COVID-19 pandemic impact on micro and mini photovoltaic distributed generation in Brazil: selection and analysis of representative indicator
DOI:
https://doi.org/10.5327/Z2176-94781330Keywords:
photovoltaic systems indicators; photovoltaic market; distributed generation; monthly installed power capacity; design science research.Abstract
In the search for sustainability in the energy sector, photovoltaic solar energy (PV) has been highlighted as a solution to promote sustainable development. As PV technology expands, there is a need for studies to assess how the new market behaves in different scenarios with the consequent elaboration of different indicators. Following an interdisciplinary approach, and based on the epistemological paradigm of Design Science, the objective of this study was to analyse, preceded by selection and evaluation, indicators that reflect a possible impact of the COVID-19 pandemic on the Micro and Mini Photovoltaic Distributed Generation (MMDG) market in Brazil in 2020 and 2021. To do so, it was characterized through a systematic literature review - SLR, the state of the art about impact of the COVID-19 pandemic on the photovoltaic market and photovoltaic systems indicators. Subsidized by RSL and supported by the core literature on the subject, the Photovoltaic Systems Monthly Installed Power Capacity indicator was selected. Then, the analysis of this was carried out, by means of feeding the indicator using a query in the open database of the brazilian National Electric Energy Agency - ANEEL. It was identified that with the initial general awareness, caused by the first peak of the COVID-19 pandemic, the photovoltaic market suffered a reduction in the Monthly Installed Power Capacity, however, after this initial moment, the indicator recovered, suggesting a capacity for resilience and adaptation of this market, overcoming the difficulties and new challenges encountered, maintaining the pace of growth observed before the pandemic.
Downloads
References
Adachi, C.; Rowlands, I.H., 2010. The role of policies in supporting the diffusion of solar photovoltaic systems: experiences with Ontario, Canada’s renewable energy standard offer program. Sustainability, v. 2, (1), 30-47. https://doi.org/10.3390/su2010030.
Agência de Desenvolvimento do Nordeste (ADENE), 2015. Aspectos fundamentais do planejamento energético. Agência de Desenvolvimento do Nordeste, Brasília.
Agência Nacional de Energia Elétrica (ANEEL), 2012. Resolução Normativa nº 482, de 17 de abril de 2012. Diário Oficial da União, Brasília (Acessado em 31 de janeiro de 2022) em: http://www2.aneel.gov.br/cedoc/ren2012482.pdf.
Agência Nacional de Energia Elétrica (ANEEL), 2015. Resolução Normativa nº 687, de 24 de novembro de 2015. Diário Oficial da União, Brasília (Acessado em 31 de janeiro de 2022) em: http://www2.aneel.gov.br/cedoc/ren2015687.pdf.
Agência Nacional de Energia Elétrica (ANEEL), 2022. Relação de empreendimentos de geração distribuída. Agência Nacional de Energia Elétrica, Brasília (Acessado em 23 de fevereiro de 2022) em: https://dadosabertos.aneel.gov.br/dataset/relacao-de-empreendimentos-de-geracao-distribuida.
Alam, S.M.M.; Ali, M.H., 2021. Analysis of COVID-19 effect on residential loads and distribution transformers. International Journal of Electrical Power & Energy Systems, v. 129, 106832. https://doi.org/10.1016/j.ijepes.2021.106832.
Berliner, C.; Brimson, J.A., 1988. Cost management for today's advanced manufacturing: the cam-I conceptual design. Harvard Business School Press, Boston, 253 pp.
Brasil, 2010. Ministério da Ciência e Tecnologia. Livro Azul da 4ª Conferência Nacional de Ciência e Tecnologia e Inovação para o Desenvolvimento Sustentável. Centro de Gestão e Estudos Estratégicos, Brasília, 99 pp.
Brunton, G.; Stansfield, C.; Thomas, J., 2012. Finding relevant studies. In: Gough, D.; Oliver, S.; Thomas, J. (Eds.), An introduction to systematic reviews. Sage, Londres, pp. 107-134.
