Water loss associated with food loss and waste in Brazil

Authors

DOI:

https://doi.org/10.5327/Z21769478885

Keywords:

water loss, food loss, agriculture, water footprint, green water

Abstract

This article aimed to estimate the loss of water associated with food loss and waste in Brazil in 2013. Data from the Food and Agriculture Organization (FAO) of the United Nations (UN) on food balance and waste, as well as the Water Footprint (WF) of agricultural products available at Water Footprint Network (WFN) were used. Results show that food waste reaches 49 million metric tons per year, compromising a total of 87 billion cubic meters of water, which is higher than the average annual flow of the river São Francisco. Major water loss is associated with the agricultural production stage (32%), followed by consumption (19%). Amongst food groups, major water loss is associated with meat (49%), followed by cereals (19%). Roughly 96% of water loss is attributed to the green water component, which highlights that attention must be paid to rainfed agriculture to ensure food and water for everyone. The loss of blue water was more than half of the volume consumed in the urban sector, and the grey component (polluted water) was equivalent to 80% of this consumption. Measures such as improving agricultural practices, logistics, irrigation, expanding and improving rainfed agriculture, developing campaigns and policies to reduce exportation of primary products, as well as consumption of products from animal origin, can contribute to managing the food supply chain more sustainably when the focus is water. Reducing food loss and waste means preserving water.

Downloads

Download data is not yet available.

References

Agência Nacional de Águas (ANA). 2019. Conjuntura dos Recursos Hídricos no Brasil: regiões hidrográficas brasileiras (Accessed on August 13, 2020) at: http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/conjuntura_informe_anual_2019-versao_web-0212-1.pdf

Alexandratos, N.; Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision. FAO (Accessed August 13, 2020) at: http://www.fao.org/3/a-ap106e.pdf

Araújo, M.; Nascimento, D.R.; Lopes, M.S.; Passos, C.M.; Lopes, A.C.S., 2020. Condições de vida de famílias brasileiras: estimativa da insegurança alimentar. Revista Brasileira de Estudos de População, v. 37, 1-17. https://doi.org/10.20947/S0102-3098a110

Asevedo, M.D.G.; Sousa, W.L.; Dias, J.M., 2018. Pegada Hídrica da Produção de Suínos na Região Nordeste Brasileira. Revista Gestão & Sustentabilidade Ambiental, v. 7, (3), 504-517. http://dx.doi.org/10.19177/rgsa.v7e32018504-517

Barden, J.E.; Sindelar, F.C.W.; Buttenbender, B.N.; Silva, G.R., 2017. Pegada hídrica da produção de leite in natura: uma análise das principais regiões produtoras do Rio Grande do Sul. Revista de Administração da Universidade Federal de Santa Maria, v. 10, 117-128. https://doi.org/10.5902/1983465925413

Bleninger, T.; Kotsuka, L.K., 2015. Conceitos de Água Virtual e Pegada Hídrica: Estudo de caso da Soja e Óleo de Soja no Brasil. Recursos Hídricos, v. 36, (1). https://doi.org/10.5894/rh36n1-2

Bogardi, J.J.; Fekete, B.M.; Vörösmarty, C.J., 2013. Planetary boundaries revisited: a view through the ‘water lens’. Current Opinion in Environmental Sustainability, v. 5, (6), 581-589. https://doi.org/10.1016/j.cosust.2013.10.006

Brasil. 2020. Ministério da Agricultura, Pecuária e Abastecimento. A Pandemia da COVID-19 e as Perspectivas para o Setor Agrícola Brasileiro no Comércio Internacional. Ministério da Agricultura, Pecuária e Abastecimento (Accessed on August 13, 2020) at: https://www.gov.br/agricultura/pt-br/campanhas/mapacontracoronavirus/documentos/a-pandemia-da-covid-19-e-as-perspectivas-para-o-setor-agricola-brasileiro-no-comercio-internacional/view

Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D., 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, v. 22, (4), 8. https://doi.org/10.5751/ES-09595-220408

Carvalho, D., 2009. Fome e desperdício de alimento. IPEA, Brasília (Accessed January 25, 2021) at: https://www.ipea.gov.br/desafios/index.php?option=com_content&view=article&id=1256:catid=28&Itemid=23

