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A B S T R A C T 
Air quality monitoring data are useful in different areas of research and have 
varied applications, especially with a focus on the relationship between 
air pollution, respiratory problems, and other health hazards. The  main 
atmospheric pollutants are: ozone (O3), sulfur dioxide (SO2), carbon monoxide 
(CO), nitrogen dioxide (NO2), and particulate matter (PM). PM is one of the 
main objects of study when one intends to protect people from exposure 
to pollutants. This study contributes to the analysis of PM2.5 in 21 stations 
in the state of São Paulo monitored by the Environmental Company of São 
Paulo State (CETESB). It employs cluster analysis, a prominent data mining 
method for detecting patterns and discovering similarities which is important 
for assessing air pollution, especially in a geographically vast area such 
as that of the state of São Paulo, which does not follow a single pattern. 
Another data mining technique (association rules) supports the analysis 
of the relationship between pollutants and meteorological variables, as it 
allows identifying changes between elements that occur together, in a wide 
variety of data. Our objectives include determining stations with similar 
behaviors and exploring the temporal variety of the pollutant as it relates to 
the dominant meteorological factors in the periods of high concentration. 
The clustering algorithm automatically separates stations according to their 
monthly averages of PM2.5 concentration between 2017 and 2019. The clusters 
of stations that showed the highest pollution rates essentially included urban 
centers with emissions by industries and vehicles, while those with the lowest 
rates were located further inland. A cyclical behavior in pollutant variation was 
also observed in the three years under study and for both clusters. For  the 
months with the highest concentration of PM2.5, association rule learning 
was applied to connect air temperature, relative humidity, and wind speed 
with PM2.5 and carbon monoxide (CO) concentrations. The  obtained results 
are useful to analyze the temporal and geolocation profiles of pollution by 
particulate matter, since they identify the behavior of the meteorological 
factors that predominate in periods of greater concentration.

Keywords: air pollutants; particulate matter; clustering; association rules; air 
quality; respiratory diseases.

R E S U M O
Dados de monitoramento da qualidade do ar são úteis em diferentes áreas de 
pesquisa e aplicações, como por exemplo, no estudo da relação da poluição do 
ar com problemas respiratórios e outros prejuízos à saúde. Dentre os principais 
poluentes atmosféricos estão: ozônio (O3), dióxido de enxofre (SO2), monóxido 
de carbono (CO), dióxido de nitrogênio (NO2) e material particulado (MP). 
O MP é um dos principais objetos de estudos quando se pretende proteger as 
pessoas da exposição a poluentes. O presente trabalho contribui com a análise da 
concentração do poluente MP2,5, em 21 estações de monitoramento, observadas 
pela CETESB - Companhia Ambiental do Estado de São Paulo. Este estudo emprega 
mineração de dados por agrupamento, um método proeminente para reconhecer 
padrões e descobrir semelhanças, aspectos importantes para avaliar a poluição 
do ar, principalmente em uma área geograficamente vasta como o estado de São 
Paulo, que não segue um único padrão. A técnica de mineração por regras de 
associação, também aplicada, oferece suporte na análise da relação de poluentes 
com variáveis meteorológicas, por permitir identificar associações entre elementos 
que ocorrem juntos, em uma grande variedade de dados. Os objetivos incluem 
identificar estações com comportamentos semelhantes e explorar a variedade 
temporal do poluente relacionada aos fatores meteorológicos dominantes nos 
períodos de alta concentração. O algoritmo de agrupamento, separa de forma 
automática as estações a partir de médias mensais de concentração de MP2,5 
nos anos de 2017 a 2019. Os grupos de estações com maiores índices encontrados 
do poluente foram os centros urbanos, com emissões por indústrias e veículos e, 
as estações com índices menores foram as localizadas mais ao interior do estado. 
Também houve a identificação de um ciclo sazonal nas variações do poluente nos 
três anos para os dois grupos. Para os meses de maior concentração de MP2,5 a 
técnica de regras de associação foi aplicada a fim de relacionar temperatura do 
ar, umidade relativa do ar e velocidade do vento, às concentrações dos poluentes 
MP2,5 e CO. Os resultados gerados são úteis na análise do perfil temporal e por 
geolocalização da poluição por material particulado e identifica o comportamento 
dos fatores meteorológicos que predominam nos períodos de maior concentração.

Palavras-chave: poluentes atmosféricos; agrupamentos; regras de associação; 
qualidade do ar; doenças respiratórias.
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Introduction
In the world population, nine out of 10 people breathe polluted 

air, according to the annual report of the World Health Organization 
(WHO). Every year, seven million people die worldwide by causes di-
rectly related to air pollution, but contamination levels remain high 
(WHO, 2019). 

According to the Environmental Company of São Paulo State 
(CETESB, 2019), the main air pollutants regulated by the National En-
vironment Council (CONAMA) are: coarse inhalable particles (PM10), 
fine inhalable particles (PM2.5), carbon monoxide (CO), nitrogen diox-
ide (NO2), sulfur dioxide (SO2), ozone (O3), total suspended particles 
(TSP), smoke (SMO), and lead (Pb), the latter three being monitored 
only in specific situations. Studies on the effects of pollution on health 
(POLEZER et al., 2018; MACHIN; NASCIMENTO, 2018; SEINFELD; 
PANDIS, 2016; NODARI; SALDANHA, 2016) show that exposure to 
fine particulate matter (PM2.5) can cause respiratory problems and even 
premature deaths, since it penetrates deeply into the respiratory sys-
tem, reaching the pulmonary alveoli and the bloodstream. 

