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A B S T R A C T 
Although they play a crucial environmental role, wastewater treatment 
plants (WWTPs) also generate environmental impacts due to resource 
consumption and waste production. Therefore, the application of the 
life cycle assessment (LCA) methodology is of fundamental importance 
for a comprehensive analysis of the impacts associated with these 
systems. This work aims to perform an LCA of a tertiary-level WWTP, 
consisting of an anaerobic reactor followed by activated sludge, in 
order to select the most sustainable scenario. Open Source Life Cycle 
Assessment (OpenLCA) was the software used, along with the Ecoinvent, 
BIOENERGIEDAT_18, ELCD, and NEEDS databases. The reference 
methods for calculating impact categories were CML-IA and ReCiPe. 
Three scenarios were simulated: CT_Base, CT_Solar, and CT_Reuse. 
All models considered the operation and maintenance (O&M) phase. 
The CT_Base scenario assumed the WWTP operates as it currently 
does (electricity from hydropower), the CT_Solar scenario operated 
entirely on solar energy, and the CT_Reuse scenario established the 
reusing of 25% of the treated effluent. The functional unit (FU) adopted 
corresponded to the volume of wastewater treated over 15 years of 
O&M of the WWTP. For both methods applied, the CT_Solar scenario 
was the most environmentally advantageous. The amount of gases 
emitted in the CT_Reuse scenario during the transportation of treated 
effluent to reuse points increased negative impacts and consequently 
environmental degradation across various categories, making it the 
least sustainable scenario. 

Keywords: sustainability; OpenLCA; environmental viability; 
environmental impact.

R E S U M O
Apesar de desempenharem papel ambiental crucial, as estação de 
tratamento de efluente (ETE) também geram impactos ambientais 
em razão da demanda por recursos e da geração de resíduos. Dessa 
forma, de fundamental importância é a aplicação da metodologia de 
Avaliação de Ciclo de Vida (ACV) para uma análise global dos impactos 
provenientes delas. Este trabalho objetivou realizar a ACV de uma ETE 
de nível terciária, composta de reator anaeróbio seguido de lodos 
ativados, visando selecionar o cenário mais sustentável. O OpenLCA 
foi o software utilizado, junto com as bases de dados Ecoinvent, 
BIOENERGIEDAT_18, ELCD e NEEDS. Os métodos de referência para 
os cálculos das categorias de impacto foram CML-IA e ReCiPe. Três 
cenários foram simulados, o CT_Base, CT_Solar e o CT_Reúso. Todos 
foram modelados considerando a fase de operação e manutenção 
(O&M). O CT_Base admitiu a ETE conforme opera atualmente 
(energia elétrica por geração hidráulica), o CT_Solar opera totalmente 
por meio de energia solar e o CT_Reúso estabeleceu o reúso de 25% 
do efluente tratado. A unidade funcional (UF) adotada correspondeu 
ao volume de esgoto tratado em 15 anos de O&M da ETE. Para 
ambos os métodos aplicados, o CT_Solar se mostrou o cenário 
mais vantajoso ambientalmente. A quantidade de gases emitida no 
CT_Reúso, quando do transporte do efluente tratado para os pontos 
de reúso, potencializou os impactos negativos e consequentemente 
a degradação ambiental em diversas categorias, tornando-o assim o 
cenário menos sustentável. 

Palavras-chave: sustentabilidade; OpenLCA; viabilidade ambiental; 
impactos ambientais.
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Introduction
Wastewater treatment plants (WWTPs) play a fundamental role 

in the development of social well-being and environmental harmony. 
In these facilities, sewage is properly treated and discharged into water 
bodies in accordance with current legislation, or reused, thereby miti-
gating the negative impacts caused by untreated sewage (Dufner et al., 
2022; Kar et al., 2023; Pasciucco et al., 2023; Rashid et al., 2023). 

However, despite playing a significant environmental role, WWTPs 
also cause negative environmental impacts, as during their treatment 
processes, throughout the phases that comprehend their life cycle––
construction, operation and maintenance (O&M) and end of life––they 
consume raw materials and energy and generate various wastes, such 
as gaseous emissions (odors, biogas, etc.) and solid residues (sludge, 
sand, etc.) (Tian et al., 2020; Al-Anbari et al., 2022). According to Kar 
et  al. (2023) and Pasciucco et  al. (2023), the three phases that make 
up the life cycle of WWTPs impact the environment in different ways.

