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A B S T R A C T 
Microplastics are present all around the globe, and they are a major 
threat to the environment because of the challenges they pose. 
Their  sampling, isolation, and analysis processes are laborious and 
difficult due to their size, shape, and spreading dynamics. Furthermore, 
the lack of standardized protocols in microplastic research makes it 
difficult to compare results and unify the progress of the field. In this 
context, this work proposes and evaluates a model architecture based 
on deep learning to classify microplastic images using a dataset of real 
microplastics sampled from a freshwater reservoir, with convolutional 
neural network and transfer learning. Moreover, the model identifies 
diatom algae frustules, which can persist in the hydrogen peroxide 
degradation during the process of microplastic isolation due to their 
biosilica composition. The model was developed in Python using the 
Google Colab environment. A total of 1,140 images were used, and 
to ensure a robust and generalized evaluation, 5-fold cross-validation 
was applied. The model achieved 93% accuracy, with a recall of 97, 
95, 92, and 90% for algae, microplastic filaments, fragments, and 
pellets, respectively. Overall, the accuracy of the model is encouraging 
considering the dataset size and all the challenges that involve the 
automatic identification of microplastics, with all their shape variations 
and nuances; thus the results are promising. To our knowledge, this 
is the first work addressing diatom presence after one of the most 
common microplastic isolation techniques and their automated 
classification among microplastics as well. 
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R E S U M O
Os microplásticos estão presentes em todo o mundo e são uma grande ameaça 
ao meio ambiente devido aos desafios que representam. Sua amostragem, 
isolamento e análise são processos trabalhosos e difíceis pelo seu tamanho, 
formato e dinâmica de propagação. Ademais, a falta de protocolos 
padronizados na pesquisa de microplásticos dificulta a comparação de 
resultados e a unificação do progresso na área. Neste contexto, este trabalho 
propõe e avalia uma arquitetura de modelo baseada em aprendizagem 
profunda para classificar imagens de microplásticos, com rede neural 
convolucional e aprendizagem por transferência, usando um conjunto de 
dados de microplásticos reais, amostrados de um reservatório de água 
doce. Além disso, o modelo identifica frústulas de algas diatomáceas, que 
podem persistir na degradação do peróxido de hidrogênio no processo 
de isolamento de microplásticos, devido à sua composição de biossílica. 
O modelo foi desenvolvido em Python pela plataforma do Google Colab. 
Foram utilizadas 1.140 imagens, e para garantir uma avaliação robusta e 
generalizada, foi aplicada a validação cruzada k-fold de 5 dobras. O modelo 
atingiu acurácia de 93%, com um recall de 97, 95, 92 e 90% para algas, 
filamentos microplásticos, fragmentos e pellets, respectivamente. 
A  acurácia do modelo é encorajadora, considerando o tamanho do 
conjunto de dados e todos os desafios que envolvem a identificação 
automática de microplásticos, com suas variações de forma e nuances; 
então, os resultados são promissores. Conforme nosso conhecimento, este 
é o primeiro trabalho que aborda a presença de diatomáceas após uma 
das técnicas mais comuns de isolamento de microplásticos e, também, sua 
classificação automatizada entre microplásticos.

Palavras-chave: aprendizagem profunda; microalgas; água doce; plásticos.
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Introduction
Microplastics are defined as polymeric particles up to 5 millimeters 

(He and Luo, 2020). They can be classified as primary, which are pro-
duced at microscopic dimensions, such as those found in hygiene prod-
ucts for exfoliation, or secondary, which are fragments of larger plastics 
that have deteriorated due to environmental factors (Costa and Duarte, 
2022; Mathew et al., 2024). Assessing microplastics presents significant 
challenges due to their characteristics, sources, distribution dynamics, 
and persistence in the environment (Mitchell and Waterhouse, 2023). 
They can be transported via atmospheric deposition, percolation, surface 
runoff, and the release of effluents, as well as through the direct discharge 
of wastewater into rivers by both the population and industrial activities 
(Wang et al., 2022; Ivanic et al., 2023; Li, J. et al., 2023). Microplastics 
have been detected in both aquatic and terrestrial ecosystems, suspended 
in the air, present in rainwater, found in rural regions and even in polar 
areas (Citterich et al., 2023; Vithanage and Prasad, 2023). 

Microplastics cause a noteworthy negative impact on organisms 
and the food web, by their ingestion and accumulation (Bostan et al., 
2023; Li, X. et al., 2023). They can be transferred to other organisms, 
humans included through consumption, and carry toxic compounds 
such as pesticides, drugs, and metals (Tang et al., 2020; Benson et al., 
2022). Microplastics in human bodies are a reality already, found even 
in the bloodstream and breast milk, and their presence could be linked 
to many health problems (Kutralam-Muniasamy et al., 2021; Ragusa 
et al., 2022; CalSPEC, 2023).

Microplastics are ubiquitous, and analyzing them is complicated by 
the lack of standardized methodologies and access to affordable, prop-
er equipment (Kutralam-Muniasamy et  al., 2021). Additionally,  the 
analysis of microplastics tends to be labor-intensive and time-consum-
ing (Lv et al., 2021). Many studies rely on human visual inspection us-
ing stereomicroscopy to examine particles, with only a small fraction 
undergoing further validation through techniques like Field Emis-
sion Gun with Energy Dispersive Spectroscopy (FEG-EDS), Raman, 
or  Fourier Transform Infrared (FTIR) (Corcoran et al., 2019; Egessa 
et al., 2020; Gerolin et al., 2020; Nan et al., 2020; Lucas-Solis et al., 2021; 
Strady et al., 2021; Parvin et al., 2022; Drabinski et al., 2023; Kurki-Fox 
et al., 2023; Nayeri et al., 2023; Vidal et al., 2023; Castro et al., 2024; 
Duan et al., 2024; Saad et al., 2024). 

