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A B S T R A C T 
Determining individuals’ dry mass is crucial for better understanding 
community structure in terrestrial and aquatic ecosystems. 
The establishment of size–mass relationships for different populations 
constitutes a helpful tool for indirectly determining the total biomass 
of freshwater communities. In this study, we determined the size–mass 
relationships of 14 genera from the orders Ephemeroptera, Plecoptera, 
Trichoptera, and Odonata commonly found in leaf patches in Atlantic 
Forest streams (SE Brazil). We used individual body length as a size 
measure and three mathematical models (linear, exponential, and 
power) to establish the best-fitting equations. The equations described 
by the power model showed the best fit (coefficient of determination 
[r²]≥0.80) for the genera Anacroneuria, Macrogynoplax (Plecoptera), 
Smicridea (Trichoptera), Archaegomphus, Idiataphe, Hetaerina, 
Heteragrion, and Neocordulia (Odonata); the exponential model 
presented the best fit for Phylloicus (r²=0.74), Triplectides (Trichoptera, 
r²=0.60), Enderleina (r²=0.96), and Tupiperla (Plecoptera, r²=0.60); and 
the linear model exhibited the best fit for Elasmothemis (Odonata, 
r²=0.85) and Massartella (Ephemeroptera, r²=0.63). Our findings 
demonstrated that body length is a strong predictor of dry mass for 
most of the studied genera but some exceptions suggest that it may not 
fully capture biomass variation. The power models performed better 
in general, whereas the exponential and linear models were optimal 
for specific genera, indicating diverse influences on taxa allometry. 
This study reinforces the need to evaluate different approaches for 
estimating the dry mass of aquatic insects and underscores the caution 
required when using indirect methods for biomass determination.

Keywords: body length; dry mass; biomass determination; freshwater 
invertebrates; Atlantic Forest streams.

R E S U M O
A determinação da massa seca dos indivíduos é crucial para o melhor 
entendimento da estrutura das comunidades em ecossistemas 
terrestres e aquáticos. O estabelecimento das relações tamanho–
massa para diferentes populações constitui uma ferramenta útil 
para determinar indiretamente a biomassa total de comunidades de 
aquáticas. Neste  estudo, determinamos as relações tamanho–massa 
de 14 gêneros das ordens Ephemeroptera, Plecoptera, Trichoptera e 
Odonata comumente encontradas em acúmulos de folhas em riachos 
da Mata Atlântica (SE Brasil). Utilizamos o comprimento do corpo dos 
indivíduos como medida de tamanho e três modelos matemáticos (linear, 
exponencial e power) para estabelecer as equações de melhor ajuste. 
As equações descritas pelo modelo power apresentaram o melhor ajuste 
(coeficiente de determinação [r²]≥0,80) para os gêneros Anacroneuria, 
Macrogynoplax (Plecoptera), Smicridea (Trichoptera), Archaegomphus, 
Idiataphe, Hetaerina, Heteragrion e Neocordulia (Odonata); o modelo 
exponencial mostrou o melhor ajuste para Phylloicus (r²=0,74), Triplectides 
(Trichoptera, r²=0,60), Enderleina (r²=0,96) e Tupiperla (Plecoptera, 
r²=0,60); enquanto o modelo linear apresentou o melhor ajuste para 
Elasmothemis (Odonata, r²=0,85) e Massartella (Ephemeroptera, r²=0,63). 
Os resultados obtidos demonstraram que o comprimento do corpo é 
um forte preditor da massa seca para a maioria dos gêneros estudados, 
mas algumas exceções sugerem que ele pode não capturar totalmente 
a variação da biomassa. O modelo power exibiu o melhor desempenho 
em geral, enquanto os modelos exponencial e linear foram ótimos para 
gêneros específicos, indicando diversas influências na alometria dos 
táxons. Este estudo reforça a necessidade de avaliar diferentes abordagens 
para estimar a massa seca de insetos aquáticos e ressalta o cuidado 
necessário ao utilizar métodos indiretos para determinação de biomassa.

