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A B S T R A C T 
The estimation of construction and demolition waste (CDW) generation 
is essential for sustainable planning and effective waste management 
on construction sites. However, conventional methods often fail to 
meet the practical demands of the sector. This study investigated the 
use of artificial neural networks (ANN) as a predictive tool for CDW 
quantification. Simulations were performed with samples of 5,000 
data points (A) and 10,000 data points (B), followed by validation with 
a sample of 360 data points (R) collected from construction sites in 
Curitiba, Paraná state, Brazil. This approach allowed for a comprehensive 
evaluation of the predictive accuracy and practical applicability of the 
ANN. The best performance was obtained with sample B, using an ANN 
configured with two input variables, ten neurons in the hidden layer, 
and three training cycles. In the simulations, the model presented a 
coefficient of determination (R²) of 1.00, a root mean squared error 
(RMSE) of 6.55 kg, and a mean absolute percentage error (MAPE) of 
0.00013%. In the validation, an R² of 0.83 was obtained, along with 
an RMSE of 4,337.69 m³, and accurate estimates in over 60% of cases 
(MAPE). The results demonstrated the viability of using ANNs to improve 
CDW estimation, contributing to decision-making and the development 
of more efficient waste reduction strategies in civil construction.

Keywords: waste management; data analytics; artificial intelligence; 
sustainability; simulation method.

R E S U M O
A estimativa da geração de resíduos da construção civil (RCC) é 
essencial para o planejamento sustentável e a gestão eficaz de 
resíduos em canteiros de obras. No entanto, os métodos convencionais 
frequentemente não atendem às demandas práticas do setor. Este 
estudo investigou o uso de redes neurais artificiais (RNA) como 
ferramenta preditiva para a quantificação de RCC. Foram realizadas 
simulações com amostras de 5.000 dados (A) e 10.000 dados (B), 
seguidas da validação com amostra de 360 dados (R) coletados 
em canteiros de obras em Curitiba, estado do Paraná, Brasil. Essa 
abordagem permitiu uma avaliação abrangente da acurácia preditiva e 
da aplicabilidade prática da RNA. O melhor desempenho foi obtido com 
a amostra B, utilizando uma RNA configurada com duas variáveis de 
entrada, dez neurônios na camada oculta e três ciclos de treinamento. 
Nas simulações, o modelo apresentou coeficiente de determinação (R²) 
de 1,00, raiz do erro quadrático médio (RMSE, root mean squared error) 
de 6,55 kg e erro percentual absoluto médio (MAPE, mean absolute 
percentagem error) de 0,00013%. Na validação, obteve-se R² de 0,83, 
RMSE de 4.337,69 m³ e estimativas precisas em mais de 60% dos casos 
(MAPE). Os resultados demonstraram a viabilidade do uso de RNA para 
aprimorar a estimativa de RCC, contribuindo para a tomada de decisão 
e para o desenvolvimento de estratégias mais eficientes de redução de 
resíduos na construção civil.

Palavras-chave: gestão de resíduos; análise de dados; inteligência 
artificial; sustentabilidade; método de simulação.
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Introduction
With the advancement of urbanization and the growth of the con-

struction industry, this sector has emerged as one of the largest gener-
ators of solid waste globally, with construction and demolition waste 
(CDW) currently representing the primary waste stream worldwide 
(Soto-Paz et  al., 2023). Inadequate CDW management leads to per-
sistent public complaints regarding local pollution, illegal dumping, 
and contamination, highlighting the necessity for integrated preven-
tion and control strategies from the project planning phase, which is 
crucial for promoting environmental sustainability and economic de-
velopment, particularly in contexts of rapid urbanization (Wu et  al., 
2024; Sagan and Mach, 2025).

Globally, CDW generation is substantial. Australia recorded a 24% 
increase in CDW between 2020 and 2021, reaching 29 million tons 
(Langley et al., 2025). Historically, China and the United States have 
been major contributors, with China producing over 1 billion tons in 
2014 and the U.S. generating approximately 600 million tons in 2018 
(Ray et al., 2024). While quantities and compositions vary regionally, 
China, the United States, and the European Union remain the largest 
global contributors (Aslam et  al., 2020; Kabirifar et  al., 2020; Zhang 
et  al., 2022; Zhang et  al., 2023). In 2020, the European Union’s total 
waste production was 2,153 billion tons, with 37.5% originating from 
the CDW sector (Eurostat, 2023). In Brazil, 44,5 million tons of CDW 
were generated in 2023, underscoring its importance in the national 
waste profile (ABREMA, 2024). This waste generation poses not only 
an environmental challenge but also an economic burden, increasing 
costs for constructors and imposing additional expenses on public au-
thorities due to frequent irregular disposals.

