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A B S T R A C T 
A simplified atmospheric transmittance model based on the Beer-
Lambert law was utilized to analyze surface solar radiation (SSR) 
variability based on different sources of cloud cover datasets (CMIP6, 
ERA5, NCEP, ISCCP, and EUMETSAT). This study evaluated the 
performance of various modeled SSR datasets against observed data 
from the Brazilian Daily Weather Gridded Data (BR-DWGD) over the 
period from 1983 to 2009. Contour plots of annual average SSR from 
the five modeled datasets were compared with BR-DWGD observations, 
revealing spatial agreements and discrepancies. The highest SSR values 
were consistently observed in the Brazilian semi-arid Northeast, while 
the Amazon region exhibited the lowest values. In the analysis of annual 
averages, the International Satellite Cloud Climatology Project (ISCCP) 
demonstrated the closest agreement with BR-DWGD, while the National 
Center for Environmental Prediction (NCEP) showed the most significant 
deviations. Root mean square error (RMSE) analysis highlighted 
seasonal variability in model performance, with the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) and the European Organisation 
for the Exploitation of Meteorological Satellites (EUMETSAT) performing 
best during equinoxes, and ISCCP showing the lowest annual RMSE (16.9 
Wm⁻²). Hierarchical clustering further grouped EUMETSAT and CMIP6 as 
the most similar and accurate datasets, while NCEP remained the least 
consistent. Global horizontal irradiance maps corroborated SSR patterns, 
with higher values in the Northeast and lower values in the Amazon and 
Southern regions. These findings underscored the importance of dataset 
selection for accurate SSR modeling in Brazil, with ISCCP, EUMETSAT, and 
CMIP6 emerging as the most reliable options.

Keywords: cloud cover; solar radiation; reanalysis data; satellite data; 
CMIP6 models.

R E S U M O
Um modelo simplificado de transmitância atmosférica baseado na lei de 
Beer-Lambert foi utilizado para analisar a variabilidade da radiação solar 
de superfície (SSR) com base em diferentes fontes de dados de cobertura 
de nuvens (CMIP6, ERA5, NCEP, ISCCP e EUMETSAT). Este estudo avaliou 
o desempenho de diversos conjuntos de dados modelados de SSR em 
comparação com dados observados do Brazilian Daily Weather Gridded 
Data (BR-DWGD) no período de 1983 a 2009. Gráficos de contorno da média 
anual de SSR dos cinco conjuntos de dados modelados foram comparados 
com as observações do BR-DWGD, revelando concordâncias e discrepâncias 
espaciais. Os maiores valores de SSR foram consistentemente observados no 
semiárido do nordeste brasileiro, enquanto a região amazônica apresentou 
os menores valores. Na análise das médias anuais, o Projeto Internacional de 
Climatologia de Nuvens por Satélite (ISCCP) demonstrou a maior concordância 
com o BR-DWGD, enquanto o Centro Nacional de Previsão Ambiental (NCEP) 
apresentou os desvios mais significativos. A análise do erro quadrático médio 
(RMSE) destacou a variabilidade sazonal no desempenho dos modelos, 
com o Projeto de Intercomparação de Modelos Acoplados Fase 6 (CMIP6) 
e a Organização Europeia para a Exploração de Satélites Meteorológicos 
(EUMETSAT) apresentando os melhores resultados durante os equinócios, 
e o ISCCP exibindo o menor RMSE anual (16,9 Wm⁻²). O agrupamento 
hierárquico em seguida classificou o EUMETSAT e o CMIP6 como os conjuntos 
de dados mais semelhantes e precisos, enquanto o NCEP permaneceu como 
o menos consistente. Mapas de irradiância global horizontal corroboraram os 
padrões de SSR, com valores mais altos no nordeste e mais baixos nas regiões 
da Amazônia e do sul. Esses resultados reforçam a importância da seleção 
do conjunto de dados para uma modelagem precisa da SSR no Brasil, com o 
ISCCP, EUMETSAT e CMIP6 emergindo como as opções mais confiáveis.