Because it is associated with damage to human health and has im-
pacts on climate and the environment, PM2.5 was chosen as the study 
object in this research. PM are particles suspended in the atmosphere, 
solid or liquid, which can be generated by several sources, in different 
sizes and compositions (DIMITRIOU, 2016; ANDRADE et al., 2012; 
QUALAR, 2019). It is classified by its aerodynamic diameter (ad): 
particles with ad ≤ 2.5 μm are named PM2.5 (fine inhalable particulate 
matter) and those with 10 ≥ ad > 2.5 μm, as PM10 (coarse inhalable 
particulate matter). These pollutants can come from several sources, 
such as vehicles, industries, power plants, and fires in general. Despite 
the PM origin, it may be transported by air masses between cities, by 
atmospheric circulation (NOGAROTTO, 2019). 

Meteorological variables directly interfere with the concentration 
of atmospheric pollutants by controlling the dispersion process of sub-
stances that are toxic and carcinogenic or that potentiate harmful effects 
on the environment and health (YANAGI; ASSUNÇÃO; BARROZO, 
2012). The relationship between pollutant concentration and meteo-
rological variables such as: air temperature (TEMP), relative humidity 
(RH), wind speed (WS), wind direction (WD), precipitation (PRE), at-
mospheric instability, and others that vary during the year is well known 
(GUERRA; MIRANDA, 2011). Given this relationship, studies such as 
the one by Bisht and Seeja (2018), in India, predict next-day air qual-
ity from the previous day’s pollutant concentration data (PM10, PM2.5, 
NO2, CO, and O3) and meteorological variables (RH, PRE, TEMP, WS, 
and WD), using regression models. Gonçalves et al. (2005), in a research 
study in the city of São Paulo, proved that during summer, hot and hu-
mid days favor the decrease of PM10, SO2, and O3 concentrations. 

In winter, air quality worsens, especially regarding PM and CO 
concentrations, since weather conditions in this season of the year are 
less favorable for their dispersion (SANTOS; CARVALHO; REBOITA, 
2016; MORAES et al., 2019; CETESB, 2019). Therefore, the interaction 

between atmospheric conditions and sources of pollution defines air 
quality, which in turn determines the emergence of adverse effects on 
people’s health.

A study by Abe and Miraglia (2018) shows a reduction of about 
25.45% in PM2.5 concentration in the city of São Paulo from 2000 to 
2011, due to actions to contain the increase in the automotive fleet. 
Typically, in metropolitan regions, motor vehicles are a major cause 
of air pollution. A study by Andrade et al. (2012) states that vehicle 
emissions, biomass burning, and fuel combustion in industries explain 
at least 40% of PM2.5 in six Brazilian states, including São Paulo. 

In addition to associating air pollutants with meteorological variables, it 
is also possible to establish a relation between the behaviors of different air 
pollutants. Moisan, Herrera and Clements (2018) reported an association 
between car pollution and firewood burning as regards CO concentration 
in the atmosphere, noting that 54% of PM2.5 concentration is composed of 
CO, which shows a direct relationship between these pollutants. They also 
found a strong negative correlation with the variables TEMP and WS, in 
addition to a positive relationship with RH. Saide et al. (2011) developed a 
CO forecasting system as a substitute for PM10 and PM2.5, identifying a high 
correlation (of above 0.95) between these pollutants in Santiago (Chile), 
during winter nights. Therefore, by predicting CO, an estimate of PM could 
be obtained. The greatest benefit of the study was its ability to predict critical 
episodes up to 48 hours ahead. Reinhardt, Ottmar and Castilla (2011) ob-
served that, in Brazil, the concentration levels of CO and particulate matter 
are correlated and that, during the burning season, CO levels in rural areas 
are comparable to those of urban centers, moderately polluted.

Considering this scenario, it is important to investigate the behav-
ior of pollutants, in particular PM2.5. Despite the fact that the problem 
is widely discussed in various spheres of the scientific community, the 
literature lacks studies whose assessment uses artificial intelligence tech-
niques and involves knowledge about the associations between pollut-
ants, emission sources, and their effects on air quality (AMEER et al., 
2019). The analysis of the sources of pollution by PM2.5 throughout the 
state of São Paulo is considered a zoning problem, zoning being the dis-
covery of different regions with similar characteristics. Data clustering 
technique is a prominent method for recognizing new patterns, and it is 
applied in exploratory data analysis. It is a suitable solution when search-
ing for similar patterns and behaviors in different regions, which leads 
to the discovery of previously unknown clusters (HAN; KAMBER; PEI, 
2011; KWEDLO, 2011).