Life cycle assessment (LCA) methodology is one of the tools that 
allows for the analysis of impacts throughout an entire supply chain 
of a product, process, or service (Sudarno et al., 2024). According to 
Parra-Saldivar et al. (2020), Daskiran et al. (2022), and Sheikholesla-
mi et al. (2022), its application is already widely established worldwide 
across various industrial sectors, and over the past three decades, it 
has been increasingly recognized for its applicability in the sanitation 
sector, specifically in WWTPs (Talang et al., 2022; Rashid et al., 2023). 

Basically, the application of the LCA methodology aims to cate-
gorize and measure environmental impacts from the raw material ex-
traction phase at the source, passing through its various transforma-
tion, usage, and disposal processes, in addition to the transportation 
inherent to each of these stages.

Accordingly, as noted by Alizadeh et  al. (2020), Daskiran et  al. 
(2022), Rashid et  al. (2023), and Mancini et  al. (2024), applying the 
LCA methodology to WWTPs allows impacts to be measured, for ex-
ample, from the production of chemical reagents required for treat-
ment processes (depending on the type of WWTP), as well as from the 
energy consumption (regardless of the energy matrix), up to the final 
processes (biogas production, transportation of solid waste to landfills, 
etc.). Thus, a systemic assessment of impacts throughout the entire life 
cycle is possible, rather than focusing solely on environmental param-
eters related to the final discharge into water bodies. 

The vast majority of studies on the LCA methodology in WWTPs 
are based on the variation of treatment scenarios (either altering the 
treatment type or varying subprocesses within the same type, such as 
discharging into water bodies or reusing effluent in agriculture), aim-
ing to identify the least impactful and consequently the most sustain-
able scenario. In other words, it essentially seeks an optimization of 
the resources applied through maximum reuse throughout the supply 
chain (Gallego-Schmid and Tarpani, 2019; Pasciucco et al., 2023; Torre 
et al., 2024). 

Regarding the analyzed phase (construction, operation and main-
tenance [O&M], and end-of-life), the literature review conducted 
by Lopes et al. (2017), related to the application of LCA in WWTPs, 
concludes that the magnitude of impacts generated during the end-
of-life phase is insignificant compared to the construction and oper-
ation phases. The study also finds that, among the reviewed articles, 
the O&M phase is the most impactful. There is a convergence in the 
conclusion of Lopes et al. (2017) and various other works on the topic, 
such as those of Maktabifard et al. (2020), Yang et al. (2021), Lima et al. 
(2022), Patel and Singh (2022), and Rufí-Salís et al. (2022). 

Brazil is a country that still requires substantial investments in 
the basic sanitation sector (Leite et al., 2022). In the area of sanita-
tion,  the low coverage rate of this service is a concern among spe-
cialists, as it directly impacts public health. According to the Nation-
al Sanitation Information System (SNIS, 2022), only 51.2% of the 
sewage generated nationwide is treated. This figure falls significantly 
short of the target set by the revision of the New Sanitation Legal 
Framework, which aims for 90% coverage by the year 2033 (Brasil, 
2020). However, Law No. 14,026/2020 has also established that, in the 
pursuit of universalization, efficiency––including energy efficiency––
and the economic-environmental sustainability of the new systems to 
be designed and operated should also be considered (Brasil, 2020). 
According to SNIS (2022), electricity consumption in the sanitation 
sector accounts for one of the highest operational costs of this service, 
with a progressive increase over the years. This energy consumption 
not only causes significant environmental impacts (depending on the 
energy matrix chosen) but also raises the tariffs charged to the pop-
ulations served by sanitation companies (Shanmugam et  al., 2022; 
Karolinczak et al., 2024).

 Therefore, the need to build multiple WWTPs across the coun-
try, with appropriate designs that encompass suitable treatment types 
for each situation, respecting the principles of efficiency and econom-
ic-environmental sustainability, aligns with the application of the LCA 
methodology. Based on this tool, it is possible to simulate alternative 
scenarios with the goal of identifying the most environmentally, tech-
nically, and economically viable perspective while also minimizing op-
erational costs (Awad et al., 2024).

In Brazil, although the use of the LCA methodology in WWTPs 
has been gaining recognition in recent years (Araújo et al., 2022; Lima 
et al., 2022), it still needs to be further explored, both in terms of de-
veloping databases that encompass the various regional particularities 
and in considering the numerous combinations of treatment typolo-
gies (Gallego-Schmid and Tarpani, 2019; Lima et al., 2022).