Dall’Agnol, A.; Hirakuri, M.H., 2008. Realidade e perspectivas do Brasil na produção de alimentos e agroenergia, com ênfase na soja. EMBRAPA (Accessed August 13, 2020) at: https://www.grupocultivar.com.br/ativemanager/uploads/arquivos/artigos/agronegocio_soja.pdf

Departamento de Estudos Socioeconômicos Rurais (DESER). 2007. Boletim Eletrônico do DESER (Accessed July 20, 2020) at: https://silo.tips/download/boletim-eletronico-do-deser-n-junho-200

Ding, D.; Zhao, Y.; Guo, H.; Li, X.; Schoenau, J.; Si, B., 2018. Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water, v. 10, (11), 1609. https://doi.org/10.3390/w10111609

Dung, T.N.B.; Sen, B.; Chen, C.C.; Kumar, G.; Lin, C.Y., 2014. Food waste to bioenergy via anaerobic processes. Energy Procedia, v. 61, 307-312. https://doi.org/10.1016/j.egypro.2014.11.1113

Empinotti, V.L.; Jacobi, P.R., 2013. Novas práticas de governança da água? O uso da pegada hídrica e a transformação das relações entre o setor privado, organizações ambientais e agências internacionais de desenvolvimento. Desenvolvimento e Meio Ambiente, v. 27, 23-36. http://dx.doi.org/10.5380/dma.v27i0.27928

Falkenmark, M., 2018. Shift in Water Thinking Crucial for Sub-Saharan Africa’s Future. In: Biswas, A.K.; Tortajada, C.; Rohner, P. (Eds.), Assessing Global Water Megatrends. Springer, Singapore, pp. 147-177.

Falkenmark, M.; Rockström, J., 2006. The new blue and green water paradigm: Breaking new ground for water resources planning and management. Journal of water resources planning and management, v. 132, (3), 129-132. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129)

Falkenmark, M.; Rockström, J., 2008. Building resilience to drought in desertification‐prone savannas in Sub‐Saharan Africa: The water perspective. Natural Resources Forum, v. 32, (2), 93-102. https://doi.org/10.1111/j.1477-8947.2008.00177.x

Figueiredo, M.C.B.; Gondim, R.S.; Aragão, F.A.S., 2017. Produção de Melão e Mudanças Climáticas. EMBRAPA, Brasília.

Food and Agriculture Organization of the United Nations (FAO). 2013. Food wastage footprint: Impacts on natural resources. FAO (Accessed on August 13, 2020) at: http://www.fao.org/3/i3347e/i3347e.pdf

Food and Agriculture Organization of the United Nations (FAO). 2014. Food Wastage Footprint: Full-cost accounting. FAO (Accessed on August 13, 2020) at: http://www.fao.org/3/a-i3991e.pd

Food and Agriculture Organization of the United Nations (FAO). 2019. The State of Food Security and Nutrition in the World 2019: Safeguarding against economic slowdowns and downturns. FAO (Accessed on August 13, 2020) at: http://www.fao.org/3/ca5162en/ca5162en.pdf

Food and Agriculture Organization of the United Nations: Statistics Division (FAOSTAT). 2015. Agriculture Database (Accessed on January 25, 2021) at: http://www.fao.org/faostat/en/#data

Fraiture, C.; Wichelns, D., 2010. Satisfying future water demands for agriculture. Agricultural Water Management, v. 97, (4), 502-511. https://doi.org/10.1016/j.agwat.2009.08.008

Freire Junior, M.; Soares, A.G., 2014. Orientações Quanto ao Manuseio Pré e Pós-Colheita de Frutas e Hortaliças Visando à Redução de suas Perdas. EMBRAPA (Accessed on August 13, 2020) at: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1003270/1/CT205finalizado.pdf

Fulton, J.; Norton, M.; Shilling, F., 2019. Water-indexed benefits and impacts of California almonds. Ecological Indicators, v. 96, part 1, 711-717. https://doi.org/10.1016/j.ecolind.2017.12.063

