, D.O.; da Silva, C.M.; Arbilla, G., 2021. Using mobility restriction experience for urban air quality management. Atmospheric Pollution Research, v.12, (8), 101119. https://doi.org/10.1016/j.apr.2021.101119

da Silva, C.M.; Moreira Junior, D.P.; Rodrigues, R.B.A.; Siciliano, B.; Arbilla, G., 2023. Clean Air for a good start: children are the future of the planet. Ambiente & Sociedade, v. 26, e00041. https://doi.org/10.1590/1809-4422asoc20220004r1vu2023L1OA

Data Rio, 2022. Data.Rio. Bairros Cariocas (Accessed May 30, 2022) at:. https://www.data.rio/apps/bairros-cariocas/explore

Environmental Protection Agency (EPA), 2016. Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants – Volume I. United State Environmental Protection Agency (Accessed May 30, 2022) at:. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=321491.

Environmental Protection Agency (EPA), 2021. Best Practices for Review and Validation of Ambient Air Monitoring Data. United State Environmental Protection Agency (Accessed May 30, 2022) at:. https://www.epa.gov/system/files/documents/2021-10/data-validation-guidance-document-final-august-2021.pdf.

Finlayson-Pitts, B.; Pitts Jr., J.N., 2000. Chemistry of the Upper and Lowe Atmosphere. Theory, Experiments and Applications. London: Academic Press.

Gaffney, C., 2016. Gentrifications in pre-Olympic Rio de Janeiro. Urban Geography, v. 37, (8 Latin American gentrifications), 1132-1153. https://doi.org/10.1080/02723638.2015.1096115

Geraldino, C.G.P.; Arbilla, G.; da Silva, C.M.; Corrêa, S.M.; Martins, E.M., 2020. Understanding high tropospheric ozone episodes in Bangu, Rio de Janeiro. Environmental Monitoring and Assessment, v. 192, (3), 156. https://doi.org/10.1007/s10661-020-8119-3

Godoy, M.L.D.P.; Almeida, A.C.; Tonietto, G.B.; Godoy, J.M., 2018. Fine and Coarse Aerosol at Rio de Janeiro prior to the Olympic Games: Chemical Composition and Source Apportionment. Journal of the Brazilian Chemical Society, v. 29, (3), 499-508. https://doi.org/10.21577/0103-5053.20170162

Google Maps, 2023. Rio de Janeiro (Accessed May 30, 2022) at:. https://www.google.com/maps/@-22.9141308,-43.445982,47119m/data=!3m1!1e3?entry=ttu

Instituto Brasileiro de Geografia e Estatística (IBGE), 2023. Cidades e estados (Accessed August 30, 2023) at:. https://www.ibge.gov.br/cidades-e-estados

Instituto de Energia e Meio Ambiente (IEMA), 2021. Annual Report 2021 (Accessed May 30, 2022) at:. http://energiaeambiente.org.br/produto/annual-report-2021

Instituto de Energia e Meio Ambiente (IEMA), 2022. Plataforma da Qualidade do Ar (Accessed May 30, 2022) at:. https://energiaeambiente.org.br/qualidadedoar

Instituto Estadual do Ambiente (INEA), 2013. Inventário Emissões de Fontes Veiculares, Região Metropolitana do Rio de Janeiro, ano base 2013 (Accessed May 30, 2022) at:. http://www.inea.rj.gov.br/wp-content/uploads/2019/01/Invent%C3%A1rio-de-Emiss%C3%B5es-de-Fontes-Veiculares.pdf.

Instituto Estadual do Ambiente (INEA), 2023. Qualidade do ar (Accessed May 30, 2022) at:. http://www.inea.rj.gov.br/ar-agua-e-solo/qualidade-do-ar/iqar/.

Kelly, C.; Fawkes, J.; Habermehl, R.; Monticelli, D. de F.; Zimmerman, N., 2023. PLUME Dashboard: A free and open-source mobile air quality monitoring dashboard. Environmental Modelling and Software, v. 160, 105600. https://doi.org/10.1016/j.envsoft.2022.105600

Kroll, J.H., Heald, C.L., Cappa, C.D., Farmer, D.K., Fry, J.L., Murphy, J.G., Steiner, A.L., 2020. The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry, v. 12, 777-779. https://doi.org/10.1038/s41557-020-0535-z

Lee, C.C.; Tran, M.V.; Choo, C.W.; Tan, C.P.; Chiew, Y.S., 2020. Evaluation of air quality in Sunway City, Selangor, Malaysia from a mobile monitoring campaign using air pollution micro-sensors. Environmental Pollution, v. 265, 115058. https://doi.org/10.1016/j.envpol.2020.115058

Ministério do Meio Ambiente (MMA), 2019. Guia Técnico para a Avaliação e Monitoramento da Qualidade do Ar (Accessed May 30, 2022) at:. https://www.gov.br/mma/pt-br/assuntos/agendaambientalurbana/ar-puro/GuiaTecnicoparaQualidadedoAr.pdf.