Despite the magnitude of the problem, accurately estimating CDW 
quantities remains a practical challenge in the civil construction sector. 
Traditional quantification methods, often based on volume or weight, 
are time-consuming, labor-intensive, and frequently require detailed 
project data. In Brazil, Pinto’s (1999) pioneering study remains a widely 
used and influential reference for CDW estimation, proposing a gen-
eration rate of 150 kg/m² for new constructions and specific indicators 
for renovations, demolitions, and informal constructions. The absence 
of more comprehensive or updated national studies highlights the con-
tinued relevance of this foundational work.

The scarcity of detailed data on construction characteristics and 
waste generation necessitates the development of more efficient, flex-
ible, and accessible estimation models. Artificial neural networks 
(ANNs) emerge as a promising tool due to their advanced self-learn-
ing capabilities and ability to model complex, non-linear relationships 
without predefined mathematical formulas (Sheekoohiyan et al., 2023).

Recent studies highlight the increasing application of machine 
learning techniques in CDW estimation, classification, and prediction. 
Samal et al. (2025) critically reviewed the potential of algorithms such 
as ANNs, support vector machines, and deep convolutional neural net-
works (DCNNs) for optimizing waste management processes, noting 

DCNNs’ 94% accuracy in certain applications. A recent review identified 
98 studies (2012–2023) applying machine learning algorithms to CDW 
management, with ANNs, deep learning, and support vector machines 
being prominent across generation, handling, transport, and final dis-
posal stages (Gao et al., 2024). Specific examples include hybrid models 
with autoencoders and neural networks for demolition waste prediction 
(Cha et al., 2023), multilayer perceptron networks for concrete compres-
sion strength prediction (Tam et al., 2022), and machine learning-based 
regression for renovation waste prediction (Lu et al., 2023).

Furthermore, Awad et  al. (2024) integrated a metaheuristic ap-
proach with ANNs to estimate CDW generation in Gaza, achieving 
high R² values and improved predictive accuracy. Similar results were 
observed in Bahrain, where multilayer perceptron networks achieved 
an R² of 0.91 for annual civil construction waste prediction (Coskuner 
et al., 2021). Hu et al. (2021) utilized support vector machines for esti-
mating five types of construction waste, Lu et al. (2021) compared var-
ious machine learning models for construction waste quantification, 
including multiple linear regression, decision trees, gray models, and 
ANNs, and Gao et al. (2023) proposed an intelligent irrigation model 
framework based on machine learning. These findings collectively re-
inforce the viability of predictive models as decision-support tools for 
sustainable construction waste management.

Despite these advancements, the application of ANNs for CDW 
estimation in developing countries remains limited. Specifically, there 
is a dearth of studies focusing on CDW in local contexts, revealing a 
significant gap in the literature. Validating predictive models with re-
al-world construction site data could enhance their practical applica-
bility and provide more robust tools for waste management (Adeleke 
et al., 2021; Sheekoohiyan et al., 2023).

Thus, this study aimed to investigate the potential of ANNs in 
estimating civil construction waste generation, focusing on practical 
applicability in contexts with limited data and reducing the effort re-
quired to obtain accurate information. This proposal sought to contrib-
ute through a decision-support tool for waste management, capable of 
generating reliable estimates and promoting sustainable actions in the 
construction sector.

Research Method
This study is an exploratory research, utilizing communication 

media for data collection and employing simulation as a method ap-
proach. To apply the simulation, two sources of data were used: the first 
of a fictitious nature, created using the Microsoft Excel® spreadsheet 
editor, and the second, of a real nature, with information obtained from 
construction companies.

In order to run the simulations, two samples were created, labeled 
Sample A and Sample B, with fictitious data from 5,000 and 10,000 
constructions, respectively. Both samples range from 75 to 125,050 m² 
of total built area, with Sample A having an interval of 50 m² between 
area data and Sample B having an interval of 25 m² between area data.
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The construction waste generation rate of 150 kg/m², proposed by 
Pinto (1999), was used to obtain the amount of CDW generated in each 
fictitious project according to the area. Additionally, the demolition 
waste generation rate of 800 kg/m², proposed by Nagalli (2021a), was 
used to obtain the amount of demolition waste generated according to 
the area.

