Biochar in copper reduction in black beans and soil decontamination
DOI:
https://doi.org/10.5327/Z2176-94781595Keywords:
Phaseolus vulgaris; heavy metal; pyrolyzed biomass; immobilization.Abstract
When present in high concentrations in the soil, copper causes toxicity in plants, requiring the development of studies for the reduction or immobilization of this element. In this sense, biochar could be an alternative to immobilizing copper in the soil, aiming for lower levels of this element in the biomass and grains of black beans (Phaseolus vulgaris) used for human consumption. However, there are variations in biochar reactivity due to its source material and pyrolysis time. Therefore, the objective of the present study was to determine the effect of eucalyptus biochar on the availability of copper in the soil and on its contents in beans grown in contaminated soil. The experimental design was completely randomized in a 5 × 2 factorial arrangement, with five doses of biochar (0.0, 0.5, 1.0, 1.5, and 2.0% mm-1 of dry soil), soil without and with the addition of copper (1,000 mg kg-1 of dry soil), and with eight repetitions. Thecopper content available in the soil, root, aerial part, and bean grain; the chlorophyll index; and the bioconcentration and translocation factors of copper in the plant were evaluated. Biochar derived from eucalyptus residues decreases copper availability in contaminated soil. The copper levels in the roots, aerial part, and grains of P. vulgaris are reduced with the application of biochar to the soil, remaining in the grains, from a dose of 1.66% mm-1, below the maximum limit tolerable by Brazilian legislation.
Downloads
References
Ali, H.; Khan, E.; Ilahi, I., 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry (Online), v. 2019. https://doi.org/10.1155/2019/6730305
Ali, M.A.; Fahad, S.; Haider, I.; Ahmed, N.; Ahmad, S.; Hussain, S.; Arshad, M., 2019. Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. In: Hasanuzzaman, M.; Fotopoulos, V.; Nahar, K.; Fujita, M. (Eds.), Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, pp 353-370.
Brazil. Agência Nacional de Vigilância Sanitária (ANVISA), 2022. Resolução RDC nº 722, de 1° de julho de 2022. Limites máximos tolerados (LMT) de contaminantes em alimentos. Diário Oficial da União, Brasília.
Brazil. Conselho Nacional do Meio Ambiente (CONAMA), 2009. Resolução n° 420, de 28 de dezembro de 2009. Diário Oficial da União, Brasília.
Cambrollé, J.; Mancilla-Leytón, J.M.; Muñoz-Vallés, S.; Figueroa-Luque, E.; Luque, T.; Figueroa, M.E., 2013. Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum. Environmental Science and Pollution Research (Online), v. 20, 8839-8847. https://doi.org/10.1007/s11356-013-1833-4
Cárdenas-Aguiar, E.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A., 2017. The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. International Biodeterioration e Biodegradation (Online), v. 124, 223-232. https://doi.org/10.1016/j.ibiod.2017.05.014
Collet, M.L.; Dorigon, E.B.; Spricigo, J.G.; Naibo, G.; Alves, M.V., 2018. Fitorremediação de áreas de lixão desativadas com Phaseolus vulgaris e Lactuca sativa obtidas de solo contaminado por metais (cobre e zinco). Unoesc & Ciência - ACBS Joaçaba, v. 9, (2), 159-164.
Comissão de Química e Fertilidade do Solo (CQFS RS/SC), 2016. Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. SBCS-NRS, Porto Alegre, 101 p.
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 1997. Manual de métodos de análise de solos. EMBRAPA-CNPS, Rio de Janeiro, 212 p.
Falker, A., 2008. Manual do medidor eletrônico de teor clorofila (ClorofiLOG/CFL 1030). Porto Alegre.
Ferreira, D.F., 2019. SISVAR – Sistema de análise de variância. v. 5.6. UFLA, Lavras.