Palavras-chave: cobertura de nuvens; radiação solar; dados de 
reanálise; dados de satélite; modelos do CMIP6.
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Introduction
In recent years, some researchers investigated the cloud cover 

amount disagreements from different data sources (e.g., Free et  al., 
2016; Chakraborty and Lee, 2021; Wu et al., 2023). For instance, ac-
cording to Free et al. (2016), reanalysis products generally capture the 
variability and trends of cloud cover but tend to underestimate cloud 
amounts when compared to ground-based observations. Likewise, 
Wu et al. (2023) compared monthly total and high cloud cover from 
four atmospheric reanalysis datasets (ERA-Interim, ERA5, MERRA-2, 
and NCEP) with the Moderate Resolution Imaging Spectroradiometer 
(MODIS) retrievals during 2001–2018, and found generally consistent 
spatial and temporal distributions with MODIS. However, discrepan-
cies exist, especially over polar regions and the Tibet Plateau (Wu et al., 
2023). Furthermore, Chakraborty and Lee (2021) analyzed the differ-
ences in solar radiation considering reanalysis data, satellite products, 
and simulations; in general, their study revealed systematic positive 
biases in total shortwave radiation, which were largely attributed to the 
intermodel variability from cloud cover simulations.

In this context, some studies using the Coupled Model Intercom-
parison Project (CMIP) scenarios to estimate how climate changes 
could impact the photovoltaic (PV) potential were performed using 
the ensemble technique (Wild et al., 2015; Danso et al., 2022; Ha et al., 
2023; Isaza et al., 2023; Nwkolo et al., 2023). For example, according to 
Danso et al. (2022), the CMIP6 scenarios suggest a decrease in solar PV 
potential in West Africa, which is attributed primarily to a reduction in 
surface solar radiation (SSR); this, in turn, is due to changes in cloud 
cover and aerosol depth. In addition, Ha et al. (2023) study highlights 
the importance of climate change mitigation to support the sustain-
able development of solar energy, where the authors compare the fu-
ture potential of solar power output under different climate attributes, 
technology types, climate projection models (CMIP5 vs. CMIP6), and 
emission scenarios (Shared Socioeconomic Pathways—SSP). 

Nowadays, the most common technologies for solar panels are 
monocrystalline silicon (Mono-Si), polycrystalline silicon (Poly-Si), 
and thin-film solar panels (Vunnam et al., 2021). Inevitably, there is 
pressure toward a transition to clean and sustainable energy produc-
tion. Consequently, many countries worldwide are investing in re-
newable energy sources to reduce fossil fuel consumption, which is an 
effort to decrease pollution and climate change effects. Considering 
this, Silva et al. (2021) analyzed the economic feasibility of expanding 
a previously installed PV system in a Brazilian high school institution 
with multicampus. In this study, the authors explored aspects like the 
benefit-to-cost ratio and time payback from different installation sce-
narios, where installation scenarios 1 and 2 demanded four and eight 
years as time payback, respectively. To learn about these scenarios, read 
Silva et al. (2021).

Therefore, accurate estimation of surface shortwave irradiance is 
essential for climate and weather studies, as well as for the operation of 

PV power plants. Simplified atmospheric transmittance models, such 
as those based on the Beer-Lambert law (Bird and Hulstrom, 1981; 
Bird and Riordan, 1986), can be particularly useful in reducing un-
certainties in this process. Previous works (Oliveira et  al., 2019; Ol-
iveira and Fernandez, 2020) have demonstrated the potential of using 
simplified parameterizations to account for cloud cover effects, thereby 
improving the representation of downward shortwave radiation.