Considering these two waste generation rates available in the 
literature, all area data from Sample A, which ranged from 75 to 
125,050 m², were first multiplied by 150 kg/m², generating the quan-
tities of construction waste for each area data point of the sample. 
Then, the same Sample A had all its area data multiplied by 800 kg/m²,  
resulting in the quantities of demolition waste for each area data of 
the sample. The same process was carried out with Sample B, but with 
10,000 data points.

A survey of civil construction companies in Curitiba and the met-
ropolitan region in Paraná state was initially conducted to obtain a real 
database. These companies were then contacted to provide informa-
tion about the construction areas and the amounts of waste generat-
ed. Data were gathered on the total built area and amount of waste of 
430 works, from 2006 to 2021, and with an area varying between 906 
and 138,824 m²; these data make up Sample R.

In order to remove outliers or “atypical values” from the sample, 
a box plot diagram was constructed. To this end, the median (Md), 
first quartile (Q1), third quartile (Q3), and interquartile range (IQR) 
of Sample R were calculated using Microsoft Excel®. From this, the 
lower (LI=Q1 - (1.5) * IQR) and higher (LS=Q3 + (1.5) * IQR) limits 
were calculated. The values ​​between these two limits are called “adja-
cent values”, and the values above the established upper limit or below 
the lower limit were considered outliers and removed from the sample 
(Bussab and Morettin, 2017).

The MATLAB® software, version R2022a, was used to verify the 
applicability of neural networks in the area of ​​construction waste. 
The neural networks used in this research are classified as feed-forward 
neural networks, also known as perceptrons. They have only one layer 
of neurons, where each neuron receives a set of inputs and produces 
a single output. The input layer receives inputs from the network, the 
output layer produces the final outputs, and the intermediate layer, also 
known as the hidden layer, performs data processing.

The data containing the input and output variables were imported into 
the software to perform the simulations, and then, within the application, 
the set of samples was randomly divided into three subsets: 70% for training, 
15% for validation, and 15% for testing. These percentages are suggested by 
the software so that the sample is well distributed, but they can be adjusted 
if necessary. Next, the number of neurons that would be used was adjusted 
and the algorithm with which the neural network would be trained was 
selected. After that, the neural network was trained and the training results, 
including the regression graphs and error histograms, were available in the 
application. Figure 1 presents the workflow of the simulation steps.

Initially, Sample A with 5,000 data points was imported. The input 
variables were the waste classification (0 for construction waste, 1 for 
demolition waste) and the total built area of ​​the project, and the output 
variables were the quantities of waste calculated with the generation rates 
presented. Next, the minimum number of training cycles that could be 
applied was assessed.

Based on the study by Nagalli (2021b), it was decided to run three 
training cycles for three, five, and ten neurons, and for each algorithm 
available in the software. For example, for the Levenberg-Marquardt al-
gorithm, three training cycles were carried out using the neural network 
configuration with three neurons, three cycles with the configuration with 
five neurons, and three cycles with the configuration with ten neurons.  

Figure 1 – Workflow of the artificial neural network simulation process for samples A, B, and R.
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For the Bayesian Regularization and Scaled Conjugate Gradient algo-
rithms, the same procedure was followed.

Subsequently, simulations were conducted with Sample B with 10,000 
data points, which also included two input variables, namely waste classi-
fication (0 construction waste, 1 demolition waste) and the total built area 
of ​​the work, as well as an output variable, which is the amount of waste. 
For Sample B, three training cycles were also performed for three, five, and 
ten neurons, with the three algorithms available in the application (Leven-
berg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient).

To evaluate the performance of the neural networks, the results of 
the simulations of samples A and B were analyzed based on the pa-
rameters R², root mean squared error (RMSE), and mean absolute per-
centage error (MAPE). From the analysis of the simulation results, the 
best neural network configuration was identified, that is, the number of 
training cycles, the number of neurons in the hidden layer, and which 
training algorithm had the best performance.

In order to validate the model, the best neural network configura-
tion obtained in the simulations with samples A and B was applied to 
Sample R, composed of real data on the total built area and quantities 
of waste generated. After this simulation, the use of the neural network 
model was validated, and a sensitivity analysis of the model was car-
ried out regarding its predictive performance in relation to one or two 
input data points in the software, the nature of the data points, and the 
size of the samples. Furthermore, the output variables, which were the 
amounts of waste calculated by the neural network, were compared 
with the actual amounts of waste provided by the companies.