Research carried out in Brazil (NODARI; SALDANHA, 2016; GUI-
DETTI; PEREDA, 2018) and in other countries which applied clustering 
techniques identified regions with similar patterns of air pollution. A 
study in China (XIAO et al., 2020) performed cluster analysis to measure 
similarities in the characteristics of industrial emissions from 31 com-
panies in different regions; results showed that pollution characteristics 
were similar for companies in the same cluster, which contributed to the 
development of specific measures for pollution control. Also in China, 
studies involving 13 sites with similar PM2.5 concentration data resulted 
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in the discovery of three clusters: two of industrial activities and another 
of agricultural and tourist activities (HUANG et al., 2015). 

In the United States, a research study clustered locations according 
to PM2.5 levels and obtained clusters by regions with similar industrial 
activity (AUSTIN et  al., 2013). The study by Zou et  al. (2014), con-
ducted with data from the U.S. urban census, was used to investigate 
the population’s exposure to air pollution, considering age, race, educa-
tion level, and income. By applying a spatial clustering method, it was 
possible to show disparities in the spatial distribution of exposure to 
pollution throughout the territory. 

Alternatively, clustering technique is also used as a preprocessing 
step for selecting attributes or applying other data mining algorithms. 
An example is the study by Du and Varde (2016), which applies associa-
tion rules, clustering, and classification to identify relationships between 
particulate matter, pollution, and road traffic. 

Another way to extract knowledge is by discovering relationships 
between different attributes in the database; the association rule algo-
rithm has been efficient in this sense, given its applicability in several 
scenarios, such as the context of air pollution (NEIROTTI et al., 2014; 
AGRAWAL; SRIKANT, 1994). Association rules also contribute to dis-
covering unexpected rules with a high degree of interest in the context in 
which they are inserted. In our study, association rules looked for rela-
tionships between the behavior of PM2.5 and meteorological variables, in 
the different clusters identified in the clustering step. They also attempted 
to verify whether PM2.5 and CO were related.

Li et al. (2020) proposed, by using association rules, the analysis of 
data from various air monitoring stations in China and micro stations in 
the USA, considering the uneven distribution of environmental moni-
toring data and the characteristics of climate change, and obtained a cor-
relation between pollutants which provides support for the treatment and 
prevention of air pollution. Souza and Rabelo (2016) applied association 
rules to identify a set of variables that often occur together: air pollutant 
concentrations and rates of respiratory problems. Sadat, Karimipour and 
Sadat (2014) explored, by association rules, the effect of air pollution on 
asthmatic allergies, indicating that distance from parks and roads, as well 
as pollutant concentrations of CO, PM10, PM2.5, and NO2, are related to the 
prevalence of allergies in the most polluted month of the year, while SO2 
and O3 have no effect on it.

This article proposes a data mining approach to analyze the air qual-
ity monitoring database provided by CETESB, between 2017 and 2019. 
Such analysis was carried out by applying machine learning techniques 
on two fronts: 
•	 using the partitional clustering algorithm (K-medoids) to form 

clusters, based on the PM2.5 concentrations of 21 stations in the 
state of São Paulo; 

•	 applying the association rules algorithm (Apriori) to discover pos-
sible associations between meteorological variables that affect the 
increase in PM2.5 concentration and investigate the seasonal rela-
tionship between PM2.5 and CO. 

These studies can generate knowledge that contributes to the man-
agement of air quality and provides information for an assessment of 
its impact on health and the environment. 

Methods

The methodology used in this study will be presented as follows: 
•	 a presentation of the places where the air pollution data were col-

lected and how they were preprocessed so as to be used by ma-
chine learning algorithms; 

•	 an explanation of clustering algorithms and association rules, as well as 
their respective validation metrics.

Study site
Diagnosis of air quality in the state of São Paulo is made by the net-

work of monitoring stations of CETESB, which informs pollution concen-
trations, generating an air quality index that ranges between good, moder-
ate, bad, very bad, and terrible. These scenarios are important in reporting 
the compliance with air quality standards set by law and making it possible 
to determine when these levels represent significant risks to human health.

Assessment is carried out based on the state’s air quality standards 
(Table 1) established by State Decree no. 59,113 (SÃO PAULO, 2013) 
and by CONAMA Resolution no. 491 (BRAZIL, 2018). The national and 
state standards, both for air quality and critical episodes, are virtually 
the same.

Both the CONAMA Resolution and the State Decree define inter-
mediate targets (IT) so that air pollution is gradually reduced based 
on the guidelines proposed by WHO. It can be observed (Table 1) 
that national values are well above the international quality standard.

To analyze the behavior of PM2.5 in different areas of the state of São 
Paulo, we obtained data from all cities that have stations with pollutant 
monitoring. Altogether, there are 21 stations, listed in Table 2 along 
with their geolocation (Figure 1).

Database and preprocessing
The first database was obtained from the CETESB website, by the 

Air Quality platform (QUALAR, 2019), which contains data collect-
ed by automatic monitoring stations. Data on monthly average PM2.5 
concentration from January 1st 2017 to December 31st 2019 were 
used. They generated a set of 21 records (stations) and 36 columns 
(months) representing the three-year period. 