Therefore, based on LCA, sanitation company managers will need 
to make objective and strategic decisions on how to choose the most ad-
vantageous project, selecting the design that maximizes the reduction 
of environmental impacts and optimizes the use of financial resources 
without compromising efficiency (Boldrin et al., 2022; Marami et al., 
2022; Shanmugam et al., 2022), as stipulated by Law No. 14,026/2020.  
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Given the aforementioned facts, the objective of this work is to 
evaluate the magnitude of environmental impacts generated by the 
processes inherent to the operational routine of a tertiary-level WWTP 
located in the Northeast region of Brazil, using the LCA methodology 
during the O&M phase across different scenarios, with the aim of iden-
tifying the most sustainable scenario.

Methodology

Location and study period
The study was conducted at a WWTP located in the Northeast re-

gion of Brazil, in the state of Rio Grande do Norte, a tropical climate 
region. The data analyzed refer to a monitoring period of 30 months, 
collected using validated instruments appropriate to each variable: a 
large-scale meter (macrometer) for flow measurement and standard-
ized laboratory equipment for physicochemical and biological tests.

Characterization of the study area
The WWTP has two treatment modules operating in parallel, each 

with a treatment capacity of 225 L/s, both currently in operation. It re-
moves nutrients through nitrification and denitrification, with a final 
flow rate of 450 L/s. The two modules are preceded by mechanized 
preliminary treatment units (coarse screening, fine screening, and 
grit chamber). After preliminary treatment, the sewage flow is divided 
into two lines, each directed to a separate module. Each module con-
tains four upflow anaerobic sludge blanket (UASB) reactors, an anoxic 
chamber, an aeration tank, and a secondary decanter. Finally, the flows 
from the two lines converge into the last treatment stage: an ultraviolet 
(UV) radiation disinfection unit so that the treated wastewater can be 
discharged into the recipient body. 

Regarding the solid phase, the sludge tank stores and mixes the 
solid material originating from the UASB reactors and the surfaces of 
the secondary decanters, then directs it to the dewatering unit via cen-
trifugation. Once dewatered, the sludge, along with sand and coarse 
solids, is transported to the nearest landfill, approximately 23 km away 
from the station.

Standardization, software, databases, and impact 
assessment methods

The analysis was conducted according to the LCA methodology, 
guided by the Brazilian Technical Standard/International Organiza-
tion for Standardization (NBR ISO) 14040 (ABNT, 2009a) and NBR 
ISO 14044 (ABNT, 2009b). According to ABNT (2009a, 2009b), the 
analysis comprised four phases: goal and scope definition; inventory 
analysis; impact assessment; and interpretation. 

The software used was Open Source Life Cycle Assessment (Open-
LCA) version 2.1.1. According to Silva et al. (2019), OpenLCA, along 
with commercial software such as SimaPro, GaBi, and Umberto, is 
among the most widely used tools for applying the LCA methodology 

worldwide. However, the fact that OpenLCA is free enables its large-
scale use for academic purposes. 

Regarding the databases used, due to the absence of certain prod-
ucts/processes that are part of the system flows in the Ecoinvent da-
tabase (free version), such as sludge, a combination of four databases 
was chosen: Ecoinvent version 3.7.1; BIOENERGIEDAT_18 (which in-
cludes processes related to energy chains based on German research); 
European reference Life Cycle Database (ELCD) version 2_18; and 
New Energy Externalities Developments for Sustainability (NEEDS), 
which covers energy inventories from various sources such as nuclear, 
solar, wind, and hydro. 

Regarding impact assessment methods, ReCiPe 2016 Midpoint (H) 
and CML-IA baseline were employed. These methods have extensive 
applicability in studies that use the LCA methodology in WWTPs, 
both nationally and internationally. 

Goal and scope definition
The objective of this work was to evaluate the environmental per-

formance of a tertiary-level WWTP, consisting of an anaerobic reactor, 
activated sludge, and a disinfection unit, through the application of the 
LCA methodology during the O&M phase, across three different sce-
narios, with the aim of identifying the most sustainable one. 

Definition of the functional unit
The volume of sewage (in m³) treated at the WWTP during the 

15-year period was defined as the FU of this study. The selection of this 
period is related to the lifespan of the WWTP in question (15 years). 
During this period, the management approaches for the effluents pro-
duced at the WWTP, as well as its by-products and generated residues 
(biogas, sludge, sand, and coarse solids), were considered. The treat-
ment, transportation, and final disposal phases of the effluents and res-
idues were delineated according to the boundary setting.