Caldeira, J., 2018. 100 indicadores da gestão: key performance indicators. Grupo Almedina, São Paulo, 258 pp.
Callado, A.L.C.; Fensterseifer, J.E., 2010. Indicadores de sustentabilidade: uma abordagem empírica a partir de uma perspectiva de especialidades. In: Anais do Simpósio de Administração da Produção, Logística e Operações Internacionais, São Paulo. Fundação Getúlio Vagas, Rio de Janeiro.
Chevalier, S.; Choiniere, R.; Bernier, L; Sauvageau, Y.; Masson, I.; Cadieux, E., 1992. User guide to 40 community health indicators. Community Health Division, Health and Welfare Canada, Ottawa.
Connolly, D.; Lund, H.; Mathiesen, B.V., 2016. Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renewable and Sustainable Energy Reviews, v. 60, 1634-1653. https://doi.org/10.1016/j.rser.2016.02.025.
Das, K., 2020. Impact of COVID-19 pandemic into solar energy generation sector. https://doi.org/10.2139/ssrn.3580341.
Dresch, A.; Lacerda, D.P.; Antunes Jr., J.A.V., 2015. Design science research : método de pesquisa para avanço da ciência e tecnologia. Bookman, Porto Alegre, 181 pp. https://doi.org/10.13140/2.1.2264.2885.
Empresa de Pesquisa Energética (EPE). 2021. Relatório Síntese do Balanço Energético Nacional 2021: ano base 2020. Empresa de Pesquisa Energética, Brasília.
Eroğlu, H.; Cüce, E., 2021. Solar energy sector under the influence of Covid-19 pandemic: A critical review. Journal of Energy Systems, v. 5, (3), 244-251. https://doi.org/10.30521/jes.942691.
Erzen, S.; Ünal, C.; Açıkkalp, E.; Hepbasli, A., 2021. Sustainability analysis of a solar driven hydrogen production system using exergy, extended exergy, and thermo-ecological methods: Proposing and comparing of new indices. Energy Conversion and Management, v. 236, 114085. https://doi.org/10.1016/j.enconman.2021.114085.
Fernandes, V.; Vieira, A., 2014. Consumo responsável. In: Andreoli, C.V.; Torres, P.L. (Eds.), Complexidade: redes e conexões do ser sustentável. SENAR, Curitiba, pp. 553-567 (Acessado em 16 de janeiro de 2022) em: https://issuu.com/programaagrinho/docs/33_consumo_responsavel.
Gallo, P.; Guerrero, J.M.; Musca, R.; Sanseverino, E.R.; Quintero, J.C.V.; Zizzo, G., 2021. Effects of COVID19 pandemic on the Italian power system and possible countermeasures. Electric Power Systems Research, v. 201, 107514. https://doi.org/10.1016/j.epsr.2021.107514.
Gallopín, G.C., 1996. Environmental and sustainability indicators and the concept of situational indicators. A system approach. Environmental Modelling e Assessment, v. 1, 101-117. https://doi.org/10.1007/BF01874899.
Garraín, D., Herrera, I., Rodríguez-Serrano, I., Lechón, Y., Hepbasli, A., Araz, M., Biyik, E., Yao, R., Shahrestani, M., Essah, E., Shao, L., Rico, E., Lechón, J.L., Oliveira, A.C., 2020. Sustainability indicators of a naturally ventilated photovoltaic façade system. Journal of Cleaner Production, v. 266, 121946. https://doi.org/10.1016/j.jclepro.2020.121946.
Ghenai, C.; Albawab, M.; Bettayeb, M., 2020. Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, v. 146, 580-597. https://doi.org/10.1016/j.renene.2019.06.157.