Palavras-chave: comprimento do corpo; massa seca; determinação de 
biomassa; invertebrados aquáticos; riachos de Mata Atlântica.
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Introduction
Determining the dry mass of individuals in a community allows a 

better understanding of natural ecosystem functioning (Benke et al., 
1999; Jacquet et al., 2022). Individuals’ mass can be used to estimate 
standing stock biomass in different compartments of an ecosystem 
(Miserendino, 2001; Méthot et  al., 2012). For example, estimating 
standing stock biomass at diverse trophic levels is essential to deter-
mining primary and secondary production, providing valuable infor-
mation about energy flow in green and brown food webs (Benke et al., 
1999; Kamburska et  al., 2023). Variations in biomass proportions of 
different taxa can also be used to evaluate the effects of environmental 
changes on ecosystems and the resilience of communities in altered 
environments (Krynak and Yates, 2020; Loomer et al., 2023). For in-
stance, a higher proportion of the biomass of generalist taxa than of 
specialist taxa may indicate anthropogenic impacts (Brito et al., 2021; 
Liebmann et al., 2022). Therefore, determining the dry mass of individ-
uals is crucial for better understanding the structure of communities in 
terrestrial and aquatic ecosystems.

Establishing mathematical models between the body size and dry 
mass of individuals in the same population constitutes a helpful tool 
for indirectly determining total biomass values in freshwater commu-
nities (Smock, 1980). Because they allow individuals’ dry mass deter-
mination quickly and accurately, size–mass relationships have been 
widely used in studies involving fish and aquatic invertebrates, espe-
cially when samples contain many individuals (Burgherr and Meyer, 
1997; Azrita et al., 2024). In addition to size–mass relationships, direct 
measurements of dry mass and indirect determination by individuals’ 
biovolume are also used in ecological studies (Benke et al., 1999). How-
ever, directly measuring dry mass results in the loss of individuals, pre-
venting their subsequent use in molecular analyses or maintenance in 
scientific collections (Mährlein et al., 2016). Moreover, indirect deter-
mination of dry mass through individuals’ biovolume is less accurate, 
mainly because it underestimates the mass of individuals with larger 
body sizes (Burgherr and Meyer, 1997). Despite the advantages of using 
size–mass relationships, they must be employed cautiously (Dekanová 
et al., 2022; Kamburska et al., 2023), as individuals of the same taxon 
found in different ecosystems may present morphological variations 
(Johnston and Cunjak, 1999; Martins et  al., 2014). Furthermore, re-
source availability and water temperature can affect individuals’ devel-
opment and, consequently, size–mass relationships (Wonglersak et al., 
2021; Collyer et al., 2023; Zamora-Camacho, 2025).

Size–mass relationships are often used in studies on aquatic insects 
(Smock, 1980; Burgherr and Meyer, 1997), as they are responsible for 
a significant part of secondary production in freshwater ecosystems 
(Benke et al., 1999). Investigating aquatic insects is essential for study-
ing trophic relationships and energy transfer in food webs due to their 
considerable diversity and abundance (Miserendino, 2001; Wahl et al., 
2021). Special attention should be given to the orders Ephemeroptera, 
Plecoptera, Trichoptera, and Odonata, as taxa of these groups directly 

and indirectly affect critical ecological processes (Arnaud et al., 2022; 
Oester et al., 2023). Moreover, many species from these orders are par-
ticularly susceptible to changes in the physical and chemical charac-
teristics of water and resource availability, making them valuable indi-
cators of aquatic ecosystem health (Akamagwuna and Odume, 2020; 
Lima et  al., 2022; El Yaagoubi et  al., 2024). Therefore, the size–mass 
relationships determined for Ephemeroptera, Plecoptera, Trichoptera, 
and Odonata taxa are key tools for studies assessing stream ecosystem 
responses to environmental changes.