Beyond the role of clouds and the ozonosphere, aerosols also af-
fect the solar radiation that reaches the ground. As revealed by Wild 
et al. (2005), between the 1950s and 1980s, there was a global decline 
of roughly 4–6% in SSR attributable to aerosol pollution. Isaza et al. 
(2023) stated that, depending on their size, microphysical and optical 
characteristics, aerosols can perform as scatterers (e.g., sulfates and sea 
salt, producing a cooling effect), absorbers (e.g., black carbon, produc-
ing a warming effect), or moderate absorbers (e.g., dust and organic 
matter). Undoubtedly, we have to consider that forecasting future cli-
mate conditions, particularly for the long term (2100, for example), is 
influenced by numerous sources of uncertainty in the model structure, 
such as aerosol-cloud interaction, cloud physics, convection schemes, 
and ocean-atmosphere interaction (Collins et al., 2013). According to 
Wang et al. (2021), SSP3-7.0, a pathway with weak global warming mit-
igation, aligns better with current carbon emission trends and political 
realities. However, the authors also clarify that due to inaccuracies in 
observed data, the CMIP6 models underestimated the recent decline in 
anthropogenic aerosol over China, affecting the temperature response 
simulated for the next few decades.

Furthermore, Isaza et  al. (2023) assessed the cost of future solar 
power plants, revealing substantial disparities between the SSP1-2.6 
and SSP3-7.0 scenarios. The study found that cost savings in the SSP1-
2.6 scenario compared to the SSP3-7.0 scenario could amount to 12.4 
billion US dollars in one year or 372 billion US dollars over the PV 
plants’ 30-year lifetimes. Indeed, climate change forces a quick adap-
tation process, affecting many different areas, such as agronomy. For 
instance, according to Souza et al. (2021), many studies investigating 
the microclimate within protected environment agriculture, like net 
houses, have been developed to improve agricultural productivity in 
global warming scenarios.

Dubey et al. (2013) reported that, in the context of global warm-
ing, solar panel efficiency is expected to diminish with rising tempera-
tures, including increases in average temperature and occurrences of 
extremely high temperatures. Indeed, it represents an enormous chal-
lenge for future solar energy plants, considering the current technol-
ogy constraints. If we consider a pessimistic scenario, it will probably 
encourage the development of new technologies over the following 
decades, which will be crucial to maintaining renewable energy tran-
sition goals.

In light of the aforementioned concerns, this study aimed to ana-
lyze the sensitivity of modeling solar radiation at the surface level by 
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considering different gridded cloud cover data sources. As described 
previously, before solar radiation reaches the ground, it interacts with 
the atmosphere (aerosols, ozone, total cloud amount, water vapor, etc.). 
Inevitably, due to the interactions, there are uncertainties in estimating 
how much solar radiation is absorbed or reflected into space, which 
is modeled independently in atmospheric models. To overcome this 
issue, we modeled the SSR using a simplified approach, investigating 
how the total cloud amount affects it. Therefore, we assumed different 
cloud cover data sources, such as reanalysis, satellite products, and the 
CMIP6 ensemble dataset.

Additionally, we intended to ensure that the estimates of SSR were 
computed  using the same methodology, allowing us to individually 
evaluate the impact of each cloud cover dataset on solar energy pow-
er estimations. Our study area covered the Brazilian territory, provid-
ing error estimations from each cloud dataset. The findings presented 
herein are significant for the scientific community, the solar energy 
market, and the sustainable energy transition efforts.

Methods

Solar radiation model
Our empirical model for estimating solar radiation on the ground 

was inspired by some classical papers (Berger, 1978; Bird and Hulstrom, 
1981; Bird and Riordan, 1986). We adopted four steps to model SSR, 
mixing clear sky and cloudiness conditions, as presented in Figure 1. 
Thus, the first computes the solar radiation at the top of the atmosphere 
(SRTOA). The second, the third, and the fourth estimates the solar ra-
diation after passing the ozone layer, the atmospheric water content, 
and the possible existing clouds, respectively. The SRTOA was comput-
ed using the Daily INSOlation (DINSOL) software application (Olivei-
ra, 2023), while the ozone and precipitable water data were obtained 
from the National Center for Environmental Prediction (NCEP). 

Essentially, we are using a simplified Beer-Lambert law ap-
proach to estimate the transmittance of the ozone and water con-
tent, which is a typical clear sky model (see Equations 1 and 2). 
On the other hand, considering the transmittance under cloud-
iness conditions, we adapted the parameterization employed by 
Oliveira et al. (2019) and Oliveira and Fernandez (2020) (Equa-
tion 3). Therefore, our shortwave solar radiation model suitably 
emulates net surface irradiance, presenting a good fit for this 
study’s aims.
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𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = water transmittance; and

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = absorption coefficient.