Gibbons, M.; Limoges, C.; Nowotny, H.; Schwartzman, S.; Scott, P.; Trow, M., 1994. The new production of knowledge: the dynamics of science and research in contemporary societies. SAGE, Londres, 192 pp. http://doi.org/10.4135/9781446221853.
Gomes, A., 2013. Matriz cada vez mais diversificada. O Setor Elétrico, São Paulo, v. 95.
Gomes, O.M.; Santos, C.A.C.; Souza, F.A.S.; Paiva, W.; Olinda, R.A., 2015. Análise comparativa da precipitação no estado da Paraíba utilizando modelos de regressão polinomial. Revista Brasileira de Meteorologia, v. 30, (1), 47-58. https://doi.org/10.1590/0102-778620120454.
Guo, M.; Liu, G.; Liao, S., 2021. Normalized techno-economic index for renewable energy system assessment. International Journal of Electrical Power & Energy Systems, v. 133, 107262. https://doi.org/10.1016/j.ijepes.2021.107262.
Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L., 2009. Análise multivariada de dados. Bookman, Porto Alegre, 688 pp.
Hariharan, R., 2020. COVID-19: A boon for tropical solar parks?: a time series based analysis and forecasting of solar irradiance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1839603.
Holling, C.S. (Ed.), 1978. Adaptive environmental assessment and management. Wiley, Chichester, 377 pp.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2015. Indicadores de desenvolvimento sustentável: Brasil 2015. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro.
International Energy Agency (IEA). 2020a. Annual Report 2020. IEA Photovoltaic Power Systems Programme (Acessado em 31 de janeiro de 2022) em: https://iea-pvps.org/wp-content/uploads/2021/04/IEA-PVPS-AR-2020.pdf.
International Energy Agency (IEA). 2020b. Trends in photovoltaic applications. IEA Photovoltaic Power Systems Programme (Acessado em 31 de janeiro de 2022) em: https://iea-pvps.org/wp-content/uploads/2020/11/IEA_PVPS_Trends_Report_2020-1.pdf.
International Energy Agency (IEA). 2021. Snapshot of global PV Markets. IEA Photovoltaic Power Systems Programme (Acessado em 31 de janeiro de 2022) em: https://iea-pvps.org/wp-content/uploads/2021/04/IEA_PVPS_Snapshot_2021-V3.pdf.
Kourkoumpas, D.; Benekos, G.; Nikolopoulos, N.; Karellas, S.; Grammelis, P.; Kakaras, E., 2018. A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions. Applied Energy, v. 231, 380-398. https://doi.org/10.1016/j.apenergy.2018.09.043.
Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L., 2016. A review of renewable energy utilization in islands. Renewable and Sustainable Energy Reviews, v. 59, 504-513. https://doi.org/10.1016/j.rser.2016.01.014.
Kugley, S., Wade, A., Thomas, J., Mahood, Q., Jørgensen, A.-M.K., Hammerstrøm, K.; Sathe, N., 2017. Searching for studies: a guide to information retrieval for Campbell systematic reviews. Campbell Systematic Reviews, v. 13, (1), 1-73. https://doi.org/10.4073/cmg.2016.1.
Lamnatou, C.; Lecoeuvre, B.; Chemisana, D.; Cristofari, C.; Canaletti, J.L., 2018. Concentrating photovoltaic/thermal system with thermal and electricity storage: CO2.eq emissions and multiple environmental indicators. Journal of Cleaner Production, v. 192, 376-389. https://doi.org/10.1016/j.jclepro.2018.04.205.
Latorre, M.R.D.O.; Cardoso, M.R.A., 2001. Análise de séries temporais em epidemiologia: uma introdução sobre os aspectos metodológicos. Revista Brasileira de Epidemiologia, v. 4, (3), 145-152. https://doi.org/10.1590/S1415-790X2001000300002.
Liu, G.; Li, M.; Zhou, B.; Chen, Y.; Liao, S., 2018. General indicator for techno-economic assessment of renewable energy resources. Energy Conversion and Management, v. 156, 416-426. https://doi.org/10.1016/j.enconman.2017.11.054.