On this first basis, preprocessing was carried out to identify months 
with missing values in PM2.5 monitoring. To perform the study of time 
series, all values must be completed (CASTRO; FERRARI, 2016). Where 
values were missing in a given month, the last and next technique was 
adopted, which obtains an average between the previous and the next 
value of the missing attribute (PLAIA; BONDI, 2006), that is, when there 
is a missing value, it is replaced by the average between the previous and 
the next month.
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Table 1 – Comparison of international (WHO), national (CONAMA 491/2018), and state (State Decree 59,113/2013) air quality standards 
for PM2.5.

Quality Standards 24 hours1 AAA2

WHO Standards 25 10

IT 1 (μg/m3)3 604 204

IT 2 (μg/m3)3 50 17

IT 3 (μg/m3)3 37 15

Final Standards (μg/m3) 3 25 10
1Average of 24 consecutive hours of sampling (should not exceed more than once a year); 2annual arithmetic average; 3national standards; 4state 
standards; IT: intermediate targets; WHO: World Health Organization; CONAMA: National Environment Council; AAA: annual arithmetic avera-
ge.Source: adapted from WHO (2019), Brazil (2018), and São Paulo (2013).

Table 2 – Cities and stations with PM2.5 monitoring in the state of São Paulo.

City Station

Campinas Vila União

Guarulhos Paço Municipal

Guarulhos Pimentas

Osasco Vila Quitaúna

Piracicaba Campus FUMEP

Ribeirão Preto Parque Ecológico Maurílio Biaggi

Santos Ponta da Praia

São Bernardo do Campo Centro

São José dos Campos Jd. Satélite

São José do Rio Preto Campo Atletismo Eldorado

São Paulo

Cidade Universitária (USP)

Congonhas

Grajau (Parelheiros)

Ibirapuera

Itaim Paulista

Marginal Tietê (Ponte dos Remédios)

Parque D. Pedro II

Pico do Jaraguá (Serra da Cantareira)

Pinheiros

Santana

Taubaté Parque Municipal “Eng. César A. C. Varejão”

FUMEP: Fundação Municipal de Ensino de Piracicaba; USP: Universidade de São Paulo.

In addition, the data were standardized using the Z-score tech-
nique, which modifies the original values for them to have an aver-
age of 0 and a standard deviation of 1, resulting in values that will be 
compared under the same scale (HAN; KAMBER, 2006; MITSA, 2010; 
BATISTA; CHIAVEGATTO, 2019).

To build the second database, used in the step of association 
rules extraction, we verified the stations that monitor PM2.5 and 
that also provide monthly averages of the following meteorolog-
ical variables: RH, TEMP, WS, in addition to CO concentration 
(QUALAR, 2019) between 2017 and 2019. Of the 21 stations 
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whose data were obtained for the first database, seven met this 
new criterion (Table 3).

For this new dataset, all data must be categorical, since this is a 
restriction of the Apriori algorithm. Thus, each monthly average value 
was classified according to two categories: lower or higher than the an-
nual average value of its respective meteorological variable or CO con-
centration. Table 3 represents an excerpt from the database, referring 
to the month of July 2018. 

The algorithms applied in this study follow the unsupervised ap-
proach of machine learning, divided into two stages: 
•	 application of the partitional clustering algorithm (K-medoids); 
•	 association rules (Apriori). 

The next sections discuss these algorithms.

Data clustering technique
Clustering algorithms can be either partitional or hierarchical. 

Their ability to cluster data based on intrinsic characteristics of the 
problem makes them interesting for studies. Such algorithms gen-
erate clusters formed by data samples that are similar to each other, 
according to some measure of similarity. Assuming, for example, a 
problem of clustering cities by the level of air quality, the clustering 
algorithms will map the cities and return clusters composed of those 
with similar pollution behavior. Within the cluster of partitional algo-
rithms, the most common are K-means and K-medoids (JIN; HAN, 
2017). The K-medoids algorithm uses objects from the database as 
the center of the clusters, called medoids, which have the lowest av-
erage dissimilarity compared to all other objects in the cluster. In the 
case of K-means, the centers of the clusters are calculated according 
to the average value of the objects in that cluster. In this case, outliers 
from the database can influence the formation of the clusters, since 
they contribute to the calculation of the central values of each cluster. 
This type of problem does not happen in the K-medoids algorithm, 
since the medoids correspond to real samples of the data and not 
averages (HAN; KAMBER, 2006), that is, the medoids are an element 

of the cluster itself and not a midpoint as occurs in K-means, which 
makes it less sensitive to outliers.

Both algorithms (K-means and K-medoids) were implemented in 
Python, using the open-source Scikit-Learn and PyClustering libraries, 
specific for machine learning (PEDREGOSA et al., 2011).

To assess the quality of the clustering between the K-medoids 
and K-means algorithms, the silhouette coefficient was applied 
(KAUFMAN; ROUSSEEUW, 2005) to the results obtained by each 
algorithm. This coefficient measures the robustness of the partitions, 
helping to select the number of clusters, considering the internal sim-
ilarity and external dissimilarity between them, that is, it combines 
cohesion (measures how well an element is within a cluster) and sep-
aration (measures how much the clusters are separated from each 
other). For example, supposing that the clustering algorithm returns 
two clusters, as in the previous example, the silhouette coefficient will 
verify whether all the elements of Cluster 1 are similar to each other 
and different from the elements of Cluster 2. An expected behavior 
would be that this hypothetical Cluster 1 would include cities with a 
high concentration of one pollutant and Cluster 2, cities with a low 
concentration of the same pollutant. Therefore, Cluster 1 and Cluster 
2 would be cohesive, since they would have cities that show the same 
behavior, and also separated from each other for presenting an entirely 
different pattern. 