GBD 2016 Brazil Collaborators, 2018. Burden of disease in Brazil, 1990–2016: a systematic subnational analysis for the Global Burden of Disease Study 2016. The Lancet, v. 392, (10149), 760-775. https://doi.org/10.1016/S0140-6736(18)31221-2

Gerten, D.; Hoff, H.; Rockström, J.; Jägermeyr, J.; Kummu, M.; Pastor, A.V., 2013. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Current Opinion in Environmental Sustainability, v. 5, (6), 551-558. https://doi.org/10.1016/j.cosust.2013.11.001

Gleeson, T.; Wang-Erlandsson, L.; Zipper, S.C.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; Rockström, J.; Oki, T.; Sivapalan, M.; Wada, Y.; Brauman, K.A.; Flörke, M.; Bierkens, M.F.P.; Lehner, B.; Keys, P.; Kummu, M.; Wagener, T.; Dadson, S.; Troy, T.J.; Steffen, W.; Falkenmark, M.; Famiglietti, J.S., 2020. The water planetary boundary: interrogation and revision. One Earth, v. 2, (3), 223-234. https://doi.org/10.1016/j.oneear.2020.02.009

Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science, v. 327, (5967), 812-818. https://doi.org/10.1126/science.1185383

Gustavsson, J.; Cederberg, C.; Sonesson, U.; Emanuelsson, A., 2013. The methodology of the FAO study: “Global Food Losses and Food Waste-extent, causes and prevention”. FAO (Accessed on August 13, 2020) at: https://www.diva-portal.org/smash/get/diva2:944159/FULLTEXT01.pdf

Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A., 2011. Global food losses and food waste: extent, causes and prevention. FAO (Accessed on August 13, 2020) at: https://reliefweb.int/sites/reliefweb.int/files/resources/FAO%20Report%202011%20%281%29.pdf

Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M., 2011. Manual de avaliação da pegada hídrica: Estabelecendo o padrão global. Instituto de Conservação Ambiental, São Paulo.

Hogeboom, R.J., 2020. The Water Footprint Concept and Water's Grand Environmental Challenges. One Earth, v. 2, (3), 218-222. https://doi.org/10.1016/j.oneear.2020.02.010

Instituto Brasileiro de Geografia e Estatística (IBGE). 2013. Projeções da População: 2013. IBGE (Accessed on January 25, 2021) at: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html?edicao=9116&t=resultados

Jaramillo, F.; Destouni, G., 2015. Local flow regulation and irrigation raise global human water consumption and footprint. Science, v. 350, (6265), 1248-1251. https://doi.org/10.1126/science.aad1010

Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J., 2018. Food waste and the food-energy-water nexus: a review of food waste management alternatives. Waste Management, v. 74, 52-62. https://doi.org/10.1016/j.wasman.2018.01.014

Kummu, M.; De Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J., 2012. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, v. 438, 477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092

Le Roux, B.; Van der Laan, M.; Vahrmeijer, T.; Annandale, J.G.; Bristow, K.L., 2018. Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa. Water, v. 10, (5), 539. https://doi.org/10.3390/w10050539

Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T., 2013. Reducing food loss and waste. World Resources Institute (Accessed on August 13, 2020) at: https://pdf.wri.org/reducing_food_loss_and_waste.pdf

Liu, J.; Lundqvist, J.; Weinberg, J.; Gustafsson, J., 2013. Food losses and waste in China and their implication for water and land. Environmental Science & Technology, v. 47, (18), 10137-10144. https://doi.org/10.1021/es401426b

Lundqvist, J.; de Fraiture, C.; Molden D., 2008. Saving Water: From Field to Fork – Curbing Losses and Wastage in the Food Chain (Accessed on August 13, 2020) at: http://dlc.dlib.indiana.edu/dlc/bitstream/handle/10535/5088/PB_From_Filed_to_Fork_2008.pdf?sequence=1&isAllowed=y

Mekonnen, M.M.; Hoekstra, A.Y., 2010a. The green, blue and grey water footprint of farm animals and animal products. UNESCO-IHE. v. 1 (Accessed on August 13, 2020) at: https://ris.utwente.nl/ws/portalfiles/portal/59481062/Report-48-WaterFootprint-AnimalProducts-Vol1.pdf