Those studies usually classify microplastics according to their 
shape. This is relevant for understanding microplastic dynamics, how 
these particles are present in different environments, as well as their 
behavior, sources, properties, interactions, and implications within 
the environment. This could lead to future specific solutions applied 
to the reduction and removal of microplastics, enhancing their effi-
ciency. However, the classification process, as it is, implies subjec-
tivity and bias from various researchers worldwide (Hasnine et  al., 
2024). To solve this problem, this work aimed to present and evaluate 
the application of deep learning in the multiclass classification of mi-
croplastics through convolutional neural networks (CNNs). 

In addition, this work provided the simultaneous identification of al-
gae, specifically diatoms, since these were commonly encountered while 
handling the microplastics, making differentiation necessary. Diatoms are 
unicellular algae that have cell walls made of amorphous silica dioxide 
in two overlapping frustules, capable of remaining after organic matter 
degradation with hydrogen peroxide, a chemical treatment that is often 
used in microplastic isolation protocols (Barsanti and Gualtieri, 2023; Sun 
et al., 2024). Therefore, diatom frustules can remain after the microplastic 
isolation process and be found among them in the final samples. 

Deep learning consists of an advanced machine learning technique 
in which the algorithm is capable of automatically learning patterns, 
rules, or mathematical relationships from the input data, in this case, 
images of microplastics, and using this knowledge to produce the de-
sired output, namely identifying the microplastic class (Sharifani and 
Amini, 2013). In simpler terms, instead of programming the computer 
with specific instructions on how to recognize each type of microplastic, 
the algorithm learns to do so by analyzing a large number of examples. 

The ResNet50 model is an example of this approach. It is a neural 
network architecture that has been previously trained on a vast collec-
tion of images (the ImageNet database), allowing it to recognize and 
classify new images by extracting and interpreting visual features, such 
as shapes, textures, and colors (Annable, 2024; MathWorks, 2024). 
This  makes it a powerful tool for complex image classification tasks 
such as distinguishing between different types of microplastics.

Applying deep learning for the classification of microplastics pres-
ents significant challenges. First, a dataset of microplastic images is 
necessary, but currently, there is no available database. To accurately 
depict the true characteristics of microplastics as a pollution agent, it 
is essential to collect samples directly from the environment instead 
of generating artificial particles and images. The process involves col-
lecting microplastics through media sampling, isolating and preparing 
the samples, and conducting thorough analyses. Afterward, images 
must be captured under suitable conditions and at an ideal resolution. 
These images must be properly sorted, treated, and in sufficient quan-
tity to provide substantial input for the model. 

The most challenging aspect is the heterogeneity of real microplastic 
shapes, even under the same class, when compared to artificially gener-
ated images or even microplastics obtained under controlled conditions 
(Giardino et al., 2023). For example, fibers could be large, thin, big, small, 
tangled, straight, bright colored, opaque, or transparent, similar to other 
classes, with many other singularities. While the human brain naturally 
recognizes complex visual patterns, achieving this through an automated 
algorithm presents a challenging task (Nielsen, 2024). 

Many authors have addressed the automated processing of micro-
plastics in recent years but the solutions often require expensive, spe-
cific equipment, products, or software. Giardino et al. (2023) proposed 
a semi-automatic image processing method for quantifying and mea-
suring stained fluorescent microplastics using Nile Red dye. Lee et al. 
(2023) investigated the automatic identification of microplastics from 



Application of a convolutional neural network for automated multiclass identification  
of field-collected microplastics and diatom algae from optical microscopy images

3
Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.60 | e2491 | 2025

their Raman spectra, similar to Shi et al. (2022), through scanning elec-
tron micrographs, but also with classification. 

Lorenzo-Navarro et al. (2021) developed an architecture to count 
and classify microplastics in images taken with a digital camera or mo-
bile phone, at a resolution of at least 16 million pixels, without the need 
for microscopes, and only considering microplastics in the size range 
of 1 to 5 millimeters. 

Since locations with significant pollution and sanitation problems 
are associated with higher microplastic concentrations, and conse-
quently, environmental vulnerability (Strady et al., 2021), it is neces-
sary to develop easily accessible, affordable, and effective solutions to 
facilitate the study of microplastics, especially in developing and un-
derdeveloped countries. In this context, this work aimed to present and 
evaluate the application of deep learning in the multiclass classification 
of microplastics and algae through CNNs. 

Methodology

Microplastic isolation
The microplastics used to train the model were isolated from sed-

iment samples of Alagados Reservoir, which is responsible in part for 
the water supply of Ponta Grossa city. It is located in South Brazil, be-
tween coordinates 24°59’ to 25º01’ S and 49°58’ to 50º03’ W (Lemos 
et al., 2014). The samples were collected using a Ponar grab on six dif-
ferent occasions over 12 months. The sample processing was adapted 
from Laboratory Methods for the Analysis of Microplastics in the Ma-
rine Environment, by the National Oceanic and Atmospheric Admin-
istration Marine Debris Program (Masura et al., 2015), and consisted 
of density separation, sieving, organic matter digestion, and drying.

The microplastics were visually identified with an optic micro-
scope at magnifications ranging from 40X to 400X, retrieving particles 
in the range of 0.075 to 5 millimeters, which were classified and pho-
tographed. The photos were taken with a smartphone Galaxy A22, at 
2250 per 4000 pixels. A parcel of the microplastics was submitted to 
Scanning Electron Microscopy with Energy Dispersive Spectroscopy 
(SEM-EDS; TESCAN MIRA) for further investigation and validation 
(TESCAN Group, 2024). 

Input images
A total of 3,459 particles were identified through visual inspec-

tion. Of these, 43.25% were classified as filaments, 34.58% as fibers, 
10.38% as fragments, 7.31% as pellets, 2.49% as foams, and 1.99% as 
films. Although all particles were photographed, not all images were 
used as input for training the model due to issues with image qual-
ity or cluttered backgrounds. Additionally, the classes for foams and 
films lacked sufficient images to enable further classification. For pre-
treatment, the images were cropped to sizes ranging from 600 x 600 
to 1,700 x 1,700 pixels. These images were then organized into folders, 
compressed into zip files, and uploaded to Google Drive. 