The average value of the silhouette coefficient must be between -1 
and 1, representing how well the clusters were formed. The ideal values 
are positive, with a silhouette coefficient close to 1. Equation 1 rep-
resents the average Silhouette calculation .

� (1)

Where:
 = the number of objects in the database and the individual value 

of the silhouette coefficient of element xi, given by , obtained by 
Equation 2: 

Figure 1 – (A) Map of location of the automatic PM2.5 monitoring stations in the state of São Paulo and (B) PM2.5 monitoring stations in the 
Metropolitan Region of São Paulo (MRSP).

A B
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� (2)

Where:
the values  and  = respectively, the average distance 

between  and all the objects in its cluster and the average distance of 
 to another cluster to which  does not belong.

The silhouette coefficient was also the evaluation metric 
chosen to determine which of the two algorithms (K-means and 
K-medoids) would be used in this study. Therefore, the database 
of monthly PM2.5 averages was used and the two algorithms were 
applied to carry out this evaluation. The one that presented the best 
silhouette result was adopted for the clustering of stations. This ex-
periment is presented in the Results section.

Association rules
The Apriori Association Rules algorithm aims to find frequent re-

lationships in the datasets, that is, to generate rules of type X → Y, for 
which X and Y are items that belong to this dataset (AGRAWAL; SRI-
KANT, 1994). To analyze the possible patterns found in the months 
with the highest concentration of PM2.5, the Apriori Association 
Rules algorithm was applied to find a subset of frequent parameters 
related to the database of PM2.5.

The Apriori algorithm searches, from a transactional basis, which 
items are related. For example, in a hypothetical database that re-
cords the monthly values of the concentration of air pollutants and 
the number of hospital visits involving respiratory diseases, the asso-
ciation rules may return {PM2.5, PM10} → {increase in visits}, indicat-
ing that a high concentration of pollutants PM2.5 and PM10, causes, 
with a degree of certainty, an increase in hospital visits. This degree 
of certainty that measures the relevance and validation of the rules 

is provided by: support and confidence. Given the rule X → Y, the 
support (or coverage of the rule) represents the percentage of trans-
actions in the database that contain the items of X and Y, indicating 
its relevance (CASTRO; FERRARI, 2016). The confidence or accu-
racy of a rule, in turn, corresponds to the number of rules in which 
the consequent (term after the →) of a rule appears in transactions in 
which the antecedent (term(s) preceding →) is also observed, that is, 
it is the conditional probability P(Y|X) that given the consequent X 
of the rule, the antecedent Y also happens (MUELLER, 1995). In this 
study, the Apriori algorithm was implemented in Python, using the 
“mlxtend” library.

Results and Discussion
In the experiment to choose the clustering algorithm, the silhou-

ette coefficient was used as the decision criterion, as it is a measure 
of quality for the entire structure of the partition. It was also used to 
choose the number of clusters (k), and, for this, 20 different cluster 
sizes, related to the number of cities, were tested.

After 100 executions of the K-medoids algorithm, applied to the 
database of monthly averages of PM2.5 concentration between 2017 and 
2019, the average silhouette coefficient found was 0.26, while for the 
K-means algorithm, the average value was 0.28. Considering that the 
silhouette value can vary between -1 and 1, K-medoids was selected 
because it presents a better average silhouette value and is capable of 
handling outliers.

Figure 2 shows the relationship between the silhouette coef-
ficient value corresponding to the number k of clusters. The best 
value corresponds to k = 2. Thus, the K-medoids algorithm was 
applied to obtain two clusters from the set of stations in the state 
of São Paulo, with PM2.5 monitoring, and the clustering results were 
subsequently analyzed. 

Table 3 – Example of the representation of the database in the month of July 2018, relating the stations that monitor PM2.5 with 
meteorological variables TEMP, RH, WS, and CO concentration. The numerical values were transformed into a category, which may be 
higher or lower than the average.

Station TEMP RH WS CO

0 Parque D. Pedro II Below Average Below Average Below Average Above Average

1 Pinheiros Below Average Below Average Below Average Above Average

2 Marg. Tietê-Pte Below Average Below Average Below Average Above Average

3 S. Bernardo-Centro Below Average Above Average Below Average Above Average

4 Guarulhos-Pimentas Below Average Below Average Below Average Above Average

5 S. José Campos - Jd Below Average Below Average Below Average Above Average

6 Taubaté Below Average Below Average Below Average Above Average

7 Ribeirão Preto Below Average Below Average Below Average Above Average

TEMP: temperature; RH: relative humidity; WS: Wind speed.
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As a result of applying the K-medoids algorithm to the data, with a value 
of k = 2, the stations were divided into Clusters 1 and 2, shown in Table 4.