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = precipitable water thickness.

Note that the ozone and precipitable water data were obtained 
from the NCEP reanalysis. 

In Equation 3, we have the parameterization to estimate the cloud 
transmittance:

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

� (3)

Where:

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = cloud transmittance;

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = cloud cover amount; and

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = average cloud albedo parameter.

As the last step, we employed Equation 4 to compute the surface 
solar irradiance, which is estimated by multiplying the SRTOA by the 
continuum attenuation of the solar radiation, in other words, the trans-
mittance product.

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 � (4)

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = surface solar irradiance;

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = solar radiation at the top of the atmosphere;

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = ozone transmittance;

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = water transmittance; and

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = cloud transmittance.

 

Ozone 

Water 

Clouds 

Extraterrestrial solar radia�on 

Surface 
Figure 1 – Representation of the simplified solar radiation model considering 
the transmittance in three different layers.
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Table 1 shows the constant values employed in Equations 1–3. 
Notice that accurate models adopt different coefficients for each wave-
length, while our simplified model assumes a more general approach.

To conclude this subsection, Figure 2 shows contour plots of the 
four variables adopted to estimate SSR from our method. Note that 
Figure 2A is the SRTOA, Figure 2B represents the ozone layer (NCEP) 
in Dobson units (DU), Figure 2C is the precipitable water (NCEP) lay-
er, and Figure 2D is the percentage of cloud amount obtained from the 
International Satellite Cloud Climatology Project (ISCCP).

Cloud cover samples
As mentioned in the introduction, this research investigat-

ed the impact of employing different cloud data sources to esti-
mate SSR in the context of solar energy potentiality. Hence, we 
chose five cloud datasets: CMIP6 models, ERA5 and NCEP re-
analysis, and European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT) and ISCCP satellites. It is 
worth mentioning that the ISCCP was part of the World Climate 
Research Project (WCRP), a pioneering initiative aimed at infer-
ing cloud properties, global distribution, and seasonal and inter-
annual variations. The ISCCP data  were obtained  from the follow-
ing webpage: https://isccp.giss.nasa.gov, last access 04/11/2024.  

The European Centre for Medium-Range Weather Forecasts (EC-
MWF) reanalysis (ERA5) and the EUMETSAT data were obtained 
online from the Climate Data Store platform (https://cds.climate.co-
pernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form, 
last access: 04/11/2024). Moreover, the NCEP data was obtained from 
the webpage: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.
html, last access 04/11/2024. Notice that all CMIP6 data were obtained 
from the Earth System Grid Federation (https://esgf-data.dkrz.de/
search/cmip6-dkrz/, last access: 04/11/2024).

In this study, we adopted eight CMIP6 models: ACCESS-ESM-1-5, 
CAN-ESM5, CAS-FGOALS-g3, INM-CM5-0, IPSL-CM6A-LR, MI-
ROC6, MPI-ESM1-2, and NCAR-CESM2. Likewise, these data rep-
resent the experiment id “hist,” that is, the Earth’s climate historical 
reconstruction (1850–2014). All data have the variant label “r4i1p1f1”, 
representing the same realization, initialization, physical, and forcing 
conditions. We employed the ensemble technique for all models, as-
suming just one average data product for this study.

Time series and spatial resolution
We assumed a time series from 1983 to 2009, according to the IS-

CCP dataset availability. Although the other data had a more extensive 
time range, we defined the ISCCP time range to perform the assess-
ment, in other words, establishing the same conditions during the eval-
uation. Moreover, all the data obtained were initially monthly, but for 
this study, we calculated the annual and seasonal averages based on the 
climatology of this period (1983–2009). Regarding the spatial resolu-
tion, we interpolated each one of them to work with a standard grid. 
To perform data interpolations, we adopted the Climate Data Operator 
(CDO). For example, the bilinear interpolation was considered mostly 
with the CMIP6 models, assuming a 144×72 gridded setup at a global 
scale. Ultimately, the final gridded data covers Brazil’s longitudinal and 
latitudinal ranges: 74.85°W–34.85°W and 33.85°S–5.35°N. Notice that 
the spatial resolution is about 0.1°, which is given from 391 points of 
longitude and 393 points of latitude.