A total of 953 fibers, 938 filaments, 300 fragments, 240 pellets, and 
300 algae from the genus Surirella were manually selected and treated in 
this analysis. Other diatom genera, such as Synedra, Pinnularia, and Au-
lacoseira, were also observed during the microplastic analysis; however, 
since they had 60 or fewer photographs each, they were excluded from 
the analysis for insufficient input to train the model. To ensure that the 
number of images was equal across each class for the training process, 
the dataset was standardized to include 300 algae, 300 filaments, 300 
fragments, and 240 pellets. Despite the large number of fiber images, this 
class was not used in the final code of this work because it is the most 
variable type of microplastic. Therefore, to train the model efficiently 
with the inclusion of this class, a larger dataset including the other classes 
is necessary, considering that the classes should preferably have a similar 
number of images to avoid bias. Since the current limiting number of 
images in the classes is 300, this alone would not be enough for efficient 
fiber differentiation. This resulted in a total of 1,140 images, with 912 
allocated for training and 228 for validation. An ideal scenario would 
involve increasing the dataset size to further enhance the training and 
precision of the model. Figure 1 illustrates the microplastics and algae.

Model
The algorithm was coded in Python version 3.10.12 via Google 

Colab, using TensorFlow version 2.18.0 with Keras API. The architec-
ture was based on the books by Chollet (2018), Gosh and Math (2023), 
Zhang et al. (2023) and Ansari (2024), with the structure and debug-
ging assistance of artificial intelligence tools. The code was structured 
to use TensorFlow’s deep learning to train the identification of micro-
plastics in classes with a dataset of classified images of real microplas-
tics, using the Resnet50 architecture of CNN and transfer learning to 
classify new images. The code was executed in a Dell Inspiron 15 5000, 
core i5, with 4 gigabytes of RAM. 

The ResNet50 was chosen for this study due to its proven effec-
tiveness in image classification involving complex and subtle features, 
which is essential while distinguishing between different types of mi-
croplastics and algae. Although lighter architectures such as MobileN-
et, EfficientNet, and SqueezeNet offer faster inference and lower com-
putational cost, they would not meet the depth and feature extraction 
capability required in this study. The residual learning framework of 
ResNet50 allows maintaining high accuracy even in deep configura-
tions, mitigating the vanishing gradient problem and enabling it to 
learn intricate patterns from small datasets through transfer learning. 

This model has also been widely adopted in similar scientific ap-
plications involving biomedical imaging, microscopic particle iden-
tification, and environmental monitoring due to its balance between 
performance and generalizability. Given the complexity of our classes 
and the limited availability of high-quality field-collected training data, 
ResNet50 was the most suitable choice to ensure robustness without 
the need for extensive hyperparameter tuning or computational infra-
structure beyond the available resources.
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The process of coding optimization involves multiple iterations 
of architecture and input modifications. The final model architecture 
begins with the installation of TensorFlow and the importation of the 
necessary libraries. It then proceeds to extract the microplastic images 
stored in a zip file on Google Drive, creating a directory for the extracted 
folder. The microplastic shapes can vary in color, primarily being trans-
parent or displaying faded hues. After testing and consideration, the 
next step in the code was to convert the images to grayscale. This trans-
formation ensures that the classification focuses on the shape of the 
particles rather than associating specific colors with particular shapes.

Data augmentation techniques were employed to enhance the 
ability of the model to generalize and reduce overfitting, especially 
considering the limited dataset available. Specifically, during training, 
images were subjected to a set of controlled transformations using the 
ImageDataGenerator function in TensorFlow. These transformations 
included random rotations of up to 30 degrees, horizontal flips, zoom 
variations up to 20%, and translations (shifts) of up to 10% in both 
horizontal and vertical directions. Additionally, the nearest fill mode 
was applied across all training folds for experimental reproducibility 
and to allow the model to better learn the invariant features of the mi-
croplastic images.

The images were resized to 256 by 256 pixels, which is a standard 
size for CNN analysis. This size strikes a balance between higher detail 
compared to smaller sizes and better computational efficiency than larg-

er sizes. Larger dimensions, such as 526 or 1,024 pixels, would offer more 
detail, but the available equipment could not support them. The dataset 
was split into 80% for training and 20% for validation, with class weights 
set inversely proportional to the number of images in each class. 

Since ResNet50 is a pre-trained model, fine-tuning was achieved 
by unfreezing the first 100 layers for training. The output layer cor-
responds to the classes of microplastics and algae. The model was 
then compiled using the Adam optimizer to adjust the weights during 
deep learning. To prevent overfitting—where the model performs 
well on the training dataset but fails to generalize to new data—an 
early stopping function was implemented with a patience of 10 ep-
ochs. The accuracy and loss for each epoch were printed during train-
ing for monitoring purposes. After the conclusion of the training, the 
details about the process, precision, recall, F1-score, and confusion 
matrix were shown. 

In this work, a default set of hyperparameters was employed, such 
as a learning rate of 1e-4, batch size of 32, and 50 training epochs, in 
combination with callbacks for early stopping and adaptive learning 
rate reduction. No formal hyperparameter optimization (such as grid 
search, random search, or Bayesian optimization) was conducted. 
This decision was made due to computational resource limitations and 
the extended runtime required by k-fold cross-validation using a Res-
Net50 architecture. Instead, hyperparameters were selected based on 
values commonly reported in similar image classification tasks in the 

Figure 1 – Microplastics and algae observed in the samples: (A) Fiber; (B) Filament; (C) Fragment; (D) Pellet; (E) Surirella sp.; (F) Synedra sp.; (G) Pinnularia 
sp., and (H) Aulacoseira sp.
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literature. This choice is acknowledged here to maintain methodolog-
ical transparency and provide context for the reported performance. 