Results and Discussions 

Simulations with sample A
In simulations performed with Sample A, which used two input 

variables (waste classification and total built area) and one output 
(quantity of waste), it was observed that the Levenberg-Marquardt 
training algorithm presented the most unsatisfactory performance in 
waste estimation. Its R² value was only 0.13 in the first training cycle 
with five neurons, indicating a very limited ability to explain data 
variance. Figure 2 illustrates the R² values for the Levenberg-Mar-
quardt, Bayesian Regularization, and Scaled Conjugate Gradient al-
gorithms in Sample A, highlighting performance disparities.

In general, the Bayesian Regularization algorithm demonstrated 
remarkably consistent performance, with an R² value equal to 1.00 in 
all tested neural network configurations. The waste quantities predict-
ed by this algorithm were consistently very close to the targeted quan-
tities. Furthermore, it was observed that increasing the number of neu-
rons to five and ten resulted in an improvement in predictive capability 
and a reduction in the mean absolute percentage error. The  MAPE 
values for this algorithm ranged between 0.0076 (third cycle with 
three neurons) and 0.0030% (first cycle with ten neurons), with the 
lowest MAPE of 0.0003% verified in the first cycle with ten neurons.  

The consistency and low MAPE values of Bayesian Regularization in-
dicate superior robustness in modeling Sample A data, suggesting that 
this algorithm is more suitable for waste prediction in this context.

On the other hand, the Scaled Conjugate Gradient algorithm 
presented inconsistent estimates, with quantities significantly higher 
or close to those expected, in a random manner. This variability was 
observed in all neuron configurations (three, five, and ten) and in all 
three training cycles. Although an R² value of 1.00 may indicate that 
the adjusted linear regression perfectly explains the variation in the 
data, this does not guarantee estimation accuracy. The occurrence of 
overfitting is a real concern here, where the model may have overfitted 
to the training data (70% of the sample), failing to generalize to other 
data, resulting in inaccurate estimates.

The neural network configuration with the Scaled Conjugate 
Gradient algorithm that presented the lowest MAPE value (1%) was 
the first cycle with ten neurons, where the R² was 0.99. However, the 
average percentage of absolute errors ranged between 1% and 11% 
for the three training cycles, using three, five, and ten neurons in the 
hidden layer. These MAPE values, although low, may indeed confirm 
the occurrence of overfitting, indicating that the model performed 
well on the training data, but failed to generalize to the test and vali-
dation sets (15% each). In other words, the neural network achieved 
a good estimate with the training data, which constituted the major-
ity of the sample, resulting in a low mean absolute percentage error, 
but with little generalization capability. Figure 3 presents the error 
histogram for the model evaluation using one training cycle, ten neu-
rons, and the Bayesian Regularization algorithm, which demonstrat-
ed the best performance in training this sample, as verified by the 
lowest MAPE value.

As illustrated in Figure 3, the error histogram exhibits outliers, which 
are data points where the fit is significantly worse than the majority of 
the data. This typically occurs when the sample has a non-linear charac-
teristic. In the case of Sample A, the highest bar, close to the orange line, 

Figure 2 – Coefficient of determination (R²) results for the three training 
cycles with three, five, and ten neurons, using Levenberg-Marquardt, 
Bayesian Regularization, and Scaled Conjugate Gradient in Sample A.
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indicates that most errors are very close to zero, with few distant errors.  
This reinforces the idea that the model, despite some deviations, could 
effectively capture the central tendency of the data for most instances. 
The presence of few significant errors, represented by the “outliers”, can 
be attributed to data anomalies or inherent limitations in the model’s 
ability to capture all nuances of a complex non-linear relationship.

Regarding the mean squared error (MSE), another metric used 
to evaluate the ANN model, it was noted that the MSE decreased 
rapidly as the network was trained, reaching the best performance 
in the training samples around time 1,000. It is important to em-
phasize that the error of the training set and the test set presented 
similar characteristics, evidenced by the overlap of the blue and red 
lines. This overlap is a positive indication that the model is not suf-
fering from severe overfitting, as the performance on the training 
data is consistently reflected in the test data, suggesting good gener-
alization capability.