Mekonnen, M.M.; Hoekstra, A.Y., 2010b. The green, blue and grey water footprint of farm animals and animal products. UNESCO-IHE. v. 2 (Accessed on August 13, 2020) at: https://ris.utwente.nl/ws/portalfiles/portal/59481062/Report-48-WaterFootprint-AnimalProducts-Vol1.pdf

Mekonnen, M.M.; Hoekstra, A.Y., 2011a. National water Footprint accounts: the green, blue and grey water Footprint of production and consumption. UNESCO-IHE. v. 1 (Accessed on August 13, 2020) at: https://waterfootprint.org/media/downloads/Report50-NationalWaterFootprints-Vol1.pdf

Mekonnen, M.M.; Hoekstra, A.Y., 2011b. The green, blue and grey water footprint of crops and derived crop product. Hydrology and Earth System Sciences, v. 15, (5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011

Millennium Ecosystem Assessment, 2005. Relatório-Síntese da Avaliação Ecossistêmica do Milênio. MEA (Accessed on August 13, 2020) at: http://www.millenniumassessment.org/documents/document.446.aspx.pdf.

Munoz Castillo, R.; Feng, K.; Hubacek, K.; Sun, L.; Guilhoto, J.; Miralles-Wilhelm, F., 2017. Uncovering the green, blue, and grey water footprint and virtual water of biofuel production in Brazil: a nexus perspective. Sustainability, v. 9, (11), 2049. https://doi.org/10.3390/su9112049

Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y., 2019. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Science of the total environment, v. 653, 241-252. https://doi.org/10.1016/j.scitotenv.2018.10.311

Parfitt, J.; Barthel, M.; Macnaughton, S., 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B, v. 365, (1554), 3065-3081. https://doi.org/10.1098/rstb.2010.0126

Pavão, E.; Strumpf, R.; Martins, S., 2020. Cálculo da pegada de carbono e hídrica na cadeia da carne bovina no Brasil (Accessed on January 25, 2021) at: https://www.escolhas.org/wp-content/uploads/2020/01/Relatorio_Do-pasto-ao-prato_Pegadas_FINAL.pdf

Porkka, M.; Gerten, D.; Schaphoff, S.; Siebert, S.; Kummu, M., 2016. Causes and trends of water scarcity in food production. Environmental Research Letters, v. 11, (1), 015001. http://dx.doi.org/10.1088/1748-9326/11/1/015001

Porpino, G.; Parente, J.; Wansink, B., 2015. Food waste paradox: antecedents of food disposal in low income households. International Journal of Consumer Studies, v. 39, (6), 619-629. https://doi.org/10.1111/ijcs.12207

Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K., 2020. Assessing the environmental impacts of halving food loss and waste along the food supply chain. Science of The Total Environment, v. 712, 136255. https://doi.org/10.1016/j.scitotenv.2019.136255

Reddy, P.P., 2016. Sustainable intensification of crop production. Springer, Singapore.

Rocha, C.T.D.; Christofidis, D., 2015. Vantagens da opção pela agricultura irrigada. Revista de política agrícola, v. 24, (2), 17-25 (Accessed on August 13, 2020) at: https://seer.sede.embrapa.br/index.php/RPA/article/view/1007/949

Rockström, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jägerskog, A. Kummu, M.; Lannerstad, M.; Meybeck, M.; Molden, D.; Postel, S.; Savenije, H.H.G.; Svedin, U.; Turton, A.; Varis, O., 2014. The unfolding water drama in the Anthropocene: towards a resilience based perspective on water for global sustainability. Ecohydrology, 7, (5), 1249-1261. https://doi.org/10.1002/eco.1562

Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin III, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.; Nykvist, B.; de Wit, C.A.; Hughes, T.; Van Der Leeuw, S.; Rodhe, H.; Sörlin, S.; Snyder, P.K.; Costanza, R.; Svedin, U.; Falkenmark, M.; Karlberg, L.; Corell, R.W.; Fabry, V.J.; Hansen, J.; Walker, B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J., 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, v. 14, (2), 32 (Accessed August 13, 2020) at: http://www.jstor.com/stable/26268316