Results and Discussion
The execution of the code resulted in five models; each trained with 

different sets of images. The best model, result of the first fold, had 33 
batches of 29 images per epoch, taking an average of 18 seconds per 
step, and approximately 492 to 566 seconds per epoch. The training 
was halted at epoch 33 of 50 due to early stopping, which was trig-
gered by a patience of 10. This means that after epoch 33, the validation 
accuracy stopped improving, and the model was not generalizing any 
better, despite the increase in training accuracy.

The training and validation accuracy and loss are illustrated in Fig-
ure 2. The training accuracy showed an increase throughout the process, 
rising at a higher rate during the first 5 epochs, as expected. In the first ep-
ochs, the model is most likely adjusting the weights while learning basic 
features. As training progresses, it begins to learn more refined and com-
plex features, which slows down the pace of improvement after the initial 
epochs. It began at 35% in the first epoch and reached 93% by epoch 33. 

The validation accuracy started at 19% and greatly improved, 
reaching 87% at epoch 13 after consistently increasing. It was also ex-
pected, as the model was beginning to adjust its parameters, learning to 
generalize well to the validation set. However, it experienced a fluctua-
tion, dropping to 68% in epoch 16, before finishing at 93% in epoch 33.

The loss metrics during training and validation shows a decline 
in both cases over the epochs, indicating that the model is learning 
and that the predictions are increasingly close to the ground truth. 
The training loss decreased steadily, from 1.4 to 0.2, while the valida-
tion loss exhibited a spike at epoch 5 before a more gradual decline 
throughout the epochs, from 1.6 to 7.5, then 0.2. 

The best model report, presented in Table 1, outlines the predic-
tion results derived from the validation dataset. Among the various 
types of microplastics assessed, pellets were identified with the high-
est precision at 98%, followed by fragments at 92%, and filaments at 
89%. Notably, the model achieved a precision rate of 97% in identi-
fying the algae class, likely due to the consistent shape of algae com-
pared to the diverse shapes observed in microplastics, even within 
the same classification. This variability underscores the necessity for 
larger datasets to enhance the model’s training. By expanding the 
dataset, it is possible to improve pattern recognition and produce 
more accurate predictions.

In contrast, filaments showed the highest recall among the mi-
croplastics with a rate of 95%. This was followed by fragments at 
92% and pellets at 90%. Algae also had a high recall value of 97%.  
The difference between the precision and recall for the filament cat-
egory indicates that the model is generating more false positives and 
fewer false negatives, accurately predicting real positives at a 95% rate.  

Figure 2 – Graphical representation of the training and validation accuracy and loss.

Table 1 – Graphical representation of the training and validation accuracy 
of the first fold.

  Precision Recall F1 score Support

Filament 0.89 0.95 0.92 60

Fragment 0.92 0.92 0.92 60

Pellet 0.98 0.90 0.93 48

Algae 0.97 0.97 0.97 60

Macro average 0.94 0.93 0.93 228

Weighted average 0.94 0.93 0.93 228

Accuracy     0.93 228
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Conversely, for the pellet class, the model tends to generate more 
false negatives than false positives. This discrepancy is reflected in 
the F1 score, which is the harmonic mean of precision and recall. 
The support refers to the size of the validation sample, while accuracy 
is the mean of the F1 score. An accuracy value of 93% is satisfactory 
given the dataset size; however, there is still a need for improvement 
with a larger training input.

The confusion matrix (Figure 3) illustrates the actual values, false 
negatives, and false positives of the predictions. The algae class had 
the highest number of true positive predictions, followed by filaments, 
fragments, and pellets. The errors basically involved misidentifying 
actual fragments as filaments (3 instances) and actual pellets as fila-
ments (3 instances). This suggests that the model tends to over-predict 
filaments and struggles with accurately classifying pellets, resulting in 
false positives and false negatives for this category. These issues also 
impacted the precision and recall of the fragments. 

The results of the other folds are shown in Table 2. Folds 2, 4, 5, and 
6 showed similar results to fold 1, while fold 3 showed notably unsatis-
factory results. The 0% F1 score achieved by three of the four categories 
indicates a probable bad set of training images, which precluded the 
model from properly learning the features of the images of different 
classes. The 100% recall of pellets suggests a bias from the model to-
wards this class to the detriment of the others.

The results obtained across different folds of the cross-validation pro-
cess reveal variations in model performance across the validation subsets, 
both in terms of accuracy and class discrimination capability, as shown in 
Figure 4. Although the training accuracy showed a similar tendency across 
all folds, rapidly increasing at the first epochs and then maintaining slow 
improvements, the validation accuracy showed considerable variations. 
In fold 2, the validation accuracy took some epochs to start improving, then 
spiked at epoch 14. Folds 4 and 5 showed a more gradual improvement, 
meanwhile fold 3 barely showed improvement in its validation accuracy.  

Figure 3 – Confusion matrix of the validation dataset.

Table 2 – Graphical representation of the training and validation accuracy 
of folds 2 to 5.

  Precision Recall F1 score Support

Fold 2

Filament 0.95 0.93 0.94 60

Fragment 0.88 0.85 0.86 60

Pellet 0.88 0.96 0.92 48

Algae 0.97 0.95 0.96 60

Macro average 0.92 0.92 0.92 228

Weighted average 0.92 0.92 0.92 228

Accuracy     0.92 228

Fold 3

Filament 0.00 0.00 0.00 60

Fragment 0.00 0.00 0.00 60

Pellet 0.21 1.00 0.35 48

Algae 0.00 0.00 0.00 60

Macro average 0.05 0.25 0.09 228

Weighted average 0.04 0.21 0.07 228

Accuracy     0.21 228

Fold 4

Filament 0.94 0.98 0.96 60

Fragment 0.87 0.78 0.82 60

Pellet 0.91 0.88 0.89 48

Algae 0.92 1.00 0.96 60

Macro average 0.91 0.91 0.91 228

Weighted average 0.91 0.91 0.91 228

Accuracy     0.91 228

Fold 5

Filament 0.88 0.97 0.92 60

Fragment 0.88 0.77 0.82 60

Pellet 0.86 0.88 0.87 48

Algae 0.95 0.97 0.96 60

Macro average 0.89 0.89 0.89 228

Weighted average 0.89 0.89 0.89 228

Accuracy     0.89 228

While all losses tended to decrease, fold 3 showed an increasing valida-
tion loss, indicating its distancing from the ground truth.