Malheiros, T.F.; Phlippi Jr., A.; Coutinho, S.M.V., 2008. Agenda 21 Nacional e Indicadores de Desenvolvimento Sustentável: Contexto Brasileiro. Saúde e Sociedade, v. 17, (1), 7-20. https://doi.org/10.1590/S0104-12902008000100002.
Marsillac, E., 2021. COVID-19 effects on the global PV supply chain. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2630-2631. https://doi.org/10.1109/PVSC43889.2021.9518468.
McQueen, D.; Noack, H., 1988. Health promotion indicators: current status, issues and problems. Health Promotion International, v. 3, (1), 117-125. https://doi.org/10.1093/heapro/3.1.117.
Meadows, D., 1998. Indicators and Information Systems for Sustainable Development. The Sustainability Institute, Hartland, 78 pp. (Acessado em 30 de janeiro de 2022) em: https://www.researchgate.net/publication/261697104_Indicators_and_information_systems_for_sustainable_development.
Mei, M.; Chen, Z., 2021. Evaluation and selection of sustainable hydrogen production technology with hybrid uncertain sustainability indicators based on rough-fuzzy BWM-DEA. Renewable Energy, v. 165, (part 1), 716-730. https://doi.org/10.1016/j.renene.2020.11.051.
Micheli, L.; Solas, A. F.; Soria-Moya, A.; Almonacid, F.; Fernández, E.F., 2021. Short-term impact of the COVID-19 lockdown on the energy and economic performance of photovoltaics in the Spanish electricity sector. Journal of Cleaner Production, v. 308, 127045. https://doi.org/10.1016/j.jclepro.2021.127045.
Naderipour, A.; Abdul-Malek, Z.; Ahmad, N.; Kamyab, H.; Ashokkumar, V.; Ngamcharussrivichai, C.; Chelliapan, S., 2020. Effect of COVID-19 virus on reducing GHG emission and increasing energy generated by renewable energy sources: A brief study in Malaysian context. Environmental Technology & Innovation, v. 20, 101151. https://doi.org/10.1016/j.eti.2020.101151.
Narkwatchara, P.; Ratanatamskul, C.; Chandrachai, A., 2021. Performance analysis of electricity generation from grid-connected photovoltaic system using All-Sky Index for Smart City projects in Thailand. Renewable Energy, v. 171, 315-327. https://doi.org/10.1016/j.renene.2021.02.107.
Neely, A.; Richards, H.; Mills, J.; Platts, K.; Bourne, M., 1997. Design performance measure: a structure approach. International Journal of Operation and Production Management, v. 17, (11), 1131-1152. https://doi.org/10.1108/01443579710177888.
Nunes-Villela, J.; Rapozo, F.; Domingos, M.L.; Quelhas, O., 2017. Energia em tempo de descarbonização: uma revisão com foco em consumidores fotovoltaicos. Brazilian Journal of Environmental Sciences, (45), 130-144. https://doi.org/10.5327/Z2176-947820170264.
Ogbonnaya, C.; Turan, A.; Abeykoon, C., 2020. Novel thermodynamic efficiency indices for choosing an optimal location for large-scale photovoltaic power generation. Renewable Journal of Cleaner Production, v. 249, 119405. https://doi.org/10.1016/j.jclepro.2019.119405.
Oprea, S.V.; Bâra, A., 2020. Ultra-short-term forecasting for photovoltaic power plants and real-time key performance indicators analysis with big data solutions. Two case studies - PV Agigea and PV Giurgiu located in Romani. Computers in Industry, v. 120, 103230. https://doi.org/10.1016/j.compind.2020.103230.
Organization for Economic Co-operation and Development (OECD), 1993. A synthesis report by the Group on the State of the Environment. OECD Core Set of Indicators for Environmental Performance Reviews, Paris (Acessado em 22 de fevereiro de 2022) em: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=OCDE/GD(93)179&docLanguage=En.