Model evaluation
To analyze which cloud cover dataset provides the best adjust-

ment for our surface radiation model, we assumed the gridded data 
provided by Xavier et al. (2022), the Brazilian Daily Weather Grid-
ded Data (BR-DWGD) for validation. These datasets are based on 
observational data registered in Brazilian weather stations man-
aged by the National Institute of Meteorology (INMET, Instituto 
Nacional de Meteorologia) and the National Water and Sanitation 
Agency (ANA, Agência Nacional de Águas e Saneamento Básico). 
Xavier et al. (2022) interpolated these data to create regular gridded 
time series data, including air temperature, relative humidity, wind 
speed, precipitation, evapotranspiration, and solar radiation. Due to 
the high accuracy of these datasets, they are ideal for model assess-

Extraterrestrial radiation
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230 250 270 290 310 330 350 370

Total column ozone

DU

B)

Precipitable Water

10 15 20 25 30 35 40 45 50
kgm-2

C)

Total cloud amount
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Figure 2 – Contour plots representing the annual mean of each variable 
(averaged) adopted in our surface solar radiation model: (A) Solar radiation 
at the top of the atmosphere computed using the Daily INSOlation program; 
(B) Total column ozone in Dobson units obtained from National Center for 
Environmental Prediction; (C) Precipitable water obtained from National 
Center for Environmental Prediction; and (D) Total cloud amount obtained 
from the International Satellite Cloud Climatology Project.

Table 1 –Values of the ozone and water absorption coefficients and the 
average cloud albedo parameter employed in Equations 1–3.

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

0.35 𝑐𝑐𝑐𝑐−1 

0.01 𝑐𝑐𝑐𝑐−1 

0.70 

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

0.35 𝑐𝑐𝑐𝑐−1 

0.01 𝑐𝑐𝑐𝑐−1 

0.70 

𝑘𝑘𝑜𝑜  

𝑘𝑘𝑤𝑤 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐 

0.35 𝑐𝑐𝑐𝑐−1 

0.01 𝑐𝑐𝑐𝑐−1 

0.70 
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
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ments. Thus, we adjusted our modeled SSR data to match the spatial 
resolution of the BR-DWGD.

For proper evaluation, we used two strategies. The first was plotting 
the contour fields and comparing the modeled and observed data. The 
second was computing the root mean square error (RMSE) to estimate 
the impact of using different cloud cover data sources to model the 
SSR. Hence, Equation 5 presents the RMSE Equation (Oliveira, 2023):

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

� (5)

Where: 

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = number of gridded elements; 

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖  

 = simulated data; and 

𝜏𝜏𝑜𝑜 = 𝑒𝑒(−𝑘𝑘𝑜𝑜𝑚𝑚)          (1) 

𝜏𝜏𝑜𝑜 =  

𝑘𝑘𝑜𝑜=  

𝑚𝑚 =  

𝜏𝜏𝑤𝑤 = 𝑒𝑒(−𝑘𝑘𝑤𝑤𝑚𝑚)          (2) 

𝜏𝜏𝑤𝑤  

𝑘𝑘𝑤𝑤 =  

𝑚𝑚  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐)        (3) 

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝐶𝐶𝐶𝐶𝐶𝐶  

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐  

𝐼𝐼 = 𝐼𝐼0 (𝜏𝜏𝑜𝑜 𝜏𝜏𝑤𝑤𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐)          (4) 

𝐼𝐼  

𝐼𝐼0  

𝜏𝜏𝑜𝑜  

𝜏𝜏𝑤𝑤  

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁

𝑖𝑖=1         (5) 

𝑁𝑁  

𝑆𝑆𝑖𝑖  

𝑂𝑂𝑖𝑖   = observational data.