The overall evaluation of the model across the five cross-validation 
folds yielded an average validation accuracy of 77.40%, standard devi-
ation ±28.30%, and an average F1 score of 74.60±33.89%. These results 
reflect generally strong performance but also suggest a considerable 
degree of variability across the folds. 

Looking at the per-fold results, the model demonstrated excellent 
performance in folds 1, 2, 4, and 5, with both validation accuracies 
and F1 scores ranging from 89 to 96,%, as shown in Figure 5. This in-
dicates that, in these cases, the model was highly effective at correctly 
classifying the target classes and maintaining a strong balance between 
precision and recall.
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Fold 3, in turn, stands out as a significant outlier, with a val-
idation accuracy of only 21% and an F1 score of 7%. This sharp 
decline in performance suggests that the data in fold 3 may have 
presented unique challenges to the model, potentially due to class 
imbalance, noisy data, or a distribution that differs markedly from 
the training set in that iteration. The relatively high standard devi-
ations observed for both accuracy and F1 score further confirm the 
presence of this performance inconsistency, largely driven by the 
poor outcome in fold 3.

In summary, while the model exhibits strong and reliable per-
formance in most folds, the substantial drop in fold 3 highlights the 
importance of increasing the size of the dataset to improve the train-
ing and validation process, providing a more resourceful distribution 
across all folds. 

After conducting training and validation, the model based on fold 
1 was prepared to predict new images, displaying their filenames and 
predicted classes. The architecture of the model was designed to classify 
each image from a specific folder, returning results in the format: “Pre-
diction for the image ({image_path}): {predicted_class}”. Each prediction 
was completed in less than a second. The model achieved an accuracy 
of 95% when tested with 40 new real images of algae and microplastics. 

Conclusion
This study is the first to address the presence of diatom frustules 

following the most common microplastic isolation protocol, which 
involves degrading organic matter using hydrogen peroxide. Addition-
ally, it introduces an automatic classification system that categorizes 
microplastics and algae into four distinct groups. The final model’s 

Figure 4 – Graphical representation of the training and validation accuracy and loss in different folds of the cross-validation (fold 2 at top left, fold 3 at top 
right, fold 4 at bottom left, and fold 5 at bottom right).

Figure 5 – Validation accuracy per fold.
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overall accuracy was 93%, and its precision in recognizing algae was 
97%. These results are promising, especially considering the size of the 
dataset and the challenges associated with the automatic identification 
of microplastics, which come in various shapes. Future research should 
expand the dataset to include over 1,000 images per class, with more 
microplastic classes and incorporate additional diatom species into the 
classification, as these can resemble microplastic filaments. Accurate 
identification of these algae is essential.  
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Acknowledgements
The authors would like to thank the Water and Sanitation Compa-

ny of Parana (Sanepar) and the State University of Ponta Grossa for all 
the assistance received during the processing of the analysis. 

Authors’ Contributions
Almeida, V.: Conceptualization, Methodology, Software, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, Visualization. Wiecheteck, 
G.K.: Conceptualization, Resources, Writing – Review & Editing, Supervision, Funding Acquisition. Christo, S.W.: Conceptualization, Resources, Writing – 
Review & Editing, Project Administration. Girard, P.: Writing – Review & Editing. Souza, J.B.: Writing – Review & Editing. Inglez, J.E.F.: Conceptualization, 
Resources, Formal Analysis, Writing – Review & Editing, Visualization. Staichak, G.: Conceptualization, Methodology, Formal Analysis. Ferreira Júnior, A.L.: 
Formal Analysis, Investigation, Project Administration. 

References
Annable, C., 2024. Python machine learning: a step-by-step journey with 
scikit-learn and tensor flow for beginners. 

Ansari, H., 2024. Mastering tensorflow: unleashing the power of deep learning: 
a hands-on guide to building neural networks, image processing, and natural 
language understanding with tensorflow (Accessed August 14, 2025) at:. 
https://sciarium.com/file/632232/

Barsanti, L.; Gualtieri, P., 2023. Algae: anatomy, biochemistry, and 
biotechnology, Third edition. CRC Press, Boca Raton. https://doi.
org/10.1201/9781003187707

Benson, N.U.; Agboola, O.D.; Fred-Ahmadu, O.H.; De-La-Torre, G.E.; 
Oluwalana, A.; Williams, A.B., 2022. Micro(nano)plastics prevalence, food web 
interactions, and toxicity assessment in aquatic organisms: a review. Frontiers 
in Marine Science, v. 9, 851281. https://doi.org/10.3389/fmars.2022.851281

Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.Z.; 
Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S., 2023. Toxicity 
assessment of microplastic (MPs). Environmental Research, v. 234, 116523. 
https://doi.org/10.1016/j.envres.2023.116523 

California State Policy Evidence Consortium (CalSPEC), 2023. Microplastics 
occurrence, health effects, and mitigation policies: an evidence review for the 
California state legislature. CalSPEC, United States of America. 

Castro, D.G.D.; Silva, A.L.L.D.; Lopes, M.D.N.; Freire, A.S.; Leite, N.K., 2024. 
Effect of urbanization and water quality on microplastic distribution in 
Conceição Lagoon watershed, Brazil. Environmental Science and Pollution 
Research, 31, 28870-28889. https://doi.org/10.1007/s11356-024-33029-y

Chollet, F., 2018. Deep learning with python. Manning Publications Co., 
Shelter Island. 