Gholizadeh, M.; Hu, X., 2021. Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering (Online), v. 9, (5), 105830. https://doi.org/10.1016/j.jece.2021.105830
Gomez-Eyles, J.L.; Ghosh, U., 2018. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations. Chemosphere (Online), v. 203, 179-187. https://doi.org/10.1016/j.chemosphere.2018.03.132
Grohskopf, M.A.; Correa, J.C.; Cassol, P.C.; Nicoloso, R.S.; Fernandes, D.M., 2016. Copper and zinc forms in soil fertilized with pig slurry in the bean crop. Revista Brasileira de Engenharia Agrícola e Ambiental (Online), v. 20, 823-829. https://doi.org/10.1590/1807-1929/agriambi.v20n9p823-829
Guo, X.; Peng, Y.; Li, N.; Tian, Y.; Dai, L.; Wu, Y.; Huang, Y., 2022. Effect of biochar-derived DOM on the interaction between Cu (II) and biochar prepared at different pyrolysis temperatures. Journal of Hazardous Materials (Online), v. 421, 126739. https://doi.org/10.1016/j.jhazmat.2021.126739
Hmid, A.; Al Chami, Z.; Sillen, W.; Vocht, A.; Vangronsveld, J., 2015. Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils. Environmental Science and Pollution Research (Online), v. 22, 1444-1456. https://doi.org/10.1007/s11356-014-3467-6
Huang, P.; Ge, C.; Feng, D.; Yu, H.; Luo, J.; Li, J.; Strong, P.J.; Sarmah, A.K.; Bolan, N.S.; Wang, H., 2018. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Science of the Total Environment (Online), v. 616, 1384-1391. https://doi.org/10.1016/j.scitotenv.2017.10.177
Jia, W.; Wang, B.; Wang, C.; Sun, H., 2017. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. Journal of environmental chemical engineering (Online), v. 5, (3), 2107-2114. https://doi.org/10.1016/j.jece.2017.04.015
Kamran, M.; Malik, Z.; Parveen, A.; Huang, L.; Riaz, M.; Bashir, S.; Mustafa, A.; Abbasi, G.H.; Xue, B.; Ali, U., 2020. Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Plant Growth Regulation (Online), v. 39, (1), 266-281. https://doi.org/10.1007/s00344-019-09980-3
Keller, C.; Rizwan, M.; Davidian, J.C.; Pokrovsky, O.S.; Bovet, N.; Chaurand, P.; Meunier, J.D., 2015. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta (Online), v. 241, 847-860. https://doi.org/10.1007/s00425-014-2220-1
Landau, E.C.; Moura, L., 2020. Evolução da produção de feijão (Phaseolus vulgaris, Fabaceae) In: Landau, E.C.; Silva, G.A.; Moura, L.; Hirsch, A.; Guimaraes, D.P. (Eds.), Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: cenário histórico, divisão política, características demográficas, socioeconômicas e ambientais. Brasília, Embrapa Milho e Sorgo, pp. 739-798.
Liu, C.; Yu, Y.; Liu, H.; Xin, H., 2021. Effect of different copper oxide particles on cell division and related genes of soybean roots. Plant Physiology and Biochemistry (Online), v. 163, 205-214. https://doi.org/10.1016/j.plaphy.2021.03.051.
Liu, X.; Gao, Y.; Khan, S.; Duan, G.; Chen, A.; Ling, L.; Zhao, L.; Liu, Z.; Wu, X., 2008. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. Journal of Environmental Sciences (Online), v. 20, (2008), 1469-1474. https://doi.org/10.1016/S1001-0742(08)62551-6
Marco, R.D.; Silva, R.F.; Ros, C.O.; Missio, E.L.; Viel, P.; Grolli, A.L., 2021. Erythrina crista-galli L. e turfa na fitorremediação de cobre no solo. Ciência Florestal (Online), v. 31, 475-490. https://doi.org/10.5902/1980509818914
Mendoza, D.G.; Gil, F.E.; Garcia, F.E.; Santamaría, J.M.; Perez, O.Z., 2013. Copper stress on photosynthesis of Black mangle (Avicennia germinans). Anais da Academia Brasileira de Ciências (Online), v. 85, (2), 665-670. https://doi.org/10.1590/S0001-37652013000200013
Miyazawa, M.; Pavan, M.A.; Muraoka, T.; Carmo, C.A.F.S.; Melo, W.J., 2009. Análise química de tecido vegetal. In: Manual de análises químicas de solos, plantas e fertilizantes. Brasília, Embrapa Informação Tecnológica, pp 59- 85.