Additionally, we applied hierarchical clustering to assess the 
similarities among the different cloud datasets. This was achieved 
by computing the Euclidean distance matrix between all RMSE 
values, employing the “complete” linkage method for clustering. 
The dendrogram was constructed by defining two distinct groups, 
which allowed us to visualize the relationships and similarities be-
tween the datasets.

Solar energy potentiality
We computed a simple approach to estimate the Brazilian Photo-

voltaic Power Potential (PPP) for all datasets used in this study. Notice 
that the evaluation process assumed the annual average given in Wm-2. 
Consequently, to compute the solar energy potentiality, we only need 
to multiply it by 24 hours and divide by 1,000 to obtain the result in 
kWh/m². It is worth mentioning that the panel’s efficiency is strongly 
variable, where the panel area significantly impacts this computation 
as well as the kind of technology involved (e.g., Mono-Si, Poly-Si, and 
Thin-Film). Therefore, to reduce uncertainties, it is interesting to con-
sider different Brazilian PPP estimations. Nevertheless, even though 
the BR-DWGD data can be considered accurate in most Brazilian re-
gions, the data on the North of Brazil is less reliable than in other areas 
due to the lower weather station density. Inevitably, the modeled data 
might be considered a reasonable option for Brazilian PPP estimations.

Results
Figure 3 illustrates the contour plots of modeled SSR (Figures 3A–

3E) and the observed SSR based on BR-DWGD (Figure 3F), both rep-
resenting the annual average from 1983 to 2009. Figure 3A exhibits the 
SSR data modeled using an ensemble dataset from CMIP6 data clouds, 
where the contour lines presented important agreements compared to 
the BR-DWGD (Figure 3F). The highest values, as expected (Pereira 
et al., 2017), were found in the Brazilian semi-arid region, mainly in 
the Northeast of the country.

Analyzing the ERA5 plot (Figure 3B), we realized another im-
portant agreement over the Amazon region, where we had low val-
ues of SSR. It is worth mentioning that the ERA5, compared to 
other modeled SSRs, presented the lowest values. Alternatively, the 
NCEP (Figure 3C) presented the most notable contour line dif-
ferences to BR-DWGD, taking into consideration all the modeled 
SSRs. Like CMIP6 and ERA5, the ISCCP data (Figure 3D) showed 
important agreements with BR-DWGD. For example, we could 
mention the coastline of the Brazilian South, where low SSR val-
ues were found in both plots. In addition, the modeled SSR was 
analyzed using EUMETSAT (Figure 3E) cloud data. This map 
clearly evidenced more disturbed contour lines, but spatially, the 
fields agreed well with BR-DWGD. This disturbance is due to the 
EUMETSAT data being provided in high resolution, about 0.5°. 
Overall, the EUMETSAT revealed the highest modeled values com-
pared to other fields and showed high SSR values over the Brazilian 
Northeast coastline.

Figure 4 exhibits the differences between the modeled and ob-
served SSR by showing  the  great  and minor discrepancies  for each 
cloud dataset. For example, in Figure 4A, we observe CMIP6 overes-
timations in most Brazilian regions, where the only exception lay in 
the Northeast region. Regarding the ERA5 (Figure 4B), the differences 
were mostly close to zero, except for the Amazon region (in the North), 
where we had more prominent underestimations. On the other hand, 
our model indicated a more significant disparity when using the NCEP 
data (Figure 4C), which  was  properly discussed  in the next section. 
Likewise, considering all cloud datasets, the ISCCP (Figure 4D) pre-
sented the lowest differences, suggesting it is a good fit to model the 
SSR. The more prominent difference was strictly in the North, which 
is negative close to the Amazon basin and positive over the Acre state 
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Figure 3 – Annual contour plots of the surface solar radiation from modeled 
(A–E) and observed dataset (F).
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(extreme West of the country). Thus, in the last plot, we analyzed the 
differences by considering the EUMETSAT (Figure 4E). The EUMET-
SAT, such as the ISCCP and ERA5, predominantly presented differenc-
es closer to zero, except for the coastline of the Northeast and over the 
South region, both with overestimations.