In the analyzed period, for all the stations monitored, the average 
annual concentrations of PM2.5 were 16.43 μg/m3 (standard deviation 
6.45 μg/m3) in 2017, 16.24 μg/m3 (standard deviation 6.42 μg/m3) in 
2018, and 16 μg/m3 (standard deviation 5.04 μg/m3) in 2019, exceeding 
the annual threshold of 10 μg/m³ established by WHO in all periods; 
note that the standard deviation remained constant in 2017 and 2018, 
and decreased in 2019. Analyzing each cluster, we can see differences:
•	 Cluster 1: 15 stations located mostly in metropolitan regions, more 

specifically in cities with an average annual global PM2.5 concentra-
tion of 17.42 μg/m3 and standard deviation of 4.72 μg/m3;

•	 Cluster 2: 6 stations located in cities with relatively lower indexes, 
with an average annual global PM2.5 concentration of 13.4 μg/m3 
and standard deviation of 4.83 μg/m3.

Figure 3 shows that, between 2017 and 2019, higher concentrations 
of PM2.5 predominate in Cluster 1 compared to Cluster 2, since the for-
mer consists of stations located in the Metropolitan Region of São Pau-
lo (MRSP), as found in other studies (HUANG et al., 2015; AUSTIN 
et al., 2013). There is also a seasonal trend in the evolution of pollutant 
concentration and monthly peaks for both clusters in the same periods, 
suggesting a recurring pattern in the three years. Despite the similarity 
in seasonal behavior throughout the period, it is clear that in 2017 the 

month of greatest concentration is September, in 2018 it is July, and in 
2019, June. In 2017, the peak concentration of the pollutant was lower 
than the peak in 2018, while in 2019, the PM2.5 concentration level was 
below the one observed in previous years.

These cycles may be related to meteorological phenomena that 
have taken place over the period, which coincide with the data from 
CETESB’s annual reports (CETESB, 2019), also identified in the liter-
ature (LI et al., 2020; BISHT; SEEJA, 2018), and which were analyzed 
with the association rules algorithm (Apriori). 

Figure 4 was generated for a better assessment of the physical prox-
imity between the stations in the clusters, showing the geographical 
location of the stations in each cluster. Clusters 1 and 2 were identified 
by the colors red and blue, respectively, in Figures 4A and 4B. 

The analysis on the map shows that most of the PM2.5 monitoring 
stations present in Cluster 1 are in the Metropolitan Regions (MR) of 
São Paulo, Campinas, and Baixada Santista. Except for the Campinas 
region, which is also influenced by fires, the main source of pollutants 
in these MRs is fuel burning by the vehicle fleet and intense industri-
al emissions (CARDOSO et al., 2017; HUANG et al., 2015; YANAGI; 
ASSUNÇÃO; BARROZO, 2012). The stations with lower concentra-
tions, represented by Cluster 2, are located further inland in the state 
and are more distant from each other, except for Ibirapuera station, 
which, despite being located in the city of São Paulo, is located farther 
from intense traffic routes.

Figure 2 – Number k of clusters per silhouette coefficient value, obtained from the K-medoids algorithm, applied to the database of monthly 
averages of PM2.5 concentration, between 2017 and 2019.



Application of machine learning algorithms to PM2.5 concentration analysis in the state of São Paulo, Brazil

159
RBCIAMB | v.56 | n.1 | Mar 2021 | 152-165  - ISSN 2176-9478

Comparing the results obtained, there is a correspondence be-
tween the clusters generated and other studies that investigate air 
pollution by PM2.5 in the state of São Paulo: Araújo and Rosário 
(2020) identified from satellite data that the most polluted regions in 
the state are the MRs of São Paulo, Campinas, and Baixada Santista.

The analysis of the average monthly variation of PM2.5 concen-
tration in Clusters 1 and 2 indicates differences in pollutant concen-
trations between the two clusters, as can be seen in the boxplots in 
Figure 5. However, the interquartile ranges and maximum values (dis-
regarding outliers) are similar.

Table 5 shows that, in 2017, the PM2.5 concentration level in-
creased from May to October, with a peak of about 29.8 μg/m3 in 
September. Likewise, in 2018, the increase occurred from March to 

September, with a peak of 32.4 μg/m3 in July, indicating an increase 
in the pollutant that year. The same behavior was repeated in 2019, 
from April to October, with a peak of 23.7 μg/m3 in June, but with a 
reduction in the pollutant concentration.

Studies show that meteorological factors such as TEMP, reduc-
tion in RH, and WS can impair the dispersion of PM2.5, increasing 
health-related risks (INPE, 2019; CETESB, 2019). The studies by San-
tos, Carvalho and Reboita (2016) and Santos et al. (2019) confirm a 
significant difference between the concentration of PM2.5 in dry and 
rainy periods, indicating the association between meteorological pa-
rameters and the pollutant.

To assess such a relationship, data of the months with the high-
est peaks (Figure 3 and Table 5), that is, September 2017, July 2018, 

Table 4 – List of monitoring stations per clusters and their annual averages (2017 to 2019) of PM2.5 concentration. 