During training with the Levenberg-Marquardt and Scaled Con-
jugate Gradient algorithms, it was observed that when there was a 
change in sample classification (from 0 for construction waste to 1 
for demolition waste), the neural network failed to correctly estimate 
waste quantities in the half of the sample where this change occurred. 
This difficulty suggests that these algorithms may be sensitive to dis-
continuities or abrupt changes in input data characteristics. There-
fore, for these two types of algorithms, it is recommended to create 
two separate models: one to predict construction waste and another 
to predict demolition waste. In contrast, the Bayesian Regularization 
algorithm proved to be more robust to this variation, as its predic-
tive capability was not altered by the change in waste classification. 
This resilience of Bayesian Regularization makes it a more versatile 
option for datasets that may present such variations.

Simulations with sample B
For simulations using Sample B, which also employed two input 

variables (waste classification and total built area) and one output 
(quantity of waste), the Levenberg-Marquardt training algorithm again 
demonstrated the lowest performance in waste estimation, with R² val-
ues ranging between 0.03 and 1.00. Figure 4 illustrates the R² values 
for the three training cycles with three, five, and ten neurons, using 
Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate 
Gradient in Sample B.

According to Figure 4, the lowest R² value (0.03) was observed in 
the third training cycle with three neurons in the hidden layer. How-
ever, by increasing the number of neurons to five, the neural network 
showed significant improvement in its performance, reaching an R² of 
0.99 in the third training cycle. With ten neurons in the hidden layer, 
in the second training cycle, the neural network achieved an R² of 1.00 
and superior estimation results, confirmed by MAPE values of 0.003%, 
indicating that the estimated waste quantities were very close to ex-
pected. This progression in performance with an increasing number of 
neurons suggests that model complexity is a critical factor for captur-
ing relationships in Sample B data, and that an insufficient number of 
neurons can lead to underfitting.

In simulations with the Bayesian Regularization algorithm, the 
three training cycles, with three, five, and ten neurons in the hidden lay-
er, consistently presented R² values equal to 1.00 and predictive results 
very close to expected. With the increase in the number of neurons to 
five and, subsequently, to ten, the estimation capability improved, and 
the mean absolute percentage error decreased, reaching a remarkably 
low value of 0.00013%. This extremely low MAPE reinforces the high 
precision of the estimates, indicating that the predicted results were in 
excellent agreement with the actual values. The robustness and preci-
sion of Bayesian Regularization in Sample B are consistent with the 
performance observed in Sample A, consolidating it as the most effec-
tive algorithm for waste prediction in this study.

For the Scaled Conjugate Gradient algorithm, the three training 
cycles, with three, five, and ten neurons in the hidden layer, presented 
R² values between 0.99 and 1.00. However, the neural network demon-
strated an inability to predict waste quantities from the beginning of 
the sample. This initial prediction failure, despite high R² values, again 
suggests the occurrence of overfitting. It is likely that the neural net-
work overfitted to the training set data (70% of the sample), resulting 
in low mean absolute error percentages (ranging between 2 and 21%) 
for these data, but compromising its generalization capability for un-
seen data. The discrepancy between the high R² and the initial predic-
tion failure of the sample is a strong indication that the model did not 
learn the underlying relationships but rather memorized the patterns 
of the training set. Figure 5 presents the error histogram for the neural 
network configuration with three training cycles, ten neurons in the 
hidden layer, and the Bayesian Regularization training algorithm, con-
sidering its best performance verified based on MAPE.

Figure 3 – Error histogram for the first training cycle of the neural network 
with ten neurons, using the Bayesian Regularization algorithm in Sample A.
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As shown in Figure 5, the highest bars in the histogram, close 
to the orange line, indicate that most errors are very close to zero, 
with few distant errors. However, it was observed that the num-
ber of negative error values was slightly higher than the number 
of positive errors. This implies that the waste quantities estimated 
by the neural network were, on average, slightly higher than the 
target quantities. This tendency to overestimate, although small, is 
an important point to consider in interpreting the results and may 
indicate a slight bias in the model. Detailed analysis of the histo-
gram allows identifying not only the magnitude of errors but also 
their distribution and trends, providing valuable insights into mod-
el behavior.