In a global meta-analysis of insect size–mass power coefficients, 
Martin et al. (2014) found that allometric coefficients were positively 
related to latitude, with aquatic insects presenting higher coefficients 
than terrestrial ones. Despite the recognized relevance of biomass val-
ues in studies on aquatic insect communities, only a few taxa have had 
their size–mass relationships determined in neotropical streams (Zilli 
et  al., 2017). This lack of knowledge contrasts with the high abun-
dance and taxonomic richness of tropical aquatic communities, which 
makes direct measurement of individuals’ dry mass exhaustive in eco-
logical studies. Aquatic insects are a diverse group, leading to signifi-
cant variation in size–mass relationships among different families or 
genera within the same order, as well as among different populations 
of the same species (Johnston and Cunjak, 1999; Méthot et al., 2012; 
Mocq et al., 2024). While size–mass relationships can vary among spe-
cies, differences in maximum size between species within the same 
genus are generally smaller than variations between different genera 
(Mocq et  al., 2024). Therefore, size–mass relationships at the genus 
level are valuable for capturing general trends that are useful for large-
scale ecological modeling (Benke et al., 1999). To increase the avail-
ability of information for aquatic insects in neotropical streams, we 
determined the size–mass relationships of the most abundant genera 
from the orders Ephemeroptera, Plecoptera, Trichoptera, and Odona-
ta found in leaf patches in Atlantic Forest streams (SE Brazil). We used 
linear, exponential, and power mathematical models to establish the 
best-fitting equations.

Methods

Study area
We collected all individuals used in this study from a preserved 

forest stream (20°27’30” S, 40°50’06” W) located in the municipality 
of Marechal Floriano in the mountainous region of Espírito Santo state 
(SE Brazil). According to the Köppen climate classification, the region’s 
climate is considered as “Aw” (hot temperate), with no dry season in 
winter (Alvares et al., 2013). Throughout the year, the monthly aver-
age precipitation and air temperature range from 53.8 to 251 mm and 
from 16.8 to 22.9°C, respectively. Despite agricultural activities being 
the base of its economy, the municipality is surrounded by remnants of 
the Atlantic Forest. The studied stream was located within a forest frag-
ment of 5,848 m2, at an altitude of 780 m. Samples were collected in Oc-
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tober and November 2022 and in January, February, and March 2023. 
During this period, the stream water exhibited temperatures between 
15.6 and 22.2°C, a slightly acidic pH (6.3 to 7.2), good oxygenation (7.1 
to 10.4 mg/L), and low electrical conductivity (0.017 to 0.030 mS/cm).

Aquatic insects
The aquatic insects were collected from leaf patches formed on the 

streambed via a Surber sampler (0.09 m², 500 μm). During the study 
period, we collected ten samples every 30 days, five from pools and 
five from riffles, for a total of 50 samples. We could not collect samples 
in December, because the stream was inaccessible for some weeks due 
to intense rains. We stored the samples individually in plastic bags 
and transported them to the laboratory on the same day. In the labo-
ratory, we washed the samples with running water through 500- and 
250-μm sieves and preserved the retained material in 70% ethanol 
for later sorting and identification. We sorted the samples under light 
boxes and counted and identified individuals under a stereoscopic 
microscope (ZEISS Stemi 305, 40x magnification). We identified the 
individuals of the orders Ephemeroptera, Plecoptera, Trichoptera, and 
Odonata at the genus level using specific taxonomic keys (Hamada 
et al., 2014; 2019).

To determine the size–mass relationships, we selected the most 
abundant genera found in the samples. Table 1 presents the selected 
genera. We used body length to predict dry mass because several previ-
ous studies described size–mass equations with good predictive power 
for aquatic insect taxa sampled in different world regions (see Smock, 
1980; Meyer, 1989; Benke et al., 1999; Becker et al., 2009; Dekanová 

et  al., 2024). We photographed each individual under a stereoscopic 
microscope (ZEISS Stemi 305, 32x magnification) with an HD digi-
tal camera (ZEISS Axiocam). We determined the body size by mea-
suring the length of each individual via ImageJ software (US National 
Institutes of Health, Bethesda, Maryland, USA; accuracy of 0.1 mm) 
(Schneider et al., 2012). The body length of each individual was mea-
sured as the distance from the anterior end of the head capsule to the 
posterior end of the last abdominal segment, excluding the anal pro-
legs and cerci (Benke et  al., 1999). For dry mass determination, we 
placed the photographed individuals separately in pre-weighed alumi-
num crucibles and dried them in an oven (60°C for 48 hours) (Becker 
et al., 2009). The crucibles were then cooled in a desiccator (1 hour) 
and weighed on an analytical balance (accuracy of 0.01 mg). Because 
storing aquatic invertebrates in preservative solutions can lead to the 
leaching of body fluids and loss of body mass (Dekanová et al., 2023), 
we measured and determined the dry mass of all individuals within 
one month after sampling.