Moore, F.; González, M.E.; Khan, N.; Curaqueo, G.; Sanchez-Monedero, M.; Rilling, J.; Morales, E.; Panichini, M.; Mutis, A.; Jorquera, M.; Mejias, J.; Hirzel, J.; Meier, S., 2018. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils. Science of the Total Environment (Online), v. 616, 960-969. https://doi.org/10.1016/j.scitotenv.2017.10.223
Munir, M.A.M.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Ullah, H., 2020. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere (Online), v. 240, 124845. https://doi.org/10.1016/j.chemosphere.2019.124845
Osório, C.R.W.S.; Teixeira, G.C.M.; Barreto, R.F.; Campos, C.N.S.; Leal, A.J.F.; Teodoro, P.E.; Prado, R.M., 2020. Macronutrient deficiency in snap bean considering physiological, nutritional, and growth aspects. PLoS One (Online), v.15, (6), 0234512. https://doi.org/10.1371/journal.pone.0234512
Pescatore, A.; Grassi, C.; Rizzo, A. M.; Orlandini, S.; Napoli, M., 2022. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere (Online), v. 287, 131986. https://doi.org/10.1016/j.chemosphere.2021.131986
Poggere, G.; Gasparin, A.; Barbosa, J.Z.; Melo, G.W.; Corrêa, R.S.; Motta, A.C.V., 2023. Soil contamination by copper: sources, ecological risks, and mitigation strategies in Brazil. Journal of Trace Elements and Minerals (Online), v. 4, 100059. https://doi.org/10.1016/j.jtemin.2023.100059
Rashid, M.S.; Liu, G.; Yousaf, B.; Hamid, Y.; Rehman, A.; Arif, M.; Ahmed, R.; Song, Y.; Ashraf, A., 2023. Role of biochar-based free radicals in immobilization and speciation of metals in the contaminated soil-plant environment. Journal of Environmental Management (Online), v. 325, 116620. https://doi.org/10.1016/j.jenvman.2022.116620
Rehman, M.; Liu, L.; Bashir, S.; Saleem, M.H.; Chen, C.; Peng, D.; Siddique, K.H., 2019. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiology and Biochemistry (Online), v. 138, 121-129. https://doi.org/10.1016/j.plaphy.2019.02.021
Rehman, M.; Saleem, M.H.; Fahad, S.; Bashir, S.; Peng, D.; Deng, G.; Alamri, S.; Siddiqui, M.H.; Khan, S.M.; Shah, R.A.; Liu, L., 2021. Effects of rice straw biochar and nitrogen fertilizer on ramie (Boehmeria nivea L.) morpho-physiological traits, copper uptake and post-harvest soil characteristics, grown in an aged-copper contaminated soil. Journal of Plant Nutrition (Online), v. 45, (1), 11-24. https://doi.org/10.1080/01904167.2021.1943675
Róz, A.L.D.; Ricardo, J.F.; Nakashima, G.T.; Santos, L.R.; Yamaji, F.M, 2015. Maximization of fixed carbon content in biochar applied to carbon sequestration. Revista Brasileira de Engenharia Agrícola e Ambiental (Online), v. 19, (8), 810-814. https://doi.org/10.1590/1807-1929/agriambi.v19n8p810-814
Santos, H.G., 2018. Sistema Brasileiro de Classificação de Solos. Embrapa, Brasília, 356 p.