Citterich, F.; Giudice, A.L.; Azzaro, M., 2023. A plastic world: A review 
of microplastic pollution in the freshwaters of the Earth’s poles. Science 
of The Total Environment, v. 869, 161847. https://doi.org/10.1016/j.
scitotenv.2023.161847

Corcoran, P.L.; Belontz, S.L.; Ryan, K.; Walzak, M.J., 2019. Factors controlling 
the distribution of microplastic particles in benthic sediment of the Thames 

River, Canada. Environmental Science & Technology, v. 54 (2), 818-825. 
https://doi.org/10.1021/acs.est.9b04896

Costa, J.P.; Duarte, A.C., 2022. Introduction to the analytical methodologies 
for the analysis of microplastics. In: Rocha-Santos, T.AP., Costa, M.F.; 
Mouneyrac, C. (Eds.), Handbook of microplastics in the environment. 
Springer, Cham. https://doi.org/10.1007/978-3-030-39041-9_1

Drabinski, T.L.; Carvalho, D.G.D.; Gaylarde, C.C.; Lourenço, M.F.P.; Machado, 
W.T.V.; Fonseca, E.M.; Silva, A.L.C.D.; Baptista Neto, J.A., 2023. Microplastics 
in freshwater river in Rio de Janeiro and its role as a source of microplastic 
pollution in Guanabara Bay, SE Brazil. Micro, v. 3 (1), 208-223. https://doi.
org/10.3390/micro3010015

Duan, L.; Luo, L.; Zhang, L.; Li, D.; Li, H.; Xu, T.; Xu, J.; Zhang, H., 2024. The 
occurrence of microplastics pollution in the surface water and sediment of 
Lake Chenghai in Southwestern China. Water, v. 16 (18), 2672. https://doi.
org/10.3390/w16182672

Egessa, R.; Nankabirwa, A.; Ocaya, H.; Pabire, W.G., 2020. Microplastic 
pollution in surface water of Lake Victoria. Science of the Total Environment, 
v. 741, 140201. https://doi.org/10.1016/j.scitotenv.2020.140201

Gerolin, C.R.; Pupim, F.N.; Sawakuchi, A.O.; Grohmann, C.H.; Labuto, G.; 
Semensatto, D., 2020. Microplastics in sediments from Amazon rivers, Brazil. 
Science of the Total Environment, v. 749, 141604. https://doi.org/10.1016/j.
scitotenv.2020.141604

Giardino, M.; Balestra, V.; Janner, D.; Bellopede, R., 2023. Automated 
method for routine microplastic detection and quantification. Science of 
The Total Environment, vol. 859 (Part 2), 160036. https://doi.org/10.1016/j.
scitotenv.2022.160036

Gosh, T.; Math, S.K.B., 2023. Practical mathematics for AI and deep learning. 
BPB Publications, India. 

Hasnine, M.D.T.; Anik, A.H.; Alam, M.; Yuan, Q., 2024. Navigating 
microplastic challenges: separation and detection strategies in wastewater 
treatment. In: Kumar, A.; Singh, V. (Eds.), Microplastics pollution and its 
remediation. Springer, Cham.

http://doi.org/10.17632/yyn2g83vsy.1
https://sciarium.com/file/632232/
https://doi.org/10.1201/9781003187707
https://doi.org/10.1201/9781003187707
https://doi.org/10.3389/fmars.2022.851281
https://doi.org/10.1016/j.envres.2023.116523
https://doi.org/10.1007/s11356-024-33029-y
https://doi.org/10.1016/j.scitotenv.2023.161847
https://doi.org/10.1016/j.scitotenv.2023.161847
https://doi.org/10.1021/acs.est.9b04896
http://T.AP
https://doi.org/10.1007/978-3-030-39041-9_1
https://doi.org/10.3390/micro3010015
https://doi.org/10.3390/micro3010015
https://doi.org/10.3390/w16182672
https://doi.org/10.3390/w16182672
https://doi.org/10.1016/j.scitotenv.2020.140201
https://doi.org/10.1016/j.scitotenv.2020.141604
https://doi.org/10.1016/j.scitotenv.2020.141604
https://doi.org/10.1016/j.scitotenv.2022.160036
https://doi.org/10.1016/j.scitotenv.2022.160036


Application of a convolutional neural network for automated multiclass identification  
of field-collected microplastics and diatom algae from optical microscopy images

9
Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.60 | e2491 | 2025

He, D.; Luo, Y., 2020. Microplastics in terrestrial environments emerging 
contaminants and major challenges. In: Barceló, D.; Kostianoy, A.G. (Eds.), 
The handbook of environmental chemistry (Vol. 95). Springer, Cham. https://
doi.org/10.1007/978-3-030-56271-7 

Ivanic, F.M.; Guggenberger, G.; Woche, S.K.; Bachmann, J.; Hoppe, M.; 
Carstens, J.F., 2023. Soil organic matter facilitates the transport of microplastic 
by reducing surface hydrophobicity. Colloids and Surfaces A: Physicochemical 
and Engineering Aspects, v. 676 (Part B), 132255. https://doi.org/10.1016/j.
colsurfa.2023.132255

Kurki-Fox, J.J.; Doll, B.A.; Monteleone, B.; West, K.; Putnam, G.; Kelleher, 
L.; Krause, S.; Schneidewind, U., 2023. Microplastic distribution and 
characteristics across a large river basin: Insights from the Neuse River in 
North Carolina, USA. Science of the Total Environment, 878, 162940. https://
doi.org/10.1016/j.scitotenv.2023.162940

Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, 
V.C., 2021. How well-protected are protected areas from anthropogenic 
microplastic contamination? Trends in Environmental Analytical Chemistry, 
(32), e00147. https://doi.org/10.1016/j.teac.2021.e00147