Boundary and scenario delineation
A boundary was established for each scenario. The system 

boundaries were delineated from the point where raw sewage arrives 
at the WWTP to the discharge of the final treated effluent (either into 
the water body only or into the water body and irrigation jointly, 
as described in each scenario), considering the entire O&M phase. 
The construction and end-of-life phases were not included because 
their impact magnitudes are considered negligible compared to those 
from the O&M phase. Additionally, the lack of precise information 
about these phases (such as designs and budgets) made detailed anal-
ysis unfeasible. The emissions associated with transporting sludge, 
sand, and coarse solids to the landfill, located 23 km from the WWTP, 
were included in all scenarios. 

Three scenarios were analyzed. The first, called CT_Base, rep-
resents the current operation of the WWTP, as described earlier in 
the characterization of the study area. In this scenario, all the elec-
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trical energy consumed by the WWTP is supplied by the local state 
energy company. All impacts associated with the energy production 
from hydropower plants, as well as their distribution, are included in 
this scenario. All the liquid effluent generated will be discharged into 
the water body. 

In scenario 2, called CT_Solar, a supply of energy entirely gener-
ated from solar power through photovoltaic panels was considered. 
Therefore, all impacts from the manufacturing of the photovoltaic 
panels were included. In this scenario, all the liquid effluent will also be 
discharged into the receiving water body.

In the final scenario, called CT_Reuse, all the electrical energy con-
sumed by the WWTP is supplied by the local utility; however, 75% 
of the liquid effluent’s FU will be discharged into the receiving water 
body, while the remaining portion will be used for irrigation of squares 
and flowerbeds throughout the city (which does not occur currently), 
transported via water trucks with an 8 m³ capacity. In CT_Reuse, emis-
sions related to the transportation of the portion of treated effluent 
used for irrigation were also considered. For this purpose, a transpor-
tation distance of 30 km was adopted.

The adoption of the CT_Solar and CT_Reuse scenarios was based 
on their representation of two promising sustainability strategies in the 
sanitation sector, which are still relatively underexplored in LCA stud-
ies applied to WWTPs.

The selection of 25% of the treated effluent for reuse in the CT_Reuse 
scenario was based on a realistic estimate of operational feasibility and lo-
gistical considerations, taking into account the limitations of transport via 
water trucks and the potential demand for urban irrigation. This percent-
age was adopted as a representative value capable of demonstrating the 
environmental impacts of this practice without compromising the system’s 
functionality or overestimating the treated effluent’s distribution capacity.

Figures 1, 2, and 3, respectively, illustrate the boundaries of the 
CT_Base, CT_Solar, and CT_Reuse scenarios.

Figures 4 and 5, respectively, illustrate the directions of the flows 
(in their various phases) occurring during the wastewater treatment 
process at the WWTP in scenarios CT_Base and CT_Reuse. It is im-
portant to highlight that regarding these flows, the CT_Base and CT_
Solar scenarios are identical, differing only in the source of electrical 
energy (hydropower and solar, respectively).

Figure 1 – CT_Base scenario – WWTP currently operating.
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Results and discussion

Inventories
Table 1 presents the inventories from the O&M phase of the three 

modeled scenarios in the OpenLCA software. According to Saave-
dra-Rubio et al. (2022), of the four stages that make up the LCA meth-
odology (goal and scope definition; inventory analysis; impact assess-
ment; and interpretation), the inventory analysis stage requires the 
most time and care from researchers. It involves the processes of data 
collection and the determination of system inputs and outputs, which 
must be consistent with the selected FU.

The quantities related to air emissions from biogas were based on 
the methodology proposed by Kalbar et  al. (2013). As for emissions 
associated with the transportation of sludge, dry sand, and coarse sol-
ids to the sanitary landfill, data provided by Detran and Feema (2001) 
and De Carvalho (2011) were used. All other quantities were calculated 
considering actual data from the WWTP, collected onsite. It is import-
ant to highlight that, in the three scenarios, the distance considered 
from the WWTP to the landfill was 23 km. In the CT-Reuse scenario, 

the average transportation distance for the reuse of 25% of the treated 
effluent in planters and park gardens was 30 km.