Monitoring stations Monthly Averages of PM2.5 Concentration

CLUSTER 1 2017 2018 2019

Osasco 28.29 21.50 20.83

São Paulo – Marginal Tietê (Pte. Remédios) 19.50 19.92 20.00

Guarulhos – Paço Municipal 18.50 16.92 15.00

São Paulo – Santana 17.92 16.25 16.33

Guarulhos – Pimentas 17.83 21.08 19.75

São Paulo – Congonhas 17.83 18.42 17.67

São Paulo – Itaim Paulista 17.25 18.50 18.50

Campinas – Vila União 17.08 15.83 19.17

São Paulo – Grajau (Parelheiros) 17.00 18.67 16.92

São Paulo – Parque D. Pedro II 16.75 17.42 17.17

São Bernardo do Campo – Centro 16.17 16.00 16.17

São Paulo – Cidade Universitária (USP) 15.92 16.00 15.00

Santos – Ponta da Praia 15.58 14.08 14.42

São Paulo – Pinheiros 14.48 16.33 16.54

São Paulo – Pico do Jaraguá (Serra da Cantareira) 12.58 15.13 15.50

CLUSTER 2 2017 2018 2019

São Paulo – Ibirapuera 15.75 14.83 13.08

São José do Rio Preto 15.75 14.42 14.83

Taubaté 13.08 11.08 11.08

Ribeirão Preto 13.00 13.58 14.00

Piracicaba 12.67 13.33 13.00

São José dos Campos – Jd. Satélite 12.00 11.67 11.08
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and June 2019, were collected from the transactional base (contain-
ing the PM2.5 concentration values for each station and the behavior 
of the meteorological variables) and submitted to the Apriori asso-
ciation rule algorithm. With that, we tried to find out which factors 
were more frequent in the three periods and how these meteorolog-
ical factors were related. 

In the first run of Apriori, using September 2017 data, nine associ-
ation rules were obtained, seven of which were repeated, that is, rules 
that had the same meaning. This takes place because the algorithm an-
alyzes all the possibilities between the items. Therefore, the two main 
rules for this period are shown in Table 6. Support corresponds to the 
frequency with which the patterns occur throughout the database, in-

Figure 3 – Comparison of the monthly averages of PM2.5 concentrations (μg/m3) between 2017 and 2019, in the cities of the state of São 
Paulo, with Cluster 1 being characterized mostly by the MRSP and Cluster 2, by inland cities.

Figure 4 – (A) Visualization by geolocation of the clusters, created by the K-medoids algorithm;  
B) proximity of the elements of Cluster 1 on the map. Cluster 1 in red and Cluster 2 in blue.

A
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dicating the percentage of occurrence of the transactions. Confidence 
measures the “strength” of rules, that is, it assesses whether transactions 
that satisfy the antecedent of the rules also satisfy their consequent. The 
rules that meet support and confidence are called “strong rules.”

It can be concluded that, for the peak month of 2017, starting from 
Rule 1, a high concentration of PM2.5, below-average RH, and above av-
erage CO concentration occur together with a frequency of 85%. This 
rule also informs that, when the concentration of CO is above the av-
erage, RH is below the average with a certainty of 100%. For Rule 2, at 
the peaks of PM2.5 concentration, the factors that occur together with a 
75% frequency are above average CO and above average TEMP. Regard-
ing confidence, when CO is above average, temperature is above average 
with a certainty of 100%.

In the second run of Apriori, July 2018 data were used and 44 rules 
were obtained, and the three not repeated rules with greater support 
and confidence were chosen for analysis (Table 6). 

For the high concentration of PM2.5 in July 2018, Rule 1 identi-
fies the following factors: below-average TEMP and below-average 
WS occur together with 100% frequency in the database. For Rule 2, 
the frequency of occurrence of the two factors is 87% and the prob-
ability of low WS given the occurrence of below-average RH is 100%. 
For Rule 3, three factors appear together with a frequency of 87% and 
100% confidence, indicating that whenever the temperature becomes 
predominantly colder, the CO concentration increases and WS is be-
low average, signaling that in colder seasons there is an increase in CO 
concentration, stimulated by the low dispersion of this pollutant.

In the last Apriori execution, June 2019 data were used and 
nine rules were obtained, two of which were the most representa-
tive (Table 6). The identified rules were similar to the rules of the 
previous year, with the predominant variables TEMP, RH, and WS 
below the average. Also, the months of high concentrations tend 
to be close from one year to the next.

According to the winter report of CETESB (2020), the winter of 
2019 presented a predominance of a hot and dry air mass through-
out the state of São Paulo, with low ventilation and absence of rains, 
making it difficult to disperse pollutants, which corroborates the rules 
obtained for 2019.

Considering that the periods with the highest concentration of 
PM2.5 are the ones that present the greatest risk to the population and 
that meteorological factors have an influence on the increase in pollut-
ant concentration, the rules presented in Table 6 could give warning 
indications for the increase in pollutant concentration. In Brazil, the 
studies by César et al. (2016) and Machin and Nascimento (2018) show 
the influence of the 5 μg/m3 increase in the concentrations of PM2.5, 

resulting in increases between 20 and 38% in the risk of hospitalization 
due to pulmonary complications. 

Thus, we can conclude that when the concentration of PM2.5 in-
creases, the measurements show the following behaviors: low RH and 
above-average TEMP. The  results also indicate that high concentra-
tions of PM2.5 may be associated with below average TEMP, milder WS, 
and below-average RH. We observed an increase in CO, which suggests 
an association with the behavior of PM2.5 in the winter months, also re-
ported by Moisan, Herrera and Clements (2018) and Saide et al. (2011).