Scheid, D.L.; Marco, R.; Silva, R.F.; Ros, C.O.; Grolli, A.L.; Missio, E.L., 2018. Turfa como indutor do crescimento e tolerância de Erythrina crista-galli em solo contaminado com zinco. Revista de Ciências Agrárias (Online), v. 41, (4), 924-932. https://doi.org/10.19084/RCA17217
Shi, X.; Zhang, X.; Chen, G.; Chen, Y.; Wang, L.; Shan, X., 2011. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences (Online), v. 23, (2), 266-274. https://doi.org/10.1016/S1001-0742(10)60402-0
Singh, S.; Zacharias, M.; Kalpana, S.; Mishra, S., 2012. Heavy metals accumulation and distribution pattern in different vegetable crops. Journal of Environmental Chemistry and Ecotoxicology (Online), v. 4, (10), 170-177. https://doi.org/10.5897/JECE11.076
Sobral, L.F.; Smyth, J.T.; Fageria, N.K.; Stone, L.F., 2013. Comparison of copper, manganese, and zinc extraction with Mehlich 1, Mehlich 3, and DTPA solutions for soils of the Brazilian coastal tablelands. Communications in soil science and plant analysis (Online), v. 44, (17), 2507-2513. https://doi.org/10.1080/00103624.2013.812731
Tauqeer, H.M.; Ali, S.; Rizwan, M.; Ali, Q.; Saeed, R.; Iftikhar, U.; Ahmad, R.; Farid, M.; Abbasi, G.H., 2016. Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicology and environmental safety (Online), v. 126, 138-146. https://doi.org/10.1016/j.ecoenv.2015.12.031
Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweiss, S.J., 1995. Análise de solo, plantas e outros materiais. Departamento de Solos da UFRGS, Porto Alegre, 174 p.
Turchetto, R.; Volpi, G.B.; Silva, R.F.; Ros, C.O.; Rosa, G.M.; Barros, S.; Magalhães, J.B.; Trombetta, L.J.; Andreola, D.S.; Silva, A.P., 2022. Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil. Semina: ciências agrárias (Online), v. 43, (4), 1579-1594. https://doi.org/10.5433/1679-0359.2022v43n4p1579
Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil use and management (Online), v. 27, (2), 205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
Vandionant, S.; Jozefczak, M.; Schreurs, S.; Cuypers, A.; Vandamme, D.; Yperman, J., 2019. Effect of biochar addition to metal-contaminated soil on Phaseolus vulgaris. ECI Digital Archives.
Wang, Y.; Zhong, B.; Shafi, M.; Ma, J.; Guo, J.; Wu, J.; Ye Z.; Liu D.; Jin, H., 2019. Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere (Online), v. 219, 510-516. https://doi.org/10.1016/j.chemosphere.2018.11.159
Wang, Z.; Shen, R.; Ji, S.; Xie, L.; Zhang, H., 2021. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil. Journal of Hazardous Materials (Online), v. 419, 126468. https://doi.org/10.1016/j.jhazmat.2021.126468
Xia, S.; Song, Z.; Jeyakumar, P.; Shaheen, S.M.; Rinklebe, J.; Ok, Y. S.; Bolan, N.; Wang, H., 2019. A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater. Critical reviews in environmental science and technology (Online), v. 49, (12), 1027-1078. https://doi.org/10.1080/10643389.2018.1564526
Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B., 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal (Online), v. 366, 608-621. https://doi.org/10.1016/j.cej.2019.02.119
Zong, Y.; Xiao, Q.; Malik, Z.; Su, Y.; Wang, Y.; Lu, S., 2021. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. Chemosphere (Online), v. 280, 130830. https://doi.org/10.1016/j.chemosphere.2021.130830
Zhang, C.; Chao, L.; Zhang, Z.; Zhang, L.; Li, Q.; Fan, H.; Zhang, S.; Liu, Q.; Qiao, Y.; Tian, Y.; Wang, Y.; Hu, X., 2021. Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renewable and Sustainable Energy Reviews (Online), v. 135, 110416. https://doi.org/10.1016/j.rser.2020.110416
Zhang, J.; Zhang, J.; Wang, M.; Wu, S.; Wang, H.; Niazi, N.K.; Man, Y.B.; Christie, P.; Shan, S.; Wong, M.H., 2019. Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of soils and sediments (Online), v. 19, 2313-2321. https://doi.org/10.1007/s11368-018-02226-x
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.