Environmental impacts
Table 2 presents the values of the environmental impacts ob-

tained through the simulations of the CT_Base, CT_Solar, and CT_
Reuse scenarios for the categories analyzed using the CML-IA base-
line method. For each scenario, the absolute impact values are shown, 
as well as their relative significance in percentage terms compared to 
the other scenarios. The units for each impact category are listed in 
column 1.

Figure 6 shows the comparison among the three scenarios with 
the normalized impact values (expressed in percentage terms). The in-
ternal normalization process of the results is necessary because the 
reference units for the impact categories are different, making direct 
comparisons between them impossible. Therefore, to enable these 
comparisons, each impact category was divided by a common refer-
ence value––the maximum value among the alternatives (the scenari-
os)––resulting in a dimensionless value.

Figure 2 – CT_Solar scenario – WWTP 100% operating with solar energy.
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Based on the analysis of Figure 6, it is observed that, regarding 
the CML-IA baseline method, the CT_Solar scenario was the least 
impactful in nine impact categories (abiotic depletion of fossil fu-
els, acidification, eutrophication, global warming, human toxicity, 
marine aquatic ecotoxicity, ozone layer depletion, photochemical 
oxidation, and terrestrial ecotoxicity). Only in the categories of 
abiotic depletion and freshwater aquatic ecotoxicity did this sce-
nario show a higher impact compared to the others. The fact that 
this scenario uses electricity generated from solar energy during the 
O&M phase significantly contributes to reducing impacts in most 
categories. These results align with the studies by Awad et al. (2024) 
and Jamaludin et al. (2024), which analyze WWTPs with activated 
sludge. Among the impact categories, eutrophication stands out, as a 
beneficial impact was observed in this category when the CT_Solar 
scenario was simulated.

On the other hand, the CT_Reuse scenario was characterized as 
the most impactful in those nine categories. The fact that CT_Reuse 
considers transportation by tanker trucks of the 25% portion of treated 

effluent for irrigation of planters and parks results in the emission of 
greenhouse gases that amplify environmental impacts across several 
categories, making it the least environmentally advantageous. In no 
impact category was the CT_Base scenario more impactful than the 
CT_Reuse.

Similar to the CML method, the ReCiPe 2016 Midpoint (H) meth-
od was also used to determine the environmental impacts for the three 
scenarios. Table 3 displays the impact values (both absolute and nor-
malized) for this method. 

Figure 7 shows the comparison of the normalized impact catego-
ry values calculated using the ReCiPe method for the three scenarios. 
Once again, the CT_Solar scenario proved to be the least impactful. 
Out of the 18 impact categories analyzed by this method, the CT_Solar 
was the least impactful in 12 of them. In the marine eutrophication 
and water consumption categories, this scenario stood out by having 
a beneficial impact. The CT_Reuse scenario consolidates as the most 
impactful, reaching the highest value among the analyzed scenarios in 
11 impact categories. 

Figure 3 – CT_Reuse scenario – WWTP reusing 25% of the effluent flow.
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Figure 4 – CT_Base scenario flows.
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Figure 5 – CT_Reuse scenario flows.
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Table 1 – Inventories used in the three scenarios (inputs and outputs).

Item CT_Base CT_Solar CT_Reuse
Inputs

BOD5 (kg) 63,587,377,14 63,587,377,14 63,587,377,14
COD (kg) 120,657,118,07 120,657,118,07 120,657,118,07
N-NH4 (kg) 7,345,325,85 7,345,325,85 7,345,325,85
S Sed (kg) 708,702,25 708,702,25 708,702,25
SST (kg) 49,609,157,71 49,609,157,71 49,609,157,71
Total P (kg) 969,803,08 969,803,08 969,803,08
Chemical products (kg) 10,950,00 10,950,00 10,950,00
Water (kg) 4,500,000,000,00 4,500,000,000,00 4,500,000,000,00
Energy (KWh) 36,096,924,60 36,096,924,60 36,096,924,60

Outputs: emissions to the receiving environment
BOD5  (kg) 14,622,896,04 14,622,896,04 10,978,916,89
COD (kg) 34,630,431,59 34,630,431,59 25,972,823,69
N-NH4 (kg) 3,777,252,46 3,777,252,46 2,832,944,00
S Sed (kg) 124,763,30 124,763,30 93,571,85
SST (kg) 11,376,536,17 11,376,536,17 8,532,402,12
Total P (kg) 708,702,25 708,702,25 531,526,69