Figure 5 – Boxplots of Clusters 1 and 2, formed by the monthly averages of PM2.5, between 2017 and 2019.



Godoy, A.R.L. et al.

162
RBCIAMB | v.56 | n.1 | Mar 2021 | 152-165  - ISSN 2176-9478

Conclusions
The analysis of PM2.5 carried out in this study was done by the ap-

plication of a clustering algorithm, which divided the values of mea-
surements of PM2.5 concentrations from 21 monitored stations, distrib-
uted over 36 months, between 2017 and 2019. 

The experiments showed that the formation of two clusters is the 
most adequate. The results show that the stations belonging to the 
identified clusters have specific characteristics that lead to different 
pollution rates. The municipalities of the MRSP stand out as those with 
the highest concentration of PM2.5, but cities inland, with a predomi-

Table 5 – Monthly averages of PM2.5 by clusters of stations and standard deviation of the clusters (in μg/m3), between 2017 and 2019. 
The highlighted months are the periods of greatest pollutant concentration in the three years, with emphasis on the peak months 
September/2017, July/2018, and June/2019.

Clusters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2017

Cluster 1 (C1) 14.1 16.4 13.6 13.5 17.1 19.6 21.5 20.6 29.5 17.3 13.2 13.7

Standard deviation 5.8 5.4 5.4 5.5 4.5 4.3 4.3 2.6 5.0 3.0 2.1 1.6

Cluster 2 (C2) 7.7 9.7 8.7 10.0 13.0 15.3 16.8 19.7 28.0 16.3 9.8 9.5

Standard deviation 1.6 2.1 1.5 1.3 1.5 1.5 2.5 3.7 5.6 4.1 1.9 2.3

2018

Cluster 1 (C1) 12.2 11.4 15.7 17.8 20.2 23.8 32.2 16.2 17.3 13.4 12.5 17.0

Standard deviation 1.5 1.5 2.1 3.2 3.1 4.9 6.3 2.2 2.1 1.4 1.9 4.8

Cluster 2 (C2) 8.3 8.7 10.8 13.0 16.2 17.7 24.8 13.3 16.2 10.5 8.2 10.2

Standard deviation 1.9 1.2 2.1 2.1 1.8 2.4 4.4 2.6 3.5 1.4 1.2 1.0

2019

Cluster 1 (C1) 15.9 13.7 12.8 17.3 18.9 23.7 23.0 18.9 19.5 17.5 13.0 13.1

Standard deviation 2.2 3.0 1.5 2.0 3.3 4.7 4.9 3.5 3.6 2.6 2.1 1.9

Cluster 2 (C2) 10.0 8.5 8.2 12.3 13.5 15.8 17.0 15.7 20.2 14.3 9.7 9.0

Standard deviation 1.1 0.5 0.4 0.5 1.9 2.0 1.5 3.5 6.8 3.3 1.4 1.5

Table 6 – Rules obtained by the Apriori algorithm and its respective Support and Confidence parameters*.

September 2017

Rules (Antecedent → Consequent) Support Confidence

Rule 1. (Below-average RH) → (Above-average CO) 85% 100%

Rule 2. (Above-average TEMP) → (Above-average CO) 75% 100%

July 2018

Rule 1. Below-average TEMP → Below-average WS 100% 100%

Rule 2. Below-average RH → Below-average WS 87% 100%

Rule 3: Above-average CO and below-average WS → Below average TEMP 87% 100%

June 2019

Rule 1. Below-average TEMP → Below-average RH 62% 83%

Rule 2. Below-average WS → Below-average RH 50% 100%

*Annual averages for each meteorological variable; RH: relative humidity; TEMP: temperature; WS: Wind speed.
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nance of industrial and vehicular emissions, join these municipalities, 
forming one of the clusters. The stations of the other cluster, installed 
in less polluted locations, are in cities further inland, far from sources 
of pollution such as vehicle emissions and industrial processes. 

Two very characteristic clusters were formed, with variations in 
pollutant concentration that followed a pattern throughout each year. 
A seasonal behavior was observed in the temporal study, which is re-
peated in every period, in both clusters. There is a higher incidence of 
PM2.5 in winter, which peaked (September 2017, July 2018, and June 
2019) in critical months, when the meteorological variables (TEMP, 
RH, WS) contribute to the increase in pollutant concentration.

From the clustering results, another algorithm was applied 
to meteorological data related to September 2017, July 2018, and 
June 2019, to find associations with the meteorological factors 
mentioned above in the periods of greatest concentration of PM2.5. 
The results showed that, in September 2017, the predominant me-
teorological factors were low RH and above average TEMP. In July 

2018 and June 2019, the rules showed that below average TEMP 
and RH and milder WS were the main meteorological factors that 
occurred during the period with the highest average pollutant con-
centration. Finally, we also observed a direct relationship between 
the concentrations of CO and PM2.5.

The rules found can be useful in creating warning signs for pos-
sible increases in the concentration of PM, since the results confirm a 
relationship between episodes of high concentration and atmospheric 
conditions in the region, providing subsidies for managing air quality 
in the state of São Paulo.
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