Openair, 2022. The Openair Manual (Accessed May 30, 2022) at:. http://www.dca.iag.usp.br/material/ritaynoue/PAE/aula_R/apostilas/OpenAir_Manual.pdf.

Organização Pan-americana de Saúde (OPAS), 2022. Diretrizes globais de qualidade do ar da OMS. Resumo executivo (Accessed May 30, 2022) at:. thttps://iris.paho.org/bitstream/handle/10665.2/54963/9789275724613_por.pdf?sequence=1&isAllowed=y.

Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A., 2020. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environmental International, v. 142, 105876. https://doi.org/10.1016/j.envint.2020.105876

Padilla, L.E.; Ma, G.Q.; Peters, D.; Dupuy-Todd, M.; Forsyth, E.; Stidworthy, A.; Mills, J.; Bell, S.; Hayward, I.; Coppin, G.; Moore, K.; Fonseca, E.; Popoola, A.M.; Douglas, F.; Slater, G.; Tuxen-Bettman, K.; Carruthers, D.; Martin, N.A.; Jones, R.L.; Alvares, R.A., 2022. New methods to derive street-scale spatial patterns of air pollution from mobile monitoring. Atmospheric Environment, v. 270, 118851. https://doi.org/10.1016/j.atmosenv.2021.118851

Petrobras, 2022. Refinaria Duque de Caxias (Accessed May 30, 2022) at:. https://petrobras.com.br/pt/nossas-atividades/principais-operacoes/refinarias/refinaria-duque-de-caxias-reduc.htm.

Porto de Niterói, 2015. Plano mestre Porto de Niterói (Accessed May 30, 2022) at:. https://www.gov.br/infraestrutura/pt-br/centrais-de-conteudo/se21-pdf.

R, 2022. R Project (Accessed May 30, 2022) at:. https://www.r-project.org/.

Sánchez, F.; Broudehoux, A.M., 2013. Mega-events and urban regeneration in Rio de Janeiro: planning in a state of emergency. International Journal of Urban Sustainable Development, v. 5, 132-153. https://doi.org/10.1080/19463138.2013.839450

Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V., 2021. Urban population exposure to air pollution in Europe over the last decades. Environmental Science Europe, v. 33, 28. https://doi.org/10.1186/s12302-020-00450-2

Sicard, P.; Agathokleous, E.; Anenberg, S. C.; De Marco, A.; Paoletti, E.; Calatayud, V., 2023. Trends in urban air pollution over the last two decades: A global perspective. Science of the Total Environment, v. 858, 160064. https://doi.org/10.1016/j.scitotenv.2022.160064

Siciliano, B.; Dantas, G.; da Silva, C. M.; Arbilla, G., 2019. The updated Brazilian national air quality standards: a critical review. Journal of the Brazilian Chemical Society, v. 31, 523-535. https://doi.org/10.21577/0103-5053.20190212

Siciliano, B.; Dantas, G.; da Silva, C. M.; Arbilla, G., 2020. Increased ozone levels during COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Science of the Total Environment, v. 737, 139765. https://doi.org/10.1016/j.scitotenv.2020.139765

Sillman, S., 1999. The relation between O3, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, v. 33, 1821-1845. https://doi.org/10.1016/S1352-2310(98)00345-8

Silva, C.M.; da Silva, L.L.; Corrêa, S.M.; Arbilla, G., 2017. Speciation Analysis of Ozone Precursor Volatile Organic Compounds in the Air Basins of the Rio de Janeiro Metropolitan Area. Revista Virtual de Química, v. 9, 1887-1909. https://doi.org/10.21577/1984-6835.20170111

Silva, C.M.; da Silva, L.L.; Corrêa, S.M.; Arbilla, G., 2018. A minimum set of ozone precursor volatile organic compound in an urban environment. Atmospheric Pollution Research, v. 9, 369-378. https://doi.org/10.1016/j.apr.2017.11.002

Silva, M.D.; Oliveira, M.C.Q. D.; Drumond, A.; Rizzo, L.V., 2021. Air pollutants associate with surface meteorological conditions in São Paulo’s ABC region. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 56, 459-469. https://doi.org/10.5327/Z21769478917

Secretaria Municipal do Meio Ambiente (SMAC), 2012. Qualidade do ar na cidade do Rio de Janeiro. Relatório da Rede MonitorAr-Rio. 2011-2012 (Accessed May 30, 2022) at:. http://www.rio.rj.gov.br/documents/91265/3252594/Relatorio+Monitorar++2011-2012.pdf.