Outputs: emissions to the soil
Dry sludge (kg) 4,752,000,00 4,752,000,00 4,752,000,00
Sand and coarse solids (kg) 13,789,800,00 13,789,800,00 13,789,800,00
N-NH4 (kg) - - 944,314,67
SST (kg) - - 2,844,134,039
Total P (kg) - - 177,175,56

Outputs: air emissions (from biogas)
Particulate matter (kg) 151,338,00 151,338,00 151,338,00
CH4   (kg) 16,046,511,01 16,046,511,01 16,046,511,01
CO  (kg) 468,237,00 468,237,00 468,237,00
CO2  (kg) 84,546,000,00 84,546,000,00 84,546,000,00
SO2  (kg) 617,793,00 617,793,00 617,793,00
NOX (kg) 284,427,00 284,427,00 284,427,00

Outputs: air emissions (from Transportation)
Particulate matter (kg) 163.40 163.40 154,026,39
CO (kg) 3,305,09 3,305,09 3,115,533,73
CO2 (kg) 237,669,12 237,669,12 224,038,380,38
SOx (kg) 209.82 209.82 198,308,97
NOX (kg) 2,413,83 2,413,83 2,275,389,80

Table 2 – Magnitude of environmental impacts using the CML-IA baseline method.

Category of impact / Unit C_Base CT_Solar CT_Reuse
Abiotic depletion (kg Sb eq) 0.054 0.18% 30,30 100.00% 0.054 0.18%
Abiotic depletion (fossil fuels) (MJ) 1,693,242,727.96 100.00% 92,759,421.93 5.48% 1,693,242,727.96 100.00%
Acidification (kg SO2 eq) 1,585,602.00 58.25% 926,497.17 34.04% 2,722,089.99 100.00%
Eutrophication (kg PO4 eq) 2,777,384.46 59.37% -1,043,153.78 -22.30% 4,678,163.26 100.00%
Aquatic ecotoxicity (freshwater) (kg 1,4-DB eq) 235,245.63 31.14% 755,562.98 100.00% 235,245.63 31.14%
Global warming (GWP100a) (kg CO2 eq) 226,673,840.51 50.32% 94,294,650.93 20.93% 450,474,551.47 100.00%
Human toxicity (kg 1,4-DB eq) 13,817,738.31 82.88% 3,543,907.55 21.26% 16,671,477.12 100.00%
Aquatic ecotoxicity (marine water) (kg 1,4-DB eq) 18,076,369,290.00 100.00% 2,724,837,178.72 15.07% 18,076,369,290.00 100.00%
Ozone depletion (ODP) (kg CFC-11 eq) 9.07 100.00% 0.65 7.16% 9.07 100.00%
Photochemical oxidation (kg C2H4 eq) 80,206.38 1.31% 44,460.08 0.73% 6,129,153.41 100.00%
Terrestrial ecotoxicity (kg 1,4-DB eq) 62,601.13 100.00% 19,190.1 30.65% 62,601.13 100.00%
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Table 3 – Magnitude of environmental effects using ReCiPe 2016 Midpoint (H).

Category of Impact / Unit CT_Base CT_Solar CT_Reuse

Particulate matter formation (kg PM2.5 eq) 380,569.15 55.31% 221,788.02 32.23% 688,045.26 100.00%

Fossil resource depletion (kg oil eq) 35,237,256.80 100.00% 2,036,400.26 5.78% 35,237,256.80 100.00%

Freshwater ecotoxicity (1,4-DCB) 8,754.72 27.81% 31,485.17 100.00% 8,754.72 27.81%

Freshwater eutrophication (kg P eq) 261,646.16 57.31% 261,730.28 57.33% 456,539.28 100.00%

Global warming (kg CO2 eq) 228,323,755.32 50.50% 94,406,861.65 20.88% 45,212,4466.28 100.00%

Human carcinogenic toxicity (kg 1,4-DCB) 84,092.79 35.18% 239,022.03 100.00% 84,092.79 35.18%

Human non-cancer toxicity (kg 1,4-DCB) 13,921,037.11 100.00% 3,958,932.58 28.44% 13,921,037.11 100.00%

Ionizing radiation (kBq Co-60 eq) 5,403,470.92 100.00% 1,501,009.75 27.78% 5,403,470.92 100.00%

Land use (m²a crop eq) 0.00 0.00% 22,640.31 100.00% 0.00 0.00%

Marine ecotoxicity (kg 1,4-DCB) 64,160.12 84.72% 75,728.21 100.00% 64,160.12 84.72%