We employed the RMSE (Figure 5) to assess error estimations, 
which provides a robust metric for evaluating differences between mod-
eled and observed datasets. In our study, the annual RMSE values re-
vealed that the highest value was associated with the NCEP cloud data-
set, approximately 22.5 Wm-2 (Figure 5E), whereas the lowest RMSE 
value was obtained using the ISCCP dataset, approximately 16.9 Wm-2.  

EUMETSAT demonstrated the second-best performance, followed 
closely by CMIP6 and ERA5.

Analysis of seasonal variations revealed distinct patterns. 
During the austral summer (December-January-February; DJF), error 
estimations differed significantly from the annual pattern, with NCEP 
exhibiting the lowest RMSE value of approximately 23.5 Wm-2, while 
ERA5 showed the highest value of roughly 28.8 Wm-2. 

For the austral autumn (March-April-May; MAM; Figure 5B), ERA5 
continued to demonstrate the poorest model accuracy, whereas EUMET-
SAT and CMIP6 exhibited superior performance with lower RMSE values 
of approximately 16.6 and 16.7 Wm-2, respectively. During the austral win-
ter (June-July-August; JJA; Figure 5C), ERA5 achieved the lowest RMSE of 
approximately 18.7 Wm-2, while NCEP showed the poorest accuracy with 
approximately 26.7 Wm-2. In the austral spring (September-October-No-
vember; SON; Figure 5D), NCEP displayed higher RMSE values again, 
while CMIP6 demonstrated the best accuracy among all datasets. 

By analyzing the RMSE values from the heatmap (Figure 6), it 
became evident that CMIP6 and EUMETSAT exhibited similar pat-
terns, demonstrating their best performance during the equinoxes and 
a slightly reduced performance during the solstices. In contrast, the 
reanalysis datasets revealed significant seasonal variability, with more 
pronounced fluctuations between seasons. 

Overall, Figure 6 clearly shows that the EUMETSAT, CMIP6, and ISC-
CP datasets exhibited the best transmittance model performance during the 
MAM season. To further analyze this, Figure 7 presents the spatial distribu-
tion of differences between the modeled and observed datasets for MAM.  
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Figure 4 – Annual contour plots of the surface solar radiation differences 
considering each modeled (A–E) data minus the Brazilian Daily Weather 
Gridded Data.
RMSE: root mean square error; DJF: December-January-February (summer); 
MAM: March-April-May (autumn); JJA: June-July-August (winter); SON: Sep-
tember-October-November (spring).
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Figure 5 – Horizontal bar charts showing the hierarchical organization of root 
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ISCCP: International Satellite Cloud Climatology Project; EUMETSAT: Eu-
ropean Organisation for the Exploitation of Meteorological Satellites; CMIP6: 
Coupled Model Intercomparison Project Phase 6; ERA5: ECMWF Reanalysis 
5; NCEP: National Center for Environmental Prediction; DJF: December-Ja-
nuary-February (summer); MAM: March-April-May (autumn); JJA: June-July-
-August (winter); SON: September-October-November (spring).

Figure 6 – Heatmap showing the seasonal variation of root mean square 
error for different cloud data types, with averages calculated for the seasons.
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The results indicated an underestimation over the Northern region when 
using ERA5 (Figure 7B), EUMETSAT (Figure 7E), and ISCCP (Figure 
7D). Conversely, overestimations were predominantly observed in the 
Southern region, particularly in NCEP (Figure 7C), CMIP6 (Figure 7A), 
and EUMETSAT (Figure 7E). Moreover, when considering the spatial 
patterns of other seasons, we observed, in general, underestimations in 
DJF, overestimations in JJA, and behavior in SON similar to that of MAM.

As a final analysis, we employed hierarchical clustering (Figure 8) 
to evaluate the similarity among datasets based on seasonal and annu-
al RMSE values. The resulting dendrogram revealed distinct groupings, 
highlighting the relationships between the datasets. Specifically, the most 
accurate and closely related datasets were EUMETSAT and CMIP6, which 
exhibited the highest degree of similarity. The intermediate group consist-
ed of ERA5 and ISCCP, with ISCCP demonstrating slightly better and 
more consistent estimations. In contrast, NCEP showed the least similari-
ty with the other datasets, displaying only marginal agreement with ERA5.