The MSE of this sample decreased rapidly as the network was 
trained, reaching the best performance in the training samples, with a 
value of 43.04 kg² (RMSE equal to 6.55 kg) at time 1,000. When com-
paring the results of samples A and B, it is possible to note that larger 
samples tend to present better estimates. This aligns with the principle 
that neural networks, as machine learning models, use data to learn the 
relationship between input and output variables: the more data available 
to the model, the more information it will have to adjust its weights and 
learn this relationship more precisely. However, sample size is not the 
only factor to consider when choosing a model or evaluating its perfor-
mance. Other factors, such as data quality, variable selection, and the 
choice of hyperparameters, can also significantly influence model per-
formance. The discussion about the influence of sample size should be 
complemented with the caveat that data quality and representativeness 
are equally, if not more, important than mere quantity.

Validation of the neural network model with Sample R
The validation of the neural network model was performed with 

Sample R. Initially, the median, quartiles, and interquartile range were 
calculated to identify and remove outliers. As a result, 70 data points 
that exceeded the calculated upper limit were removed from Sample R, 
which then had 360 data points. This preprocessing step is crucial to 
ensure data quality and prevent extreme values from distorting model 
training and validation.

After data processing, Sample R was simulated based on the best 
neural network configuration identified previously, using the evalua-
tion parameters R² (1.00), RMSE (6.55 kg), and MAPE (0.00013%), 
obtained from training Sample B. This configuration consisted of a 
feed-forward neural network with three training cycles, ten neurons 
in the hidden layer, and the Bayesian Regularization training algo-
rithm. The validation results in Sample R showed an R² of 0.83, an 
RMSE of 4,337.69 m³, and a MAPE of 38.35%. Figure 6 presents the 
linear regression graph, one of the evaluation parameters of this neu-
ral network configuration.

According to Figure 6, the R² value for the training and test data 
set was 0.83. This value is comparable to those obtained in previous 
studies, such as Cha et  al. (2022), who reported an R² of 0.90 using 
neural networks with a sample of 160 data points, and Coskuner et al. 
(2021), who obtained an R² of 0.91 for construction waste prediction. 
Considering that Coskuner et al. (2021) used a smaller sample (20 data 
points, two input variables, and 180 simulations), it can be inferred 
that Sample R, with 360 data points, performed well with just three 
training cycles. Furthermore, the R² of 0.83 obtained in this research 
surpassed the value of 0.458 reported by Cha et al. (2023) for the use of 
neural networks in a sample of 782 data points from demolition works 
with six input variables, which was also higher than the R² of 0.72 ob-
tained by Soni et al. (2019). These contextual comparisons are crucial 
for positioning the relevance and contribution of the results obtained 
in this study.
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Figure 4 – Coefficient of determination (R²) results for the three training 
cycles with three, five, and ten neurons, using Levenberg-Marquardt, 
Bayesian Regularization, and Scaled Conjugate Gradient in Sample B.

Figure 5 – Error histogram for the third training cycle of the neural 
network with ten neurons using the Bayesian Regularization algorithm in 
Sample B.
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It is possible to verify that the neural network performed better 
on the training data set, as the data were better distributed along the 
regression line and the R value (0.94) was higher, compared to the R 
(0.85) of the test set. As observed by Nagalli (2021b), training set data 
tend to present better results, with R² values ranging between 0.94 and 
0.96, while for test set data, R² values ranged between 0.75 and 0.91. 
This performance difference between training and test sets is common 
and expected, but the magnitude of this difference can indicate the de-
gree of model generalization.

Regarding the MSE, it is common to use it to compare models or 
evaluate improvements in model performance across samples of dif-
ferent sizes. For example, the RMSE of Cha et al. (2022) was 100.80 kg, 
while in this study, it was 4,337.69 m³. Compared to the use of the 
support vector machine algorithm in the study by Cha et al. (2023), 
the RMSE value was 1,020.30 for a sample of 782 data, and in the study 
by Abbasi et  al. (2013), using a support vector machine, the RMSE 
value was 2.070. Figure 7 presents the error histogram of this neural 
network configuration.

Based on the histogram in Figure 7, it is possible to verify that the train-
ing set presented more positive and close to zero (orange line) error values 
at the height of the blue bars, confirming superior performance relative 
to the test set. This neural network configuration did not present results 
very close to zero when compared with the histograms of samples A and B.  

This can be justified by the fact that Sample R contains varied values 
and does not follow an increasing scale like samples with fictitious data. 
The distribution of errors in Sample R, although not as concentrated 
at zero as in synthetic samples, still demonstrates that most errors are 
within an acceptable range, indicating that the model has reasonable 
predictive capability for real-world data, which are inherently more 
complex and noisier.