Lee, S.; Jeong, H.; Hong, S.M.; Yun, D.; Lee, J.; Kim, E.; Cho, K.H., 2023. 
Automatic classification of microplastics and natural organic matter mixtures 
using a deep learning model. Water Research, v. 246, 120710. https://doi.
org/10.1016/j.watres.2023.120710

Lemos, C.F.; Fiori, A.P.; Oka-Fiori, C.; Tomazoni, J.C., 2014. Assoreamento da 
represa de Alagados pela contribuição de sedimentos da bacia hidrográfica 
do alto curso do rio Pitangui/PR. Geociências, v. 33 (4), 549-557 (Accessed 
August 14, 2025) at:. https://www.periodicos.rc.biblioteca.unesp.br/index.php/
geociencias/article/view/9501

Li, J.; Zhang, J.; Ren, S.; Huang, D.; Liu, F.; Li, Z; Zhang, H.; Zhao, M.; Cao, 
Y.; Mofolo, S.; Liang, J.; Xu, W.; Jones, D.L.; Chadwick, D.R.; Liu, X.; Wang, 
K., 2023. Atmospheric deposition of microplastics in a rural region of North 
China Plain. Science of the Total Environment, v. 877, 162947. https://doi.
org/10.1016/j.scitotenv.2023.162947

Li, X.; Bao, L.; Wei, Y.; Zhao, W.; Wang, F.; Liu, X.; Su, H.; Zhang, R., 2023. 
Occurrence, bioaccumulation, and risk assessment of microplastics in the 
aquatic environment: a review. Water, 15 (9), 1768. https://doi.org/10.3390/
w15091768

Lorenzo-Navarro, J.; Castrillón-Santana, M.; Sánchez-Nielsen, E.; Zarco, 
B.; Herrera, A.; Martínez, I.; Gómez, M., 2021. Deep learning approach for 
automatic microplastics counting and classification. Science of the Total 
Environment, v. 765, 142728. https://doi.org/10.1016/j.scitotenv.2020.142728

Lucas-Solis, O.; Moulatlet, G.M.; Guamangallo, J.; Yacelga, N.; Villegas, 
L.; Galarza, E.; Rosero, B.; Zurita, B.; Sabando, L.; Cabrera, M.; Gimiliani, 
G.T.; Capparelli, M.V., 2021. Preliminary assessment of plastic litter and 
microplastic contamination in freshwater depositional areas: The case study 
of Puerto Misahualli, Ecuadorian Amazonia. Bulletin of Environmental 
Contamination and Toxicology, v. 107, 45-51. https://doi.org/10.1007/s00128-
021-03138-2

Lv, L.; Yan, X.; Feng, L.; Jiang, S.; Lu, Z.; Xie, H.; Sun, S.; Chen, J.; Li, C., 
2021. Challenge for the detection of microplastics in the environment. Water 
Environment Research, v. 93 (1), 5-15. https://doi.org/10.1002/wer.1281

Masura, J.; Baker, J.; Foster, G.; Arthur, C.; Herring, C., 2015. Laboratory 
methods for the analysis of microplastics in the marine environment. Silver 
Spring, United States (Accessed August 14, 2025) at:. https://repository.library.
noaa.gov/view/noaa/10296

Mathew, J.T.; Inobeme, A.; Adetuyi, B.O.; Falana, Y.O.; Adetunji, C.O.; 
Shahnawaz, M., 2024. Application of microplastics in toiletry products. 

In: Shahnawaz, M.; Adetunji, C.O.; Dar, M.A.; Zhu, D. (Eds.), Microplastic 
pollution. Springer, Singapore. https://doi.org/10.1007/978-981-99-8357-5_5

Mathworks. Resnet50. Website (Accessed November 15, 2024) at:. https://
www.mathworks.com/help/de eplearning/ref/resnet50.html 

Mitchell, C.; Waterhouse, J., 2023. Microplastics in Arctic Sea ice: a 
petromodern archive fever. In: Konrad, T. (Ed.), Plastics, environment, culture, 
and the politics of waste. Edinburgh University Press, Edinburgh. https://doi.
org/10.3366/edinburgh/9781399511735.003.0006

Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V., 2020. 
Identification of microplastics in surface water and Australian freshwater 
shrimp Paratya australiensis in Victoria, Australia. Environmental Pollution, v. 
259, 113865. https://doi.org/10.1016/j.envpol.2019.113865

Nayeri, D.; Mousavi, S. A.; Almasi, A.; Asadi, A., 2023. Microplastic 
abundance, distribution, and characterization in freshwater sediments 
in Iran: a case study in Kermanshah city. Environmental Science and 
Pollution Research, v. 30 (17), 49817-49828. https://doi.org/10.1007/
s11356-023-25620-6

Nielsen, M. Neural networks and deep learning (Accessed November 11, 2024) 
at:. http://neuralnetworksanddeeplearning.com/index.html

Parvin, F.; Hassan, A.; Tareq, S.M., 2022. Risk assessment of microplastic 
pollution in urban lakes and peripheral Rivers of Dhaka, Bangladesh. Journal 
of Hazardous Materials Advances, v. 8, 100187. https://doi.org/10.1016/j.
hazadv.2022.100187

Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, 
C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; Carnevali, O.; Giorgini, 
E., 2022. Raman microspectroscopy detection and characterisation of 
microplastics in human breastmilk. Polymers, v. 14 (13), 2700. https://doi.
org/10.3390/polym14132700

Saad, D.; Ramaremisa, G.; Ndlovu, M.; Chauke, P.; Nikiema, J.; Chimuka, L., 
2024. Microplastic abundance and sources in surface water samples of the Vaal 
River, South Africa. Bulletin of Environmental Contamination and Toxicology, 
v. 112 (1), 23. https://doi.org/10.1007/s00128-023-03845-y

Sharifani, K.; Amini, M., 2013. Machine learning and deep learning: a review 
of methods and applications. World Information Technology and Engineering 
Journal, v. 10 (7), 3897-3904 (Accessed August 14, 2025) at:. https://ssrn.com/
abstract=4458723