Discussion
After evaluating the datasets, we computed the Global Horizontal 

Irradiance (GHI) for all datasets, as illustrated in Figure 9. The GHI 
maps exhibited a direct relationship with SSR, revealing higher GHI 
values in the Brazilian Northeast region and lower values in the Ama-
zon (North) and the South regions. These findings align with previous 
studies by Martins et al. (2012) and Pereira et al. (2017).

These results are crucial for estimating the PV potential of solar 
energy systems. However, it should be emphasized that additional 
factors, such as air temperature and panel technology, must also be 
considered to accurately estimate PPP. Our findings provide valuable 
insights to support future solar power plant projects across Brazil. Spe-
cifically, the modeled GHI can help reduce uncertainties in the North 
region, particularly in the Amazon basin, where the sparse distribution 
of weather stations poses significant challenges, as Xavier et al. (2022) 
noted. Based on our analysis, we strongly recommend prioritizing 
satellite-derived cloud cover data, complemented by CMIP6 recon-
structions, while strictly adhering to our methodology—including the 
choice of models, ensemble techniques, and experimental design—to 
achieve more accurate and reliable GHI modeling.

Furthermore, our results indicate that cloud data obtained from 
the NCEP reanalysis produce less reliable modeled GHI, consistent 
with the findings of Free et al. (2016) and Wu et al. (2023). It is cru-
cial to address a common misunderstanding in the literature regard-
ing the distinction between total cloud amount and total cloud cover. 
According to the World Meteorological Organization, the total cloud 
amount is estimated from superposed cloud layers, whereas total cloud 
cover refers only to the visible clouds in the sky (https://cloudatlas.
wmo.int/en/total-cloud-cover-and-cloud-amount.html, last access: 
05/08/2024). Consequently, the NCEP reanalysis cloud data, which 
represent only visible clouds, tend to exhibit greater variability, making 
these reanalysis data unsuitable for accurate GHI modeling.
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Figure 7 – Contour plots of surface solar radiation differences, calculated as 
the difference between each modeled dataset (A–E) and BR-DWGD for the 
austral autumn (MAM).
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Conclusion
This study highlights the critical role of cloud cover data sources in 

modeling SSR and estimating PPP across Brazil. On an annual scale, 
the ISCCP dataset demonstrated the highest accuracy in SSR mod-
eling, with the lowest RMSE of approximately 16.9 Wm⁻², followed 
closely by EUMETSAT and ERA5. In contrast, the NCEP reanalysis 
data exhibited significant discrepancies, underestimating SSR in the 
North and Northeast regions while overestimating it in the South. 
These biases stem primarily from the conceptual differences between 
total cloud cover and total cloud amount in the dataset. Although the 
CMIP6 ensemble tended to overestimate SSR, it provided intermediate 
performance, particularly in transitional seasons. These findings un-
derscore the importance of using satellite-derived cloud data, such as 
ISCCP and EUMETSAT, to enhance SSR modeling accuracy, especially 
in regions with sparse observational data, such as the Amazon basin.

Seasonal analysis revealed distinct patterns in model performance. 
During the austral autumn (MAM), CMIP6 and EUMETSAT exhib-

ited the lowest RMSE values (16.6 and 16.7 Wm⁻², respectively), indi-
cating superior accuracy. In contrast, ERA5 performed poorly in DJF, 
with the highest RMSE (28.8 Wm⁻²), while NCEP showed the least 
accuracy in JJA (26.7 Wm⁻²). These seasonal variations highlight the 
influence of cloud dynamics on SSR modeling and emphasize the need 
for tailored approaches depending on the time of year. Overall, the 
study demonstrates that SSR modeling is a reliable alternative for esti-
mating GHI and PPP, particularly in data-scarce regions. By prioritiz-
ing satellite-derived cloud data and adhering to robust methodologies, 
future solar energy projects in Brazil can achieve more accurate and 
reliable energy potential assessments, supporting the country’s transi-
tion to sustainable energy.
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