Secretaria Municipal do Meio Ambiente (SMAC), 2023a. Data Rio. Estações de Monitoramento da Qualidade do Ar. MonitorAr (Accessed May 30, 2022) at:. https://www.data.rio/datasets/esta%C3%A7%C3%B5es-de-monitoramento-da-qualidade-do-ar-monitorar/explore?location=-22.925661%2C-43.402788%2C11.82.

Secretaria Municipal do Meio Ambiente (SMAC), 2023b. Secretaria Municipal de Meio Ambiente. Boletim de Qualidade do Ar (Accessed May 30, 2022) at:. http://jeap.rio.rj.gov.br/je-metinfosmac/boletim.

Secretaria Municipal do Meio Ambiente (SMAC), 2023c. Data Rio Campanhas da estação móvel (Accessed May 30, 2022) at:. https://www.data.rio/datasets/campanhas-da-esta%C3%A7%C3%A3o-m%C3%B3vel-de-monitoramento-da-qualidade-do-ar-monitorar/explore?location=-22.925625%2C-43.402788%2C11.80.

Ternium, 2022. Ternium Brasil (Accessed May 30, 2022) at:. https://br.ternium.com/pt/nossa-empresa.

Tessum, M.W.; Anenberg, S.C.; Chafe, Z.A.; Henze, D.K.; Kleiman, G.; Kheirbek, I.; Marshall, J.D.; Tessum, C.W., 2022. Sources of ambient PM2.5 exposure in 96 global cities. Atmospheric Environment, v. 286, 119234. https://doi.org/10.1016/j.atmosenv.2022.119234

Ventura, L.M.B.; Ramos, M.B.; D’Agosto, M. de A.; Gioda, A., 2021. Air quality monitoring assessment during the 2016 Olympic Games in Rio de Janeiro, Brazil. Sustainable Cities and Society, v. 65, 102588. https://doi.org/10.1016/j.scs.2020.102588

Ventura, L.M.; Ramos, M.B.; Gioda, A.; França, B.B.; Godoy, J.M. de O., 2019. Air quality monitoring assessment during the 2016 Olympic Games in Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, v. 191, 369. https://doi.org/10.1007/s10661-019-7496-y

World Health Organization (WHO), 2005. Air Quality Guidelines. Global Update 2005 (Accessed May 30, 2022) at:. https://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf.

World Health Organization (WHO), 2015. WHO expert consultation: available evidence for the future update of the WHO Global Air Quality Guidelines (AQGs) Available in: https://apps.who.int/iris/handle/10665/341714, accessed in November 2022.

World Health Organization (WHO), 2021. WHO global air quality guidelines (Accessed May 30, 2022) at:. https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y.

World Health Organization (WHO), 2022a. Air pollution (Accessed May 30, 2022) at:.

https://www.who.int/health-topics/air-pollution#tab=tab_1.

World Health Organization (WHO), 2022b. WHO ambient air quality database, 2022 update. Status report (Accessed May 30, 2022) at:. https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/who-air-quality-database-2022---v7.pdf?sfvrsn=c6d52e7b_7&download=true.

World Health Organization (WHO), 2022c. Ambient (outdoor) air pollution (Accessed May 30, 2022) at:. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

Yamawaki, Y.; Castro Filho, F.M.; Costa, G.E.F., 2020. Mega-event transport legacy in a developing country. Analyzing metropolitan transport planning after the 2016 Rio Olympic Games. Transport Policy, v. 89, 1-13. https://doi.org/10.1016/j.tranpol.2019.07.013

Downloads

Published

2023-10-28

How to Cite

Rodrigues, J. R. B. A., Dantas, G., Siciliano, B., Silva, C. M. da, & Arbilla, G. (2023). Using mobile air quality station data to identify critical areas in the city of Rio de Janeiro regarding pollutant concentrations. Revista Brasileira De Ciências Ambientais (RBCIAMB), 58(3), 329–341. https://doi.org/10.5327/Z2176-94781650