Shi, B.; Patel, M.; Yu, D.; Yan, J.; Li, Z.; Petriw, D.; Pruyn, T.; Smyth, K.; 
Passeport, E.; Miller, R.J.D.; Howe, J.Y., 2022. Automatic quantification and 
classification of microplastics in scanning electron micrographs via deep 
learning. Science of the Total Environment, v. 825, 153903. https://doi.
org/10.1016/j.scitotenv.2022.153903

Strady, E.; Dang, T.H.; Dao, T.D.; Dinh, H.N.; Do, T.T.D.; Duong, T.N.; 
Duong, T.T.; Hoang, D.A.; Kieu-Le, T.C.; Le, T.P.Q.; Mai, H.; Trinh, D.M.; 
Nguyen, Q.H; Tran-Nguyen, Q.A.; Tran, Q.V.; Truong, T.N.S.; Chu, V.H.; Vo, 
V.C., 2021. Baseline assessment of microplastic concentrations in marine 
and freshwater environments of a developing Southeast Asian country, Viet 
Nam. Marine Pollution Bulletin, v. 162, 111870. https://doi.org/10.1016/j.
marpolbul.2020.111870

Sun, X.; Zhang, M.; Liu, J.; Hui, G.; Chen, X.; Feng, C., 2024. The art of 
exploring diatom biosilica biomaterials: from biofabrication perspective. 
Advanced Science, v. 11 (6), 2304695. https://doi.org/10.1002/advs.202304695

Tang, Y.; Liu, Y.; Chen, Y.; Zhang, W.; Zhao, J.; He, S.; Yang, C.; Zhang, T.; Tang, 
C.; Zhang, C.; Yang, Z., 2020. A review: Research progress on microplastic 
pollutants in aquatic environments. Science of the Total Environment, v. 766, 
142572. https://doi.org/10.1016/j.scitotenv.2020.142572

https://doi.org/10.1007/978-3-030-56271-7
https://doi.org/10.1007/978-3-030-56271-7
https://doi.org/10.1016/j.colsurfa.2023.132255
https://doi.org/10.1016/j.colsurfa.2023.132255
https://doi.org/10.1016/j.scitotenv.2023.162940
https://doi.org/10.1016/j.scitotenv.2023.162940
https://doi.org/10.1016/j.teac.2021.e00147
https://doi.org/10.1016/j.watres.2023.120710
https://doi.org/10.1016/j.watres.2023.120710
https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/9501
https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/9501
https://doi.org/10.1016/j.scitotenv.2023.162947
https://doi.org/10.1016/j.scitotenv.2023.162947
https://doi.org/10.3390/w15091768
https://doi.org/10.3390/w15091768
https://doi.org/10.1016/j.scitotenv.2020.142728
https://doi.org/10.1007/s00128-021-03138-2
https://doi.org/10.1007/s00128-021-03138-2
https://doi.org/10.1002/wer.1281
https://repository.library.noaa.gov/view/noaa/10296
https://repository.library.noaa.gov/view/noaa/10296
https://doi.org/10.1007/978-981-99-8357-5_5
https://www.mathworks.com/help/de
https://www.mathworks.com/help/de
https://doi.org/10.3366/edinburgh/9781399511735.003.0006
https://doi.org/10.3366/edinburgh/9781399511735.003.0006
https://doi.org/10.1016/j.envpol.2019.113865
https://doi.org/10.1007/s11356-023-25620-6
https://doi.org/10.1007/s11356-023-25620-6
http://neuralnetworksanddeeplearning.com/index.html
https://doi.org/10.1016/j.hazadv.2022.100187
https://doi.org/10.1016/j.hazadv.2022.100187
https://doi.org/10.3390/polym14132700
https://doi.org/10.3390/polym14132700
https://doi.org/10.1007/s00128-023-03845-y
https://ssrn.com/abstract=4458723
https://ssrn.com/abstract=4458723
https://doi.org/10.1016/j.scitotenv.2022.153903
https://doi.org/10.1016/j.scitotenv.2022.153903
https://doi.org/10.1016/j.marpolbul.2020.111870
https://doi.org/10.1016/j.marpolbul.2020.111870
https://doi.org/10.1002/advs.202304695
https://doi.org/10.1016/j.scitotenv.2020.142572


Almeida, V. et al.

10

Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.60 | e2491 | 2025

TESCAN Group. TESCAN MIRA (Accessed September 13, 2024) at:. https://
www.tescan.com/pt-br/product/sem-for-materials-science-tescan-mira/ 

Vidal, A.; Phuong, N.N.; Métais, I.; Gasperi, J.; Châtel, A., 2023. 
Assessment of microplastic contamination in the Loire River (France) 
throughout analysis of different biotic and abiotic freshwater matrices. 
Environmental Pollution, v. 334, 122167. https://doi.org/10.1016/j.
envpol.2023.122167

Vithanage, M.; Prasad, M.N.V. (Eds.), 2023. Microplastics in the ecosphere: air, 
water, soil, and food. John Wiley & Sons, Hoboken. 

Wang, C.; O’Connor, D.; Wang, L.; Wu, W.M.; Luo, J.; Hou, D., 2022. 
Microplastics in urban runoff: Global occurrence and fate. Water Research, v. 
225, 119129. https://doi.org/10.1016/j.watres.2022.119129

Zhang, A.; Lipton, Z. C.; Li, M.; Smola, A.J., 2023. Dive into deep learning. 
Cambridge University Press, Cambridge. 

https://www.tescan.com/pt-br/product/sem-for-materials-science-tescan-mira/
https://www.tescan.com/pt-br/product/sem-for-materials-science-tescan-mira/
https://doi.org/10.1016/j.envpol.2023.122167
https://doi.org/10.1016/j.envpol.2023.122167
https://doi.org/10.1016/j.watres.2022.119129