Peiró, L.T.; Martin, N.; Méndez, G.V.; Madrid-López, C., 2022. Integration of raw materials indicators of energy technologies into energy system models. Applied Energy, v. 307, 118150. https://doi.org/10.1016/j.apenergy.2021.118150.
Philippi Jr., A.; Sobral, M.C.; Fernandes, V.; Sampaio, C.A.C., 2013. Desenvolvimento sustentável, interdisciplinaridade e Ciências Ambientais. Revista Brasileira de Pós-Graduação, Brasília, v. 10, (21), 509-533 (Acessado em 16 de janeiro de 2022) em: https://rbpg.capes.gov.br/index.php/rbpg/article/view/423/353.
Polo, A.L.; Hass, R., 2014. An international overview of promotion policies for grid-connected photovoltaic systems. Progress in Photovoltaics: Research and Applications, v. 22, (2), 248-273. https://doi.org/10.1002/pip.2236.
Rabe, W.; Kostka, G.; Stegen, K.S., 2017. China's supply of critical raw materials: Risks for Europe's solar and wind industries? Energy Policy, v. 101, 692-699. https://doi.org/10.1016/j.enpol.2016.09.019.
Radu, A.; Panaite, C. E.; Popescu, A., 2020. Impact of COVID-19 pandemic on renewable sources implementation: case of PV systems in Romania. IOP Conference Series: Materials Science and Engineering, v. 997, 012154. https://doi.org/10.1088/1757-899X/997/1/012154.
Rauli, F.C.; Araújo, F.T.; Wiens, S., 2006. Indicadores de desenvolvimento sustentável. In: Silva, C.L. (Eds.), Desenvolvimento sustentável: um modelo analítico integrado e adaptativo. Vozes, Petrópolis, pp. 145-151.
REN21, 2021. Renewables 2021 - Global Status Report (Acessado em 16 de setembro de 2021) em: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
Sakellariou, E.I.; Axaopoulos, P.J., 2020. Energy performance indexes for solar assisted ground source heat pump systems with photovoltaic-thermal collectors. Applied Energy, v. 272, 115241. https://doi.org/10.1016/j.apenergy.2020.115241.
Scolari, B.S., 2019. Panorama da inserção da geração fotovoltaica conectada à rede amparada pela REN n° 482/2012 da ANEEL no Brasil, no Paraná e em Curitiba. Dissertação (mestrado), Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná, Curitiba. Recuperado em 2022-16-01, de http://repositorio.utfpr.edu.br/jspui/handle/1/4218.
Scolari, B.S.; Tonolo, É.A.; Pan, R.C.Y.; Urbanetz Jr., J., 2018. Mapping and characterization of the grid-connected photovoltaic systems in the city of Curitiba: preliminary results. Brazilian Archives of Biology and Technology, v. 61, (n. esp.), e18000340. https://doi.org/10.1590/1678-4324-smart-2018000340.
Scolari, B.S.; Urbanetz Jr., J., 2018. Panorama dos sistemas fotovoltaicos conectados à rede elétrica amparados pela REN nº 482/2012 da ANEEL no Brasil. In: Anais do VII Congresso Brasileiro de Energia Solar, Gramado, 2018. Associação Brasileira de Energia Solar, Gramado (Acessado em 16 de janeiro de 2022) em: https://anaiscbens.emnuvens.com.br/cbens/article/view/517/517.
Silva, C.L.; Souza-Lima, J.E. (Eds.), 2010. Políticas públicas e indicadores para o desenvolvimento sustentável. Saraiva, São Paulo, 288 pp.
Simon, H., 1996. The sciences of the artificial. MIT Press, 248 pp.
Song, Y.; Liu, T.; Li, Y.; Ye, B., 2020. The influence of COVID-19 on grid parity of China’s photovoltaic industry. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00701-4.