The mean absolute percentage error of Sample R indicates that, on 
average, the difference between predicted and actual values is equiv-
alent to 38.35%. Although this value may seem high compared to 
the MAPEs of samples A and B, the estimates still have manageable 
imprecision and can be considered reliable for practical applications, 
especially considering the complexity and variability of real data. 
The  best neural network configuration proposed by Nagalli (2021b) 
also used Bayesian Regularization as a training algorithm; however, 
with two neurons and two training cycles, the ANN presented a MAPE 
of 56.7%. This demonstrates that the optimized configuration in this 
study (ten neurons, three cycles) resulted in a significant improvement 
in accuracy.

Most of the sample data showed absolute error percentages of up 
to 30%. The difference between the amount of waste calculated by the 
neural network model and that reported by construction companies 
was less than or equal to 30% in 210 cases (58.33% of the sample), and 
in 69 data points (19.17% of the sample), the difference was less than or 
equal to 10%. Compared to the study by Kern et al. (2015), who used a 
linear regression model to predict waste quantities in 18 buildings, ob-
taining a difference between actual and estimated quantities less than 
30% in about 83% of the sample, and less than 5% in 5 buildings, it can 
be stated that the neural network model developed in this work per-

Figure 6 – Linear regression chart for the first training cycle of the neural 
network with ten neurons using the Bayesian Regularization algorithm in 
Sample R.

Figure 7 – Error histogram for the third training cycle of the neural 
network with ten neurons using the Bayesian Regularization algorithm in 
Sample R.
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Table 1 – Summary of the best results obtained for the R², RMSE, and MAPE parameters in simulations with samples A, B, and R, and with the three training 
algorithms used.

Sample Algorithm Configuration
(Cycle / Neurons) R² RMSE MAPE (%)

A Bayesian Regularization 1 cycle / 10 neurons 1.00 11.56 kg 0.0003

A Scaled Conjugate Gradient 1 cycle / 10 neurons 1.00 — 1.00

A Levenberg-Marquardt 1 cycle / 10 neurons 1.00 — 0.003

B Bayesian Regularization 3 cycles / 10 neurons 1.00 6.55 kg 0.00013

B Levenberg-Marquardt 2 cycles / 10 neurons 1.00 — 0.003

B Scaled Conjugate Gradient 3 cycles / 3 neurons 1.00 — 2.00

R Validation (Bayesian Regularization) 3 cycles / 10 neurons 0.83 4,337.69 m³ 38.35

R²: coefficient of determination; RMSE: root mean squared error; MAPE: mean absolute percentage error.

formed excellently in the criterion of difference between actual and es-
timated quantities and sample size. However, it is fundamental to em-
phasize that this analysis is restricted to this sample, and it is important 
to consider that the amount of data and the methodology used in the 
two studies are different, which prevents a direct and absolute compar-
ison. Figure 8 presents the actual waste quantities and the estimated 
quantities using the feed-forward neural network with ten neurons in 
the hidden layer, three training cycles, and the Bayesian Regularization 
training algorithm.

When analyzing the blue (actual quantities) and red (estimat-
ed quantities) lines in Figure 8, it is possible to note that the actual 
quantities exhibit large fluctuations, indicating significant variations 
in waste quantities. In contrast, the line representing the estimated 
quantities suggests that the estimation model captured a general trend 
in the data, as the estimates are increasing, even though Sample R 
was simulated with randomly arranged data. This increasing trend in 
prediction, in the face of random real data, may be an indication of 
overfitting, where the model may be excessively fitted to the training 
data, creating a prediction that, although it appears to perfectly match 
the real values at some points, is not generalizable to other situations.  

This can lead to an increasing prediction even when the real data are 
random, which is an important limitation to be discussed. The model’s 
ability to capture the general trend, despite fluctuations, is a positive 
point, but the lack of sensitivity to random variations may limit its ap-
plicability in dynamic scenarios. Table 1 presents a summary of the best 
results obtained for the R², RMSE, and MAPE parameters in simula-
tions with samples A, B, and R, and with the three training algorithms 
used. This table serves as a visual consolidation of the main findings, fa-
cilitating comparison between different configurations and algorithms.