Marine eutrophication (kg N eq) 1,056,870.72 -73.33% -1,055,982.89 -73.27% 1,441,233.21 100.00%

Mineral resource depletion (kg Cu eq) 24,293.25 32.73% 74,228.59 100.00% 24,293.25 32.73%

Ozone formation, human health 484,963.81 17.58% 306,459.56 11.11% 2,757,939.78 100.00%

Ozone formation, terrestrial ecosystem (kg NOx eq) 486,586.31 17.63% 306,954.45 11.12% 2,759,562.28 100.00%

Depletion of stratospheric ozone (kg CFC11 eq) 20.99 100.00% 3.92 18.67% 20,99 100.00%

Terrestrial acidification (kg SO2 eq) 1,306,034.99 56.24% 755,516.32 32.53% 2,322,405.50 100.00%

Terrestrial ecotoxicity (kg 1,4-DCB) 82,149,670.70 88.37% 92,962,980.89 100.00% 82,149,670.70 88.37%

Water consumption (m³) -277,453.10 0.00% -14,089,200,504.24 -100.00% -277,453.10 0.00%

Figure 6 – Impact categories according to the CML method.
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Figure 7 – Impact categories according to ReCiPe.

Souza et al. (2021) and Jamaludin et al. (2024) demonstrated that 
this type of WWTP has a high energy demand, primarily driven by 
aerators. Approximately 65% of the total consumption is attributed to 
these units. Therefore, the fact that the CT_Solar scenario uses a solar 
energy matrix rather than a water-based one explains the reduction in 
impacts across various categories. Batool et al. (2023) concluded that 
adopting measures to improve energy efficiency in this type of WWTP 
not only decreases O&M costs but also results in several environmental 
benefits, such as the reduction of greenhouse gas emissions. 

Also, using this method, in no impact category was the CT_Base sce-
nario the most impactful on its own. Therefore, it can be observed that the 
ReCiPe and CML-IA methods show significant convergence, especially 
regarding the identification of the most and least impactful scenarios.

Conclusions
Among the three scenarios simulated in this work, the CT_Solar 

scenario was the least impactful in most impact categories, according 
to both the CML-IA baseline method and the ReCiPe 2016 Midpoint 
(H). The impact categories analyzed in the first method included abiot-
ic depletion of fossil fuels, acidification, eutrophication, global warm-
ing, human toxicity, marine aquatic ecotoxicity, ozone layer depletion, 
photochemical oxidation, terrestrial ecotoxicity, abiotic depletion, and 
freshwater aquatic ecotoxicity. Only in the last two categories did the 
CT_Solar scenario demonstrate the highest impacts. 

Regarding the ReCiPe method, the CT_Solar scenario was the most 
impactful in six of the 18 categories analyzed: freshwater ecotoxicity, 
marine ecotoxicity, terrestrial ecotoxicity, human carcinogenic toxici-

ty, land use, and mineral resource scarcity. The fact that the boundary 
delineation of each scenario includes the manufacturing phase of the 
photovoltaic modules (from the mineral extraction stage) significantly 
contributed to amplifying these impacts.   

In all analyses conducted, the CT_Base scenario did not have a 
greater impact than the CT_Reuse scenario in any impact category. 
In the latter scenario (CT_Reuse), the transportation phase using water 
trucks for the required amount of reuse contributed significantly to the 
intensification of impacts across various categories, making its adop-
tion not advisable in a sustainable scenario.

Given the facts mentioned above, the importance of applying the 
LCA methodology in WWTPs is highlighted. Through simulations of 
alternative scenarios, this approach allows managers––such as direc-
tors of sanitation companies, regulatory agencies, or government bod-
ies related to the subject––to confidently select the most sustainable 
scenario. This decision, based on LCA, not only analyzes the discharge 
patterns of the effluent into the receiving body but also considers the 
entire global chain of impacts generated throughout the life cycle of 
the WWTP. 

Finally, this research also contributes to filling significant gaps in 
the literature by incorporating the manufacturing stage of photovoltaic 
technologies and the impacts of transportation on effluent reuse. Addi-
tionally, it identifies opportunities for future investigations that could 
include, for example, end-of-life analyses of the systems, different reuse 
modalities (such as industrial reuse), and complementary approaches 
like cost–benefit analyses, in order to deepen the understanding of the 
technical and environmental feasibility of the evaluated alternatives.
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