Starkey, K.; Madan, P., 2001. Bridging the relevance gap: aligning stakeholders in the future of management research. British Journal of Management, v. 12, (suppl. 1), S3-S26. https://doi.org/10.1111/1467-8551.12.s1.2.
Taft, J.D., 2017. Electric grid resilience and reliability for grid architecture. Pacific Northwest National Laboratory, Richland, Washington (Acessado em 28 de fevereiro de 2022) em: https://gridarchitecture.pnnl.gov/media/advanced/Electric_Grid_Resilience_and_Reliability.pdf.
Tanu, M.; Amponsah, W.; Yahaya, B.; Bessah, E.; Ansah, S.O.; Wemegah, C.S.; Agyare, W.A., 2021. Evaluation of global solar radiation, cloudiness index and sky view factor as potential indicators of Ghana's solar energy resource. Scientific African, v. 14, e01061. https://doi.org/10.1016/j.sciaf.2021.e01061.
Tiepolo, G.M., 2015. Estudo do potencial de geração de energia elétrica através de sistemas fotovoltaicos conectados a rede no estado do Paraná. Tese (doutorado), Pós-Graduação em Engenharia de Produção e Sistemas, Pontifícia Universidade Católica do Paraná, Curitiba. Recuperado em 2022-16-01, de: https://doi.org/10.13140/RG.2.1.1728.1440.
Tingting Xu, A.; Weijun Gao, B.; Yanxue Li, C.; Fanyue Qian, D., 2021. Impact of the COVID-19 pandemic on the reduction of electricity demand and the integration of renewable energy into the power grid. Journal of Renewable and Sustainable Energy, v. 13, 026304. https://doi.org/10.1063/5.0045825.
Tironi, L.F.; Silva, L.C.E.; Viana, S.M.; Medici, A.C., 1991. Critérios para geração de indicadores de qualidade e produtividade no setor público. Instituto de Pesquisa Econômica Aplicada, Brasília.
Tunstall, D., 1992. Developing environmental indicators: definitions, framework and issues. background materials for the World Resources Institute. In: Workshop on Global Environmental Indicators, Washington, D.C., 1992. World Resources Institute, Washington, D.C.
United Nations (UN), 2015. Transforming Our World: The 2030 Agenda for Sustainable Development (Acessado em 16 de janeiro de 2022) em: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf.
Urbanetz, I.V.; Moura Netto, A.; Scolari, B.; Leite, V.; Urbanetz Jr., J., 2019. Current panorama and 2025 scenario of photovoltaic solar energy in Brazil. Brazilian Archives of Biology and Technology, v. 62, (n. esp.), e19190011. https://doi.org/10.1590/1678-4324-smart-2019190011.
Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M., 2020. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production, v. 273, 122834. https://doi.org/10.1016/j.jclepro.2020.122834.
Van Aken, J.E., 2004. Management research based on the paradigm of the design sciences: the quest for field-tested and grounded technological rules. Journal of Management Studies, v. 41, (2), 219-246. https://doi.org/10.1111/j.1467-6486.2004.00430.x.
Van Aken, J.E., 2005. Management research as a design science: articulating the research products of mode 2 knowledge production in management. British Journal of Management, v. 16, (1), 19-36. https://doi.org/10.1111/j.1467-8551.2005.00437.x.
Van Aken, J.E., 2011. The research design for design science research in management. Eindhoven University of Technology, Eindhoven.
Vencovsky, R.; Barriga, P., 1992. Genética biométrica no fitomelhoramento. Sociedade Brasileira de Genética, Ribeirão Preto, 486 pp.
Wang, Q.J.; Chen, D.; Chang, C.P., 2021. The impact of COVID-19 on stock prices of solar enterprises: A comprehensive evidence based on the government response and confirmed cases. International Journal of Green Energy, v. 18, (5), 443-456. https://doi.org/10.1080/15435075.2020.1865367.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.