The model proposed in this study has similar configurations to that 
proposed by Nagalli (2021b), who also used the Bayesian Regulariza-
tion algorithm and ten neurons in the hidden layer. Comparing these 
studies with the research by Lu et al. (2021) it is possible to verify that 
the Bayesian Regularization training algorithm works better with larg-
er samples, since Lu et al. (2021) used the Levenberg-Marquardt algo-
rithm on a sample with 43 data sets and the best result obtained for R² 
(0.92) was achieved with 15 neurons in the hidden layer and 35 train-
ing cycles. The use of the Bayesian Regularization algorithm provides 
good predictive results with a smaller number of neurons and fewer 
training cycles.

Figure 8 – Real waste quantities and the estimated quantities using the feed-forward neural network with ten neurons in the hidden layer, three training 
cycles, and the Bayesian Regularization training algorithm.
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Regarding the parameters used to evaluate neural network models, 
the value of R² equal to 0.83 in this research was considered satisfacto-
ry for estimation models, being above the value obtained by Hu et al. 
(2021), R² equal to 0.75, in their research with neural networks using 
data from 206 works, equal to the value obtained by Abbasi and El 
Hanandeh (2016), R² of 0.83 for data from the training set and close 
to that obtained by Cha et al. (2022), R² equal to 0.90 for training with 
backpropagation neural networks.

Although the R² value was satisfactory, indicating that the neu-
ral network can explain 83% of the variations in waste quantities, the 
RMSE value of 4,337.69 m³ was above the values ​​obtained by Abbasi 
et  al. (2013) and Abbasi and El Hanandeh (2016) using the support 
vector machine algorithm (RMSE 2,070 kg and RMSE 300.70 kg, re-
spectively), and neural networks (RMSE 498.43 kg). This discrepancy 
in RMSE can be attributed to differences in units of measurement (m³ 
vs. kg), the nature of the data (construction waste vs. other types of 
waste), or the scale of the problems addressed. It is fundamental that 
future comparisons consider the standardization of units and contex-
tualization of data for a more precise analysis of model performance.

In this study, the MAPE value was 38.35%, which means that the 
proposed neural network model is capable of estimating the amount of 
waste accurately in more than 60% of cases. This value was lower than 
that obtained by Nagalli (2021b) of 56.7%, and higher than the values ​​
achieved by Abbasi and El Hanandeh (2016) of 0.07% for data from the 
training set, and Hu et al. (2021), of 8.22% for simulations with neural 
networks, 5.37% for simulations with a support vector machine, and 
10.31% for the linear regression model. The MAPE value was accept-
able compared to other studies, indicating that the model presents a 
low percentage variation in relation to real data.

From this research, it appears that improvements in predictive ca-
pacity can be achieved by increasing the sample size to at least 5,000 
data points. Although the results obtained are restricted to the samples 
analyzed, ANNs demonstrated potential for application in waste esti-

mation. Furthermore, the perspective is that with the expansion of the 
database, even considering different input variables and maintaining 
the treatment of sample data, in order to remove outliers, the neural 
network will improve its ability to estimate quantities of waste. The con-
tinuous collection of data and the refinement of models are crucial steps 
to improve the accuracy and applicability of ANNs in this field.

Conclusions
This study aimed to evaluate the potential of ANNs to estimate 

CDW generation, using synthetic and real data. The results demon-
strated that ANNs are efficient tools for predicting CDW quantities, 
provided they are used under appropriate training conditions. To en-
sure more robust predictions, it is recommended to use sufficiently 
large and homogeneous databases (≥5,000 records) with relevant in-
put variables.

The study’s limitations include its reliance on a relatively small 
real-world dataset (Sample R), the use of only two input variables, 
and the absence of cross-validation in different geographical con-
texts or construction typologies. Although the ANN showed good 
overall performance, the MAPE of 38.35% on real data suggests that 
variations may be associated with local practices, data noise, or un-
considered factors such as construction methods, material types, and 
project timelines.

Future work should aim to expand the real-world dataset, incor-
porate more input variables (such as construction typology, project 
duration, and material composition), and test the models in different 
regions and realities. Additionally, comparative studies with other ma-
chine learning techniques (such as decision trees, ensemble models, or 
deep learning architectures) could offer new perspectives on the most 
suitable methods for CDW estimation. Finally, the development of ap-
plied computational tools, based on trained models, is recommended 
to support planning and decision-making in waste management with-
in the construction sector.
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