Rodrigues, D.B.; Gupta, H.V.; Mendiondo, E.M., 2014. A blue/green water‐based accounting framework for assessment of water security. Water Resources Research, v. 50, (9), 7187-7205. https://doi.org/10.1002/2013WR014274

Rodrigues, P., 2017. Os desperdícios por trás do alimento que vai para o lixo. EMBRAPA (Accessed on August 13, 2020) at: https://www.embrapa.br/busca-de-noticias/-/noticia/28827919/os-desperdicios-por-tras-do-alimento-que-vai-para-o-lixo

Schyns, J.F.; Booij, M.J.; Hoekstra, A.Y., 2017. The water footprint of wood for lumber, pulp, paper, fuel and firewood. Advances in Water Resources, v. 107, 490-501. https://doi.org/10.1016/j.advwatres.2017.05.013

Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J., 2015. Review and classification of indicators of green water availability and scarcity. Hydrology and Earth System Sciences, v. 19, (11), 4581-4608. https://doi.org/10.5194/hess-19-4581-2015

Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M., 2019. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proceedings of the National Academy of Sciences, v. 116, (11), 4893-4898. https://doi.org/10.1073/pnas.1817380116

Silva, V.D.P.R.; Oliveira, S.D.; Hoekstra, A.Y.; Dantas Neto, J.; Campos, J.H.B.; Braga, C.C.; Araújo, L.E.; Aleixo, D.O.; Brito, J.I.B.; Souza, M.D.; Holanda, R.M., 2016. Water footprint and virtual water trade of Brazil. Water, v. 8, (11), 517. https://doi.org/10.3390/w8110517

Spang, E.; Stevens, B., 2018. Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of US Potato Cultivation. Sustainability, v. 10, (8), 2854. https://doi.org/10.3390/su10082854

Springer, N.P.; Duchin, F., 2014. Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies. Environmental Science & Technology, v. 48, (8), 4444-4451. https://doi.org/10.1021/es4051988

Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.; Wit, C.A.; Folke, C.; Gerten, D.; Heinke, J.; Mace, G.M.; Persson, L.M.; Ramanathan, V.; Reyers, B.; Sörlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. Science, v. 347, (6223), 1259855. https://doi.org/10.1126/science.1259855

Sun, S.K.; Lu, Y.J.; Gao, H.; Jiang, T.T.; Du, X.Y.; Shen, T.X.; Wu, P.T.; Wang, Y.B., 2018. Impacts of food wastage on water resources and environment in China. Journal of Cleaner Production, 185, 732-739. https://doi.org/10.1016/j.jclepro.2018.03.029

Trento, E.J.; Sepulcri, O.; Morimoto, F., 2011. Comercialização de Frutas, Legumes e Verduras. EMATER (Accessed on August 13, 2020) at: http://atividaderural.com.br/artigos/560455c4f123d.pdf

United Nations. 2019. Department of Economic and Social Affairs, Population Division (DESA). World Population Prospects 2019: Highlights (Accessed on August 13, 2020) at: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G., 2015. Lost water and nitrogen resources due to EU consumer food waste. Environmental Research Letters, v. 10, (8), 084008. http://dx.doi.org/10.1088/1748-9326/10/8/084008

Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A., Green, P.; Bunn, S.E.; Sullivan, C.A.; Liermann, R.C.; Davies, P.M., 2010. Global threats to human water security and river biodiversity. Nature, v. 467, (7315), 555-561. https://doi.org/10.1038/nature09440

Xinchun, C.; Mengyang, W.; Rui, S.; La, Z.; Dan, C.; Guangcheng, S.; Xiangping, G.; Weiguang, W.; Shuhai, T., 2018. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Science of the Total Environment, v. 610-611, 84-93. https://doi.org/10.1016/j.scitotenv.2017.08.011

Downloads

Published

2021-06-23

How to Cite

Cohim, E. B., Leão, A. S., Silva Neto, H. de A., & Santos, G. S. (2021). Water loss associated with food loss and waste in Brazil. Revista Brasileira De Ciências Ambientais (RBCIAMB), 56(2), 305–317. https://doi.org/10.5327/Z21769478885