Data analysis
We used the linear (Equation 1), exponential (Equation 2), and 

power (Equation 3) mathematical models, or their logarithmic equiv-
alents, to determine the best-fitting equation between body length and 
dry mass for each genus, as follows:

DM=a + b. L� (1)

DM=a. ebL (linear format: ln DM=ln a + b. L)� (2)

Table 1 – Number of individuals (n), ranges and coefficient of variation (in percentage) of body length (mm) and dry mass (mg) values for the most abundant 
genera of Ephemeroptera, Plecoptera, Trichoptera, and Odonata found in leaf patches in an Atlantic Forest stream (SE Brazil).

Order Family Genus n
Body length Dry mass

Range (mm) CV (%) Range (mg) CV (%)

Ephemeroptera Leptophlebiidae Massartella 15 8.20−18.29 62.16 0.71−7.07 50.77

Plecoptera

Perlidae Anacroneuria 31 2.90−10.40 23.31 0.03−4.37 65.42

Perlidae Enderleina 9 3.20−20.00 67.64 0.09−38.90 182.03

Perlidae Macrogynoplax 37 2.57−14.13 40.26 0.10−9.32 183.99

Gripoptegygidae Tupiperla 31 2.15−7.65 28.62 0.04−0.49 62.15

Trichoptera

Calamoceratidae Phylloicus 241 1.19−17.73 43.48 1.10−66.50 135.32

Leptoceridae Triplectides 134 3.35–18.30 40.64 0.10−71.30 126.55

Hydropsychidae Smicridea 35 2.67−20.54 55.26 0.03−7.73 175.22

Odonata

Gomphidae Archaegomphus 32 4.38−30.00 61.16 0.15−56.18 189.98

Libellulidae Elasmothemis 12 3.64−9.58 32.92 0.27−5.7 82.14

Libellulidae Idiataphe 13 3.85−17.43 41.16 0.18−11.86 96.88

Calopterygidae Hetaerina 23 2.64−20.66 40.91 0.06−8.67 83.71

Megapodagrionidae Heteragrion 41 2.67−14.37 43.32 0.04−4.58 108.14

Corduliidae Neocordulia 17 3.25−19.38 37.18 0.11−16.46 95.83

CV: coefficient of variation.
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DM=a. Lb (linear format: ln DM=ln a + b. ln L)� (3)

Where:
DM=dry body mass (mg); 
L=body length (mm); 
a and b=regression constants; and 
e=mathematical constant (2.718, Euler’s number).

We assessed the fit of the regression equations through the coefficient 
of determination (r²), the significance level (p obtained from regression 
analysis of variance [ANOVA]), and residual analysis. We classified the 
equations as having good predictive power (r²>0.80), moderate predic-
tive power (0.60<r²<0.80), or low predictive power (r²<0.60). We per-
formed all analyses via R software (R Core Team, 2024).

Results
We measured 671 individuals and determined the size–mass re-

lationships for 14 of aquatic insect genera, including one Ephemer-
optera, four Plecoptera, three Trichoptera, and six Odonata (Table 1). 
Except for the genus Enderleina (Perlidae; 9 individuals), all the stud-
ied genera had at least 12 individuals sampled and measured. The co-
efficients of variation (CVs) of body length ranged from 23.31% in 
Anacroneuria (Perlidae) to 67.64% in Enderleina. The dry mass values 
had greater variation, and the CVs ranged from 50.77% for Massar-
tella (Leptophlebiidae) to 189.98% for Archaegomphus (Gomphidae; 
Table 1). We observed a wide range of body length and dry mass values 
for each genus, suggesting that we used individuals in different devel-
opmental stages to determine the size–mass relationships.

Body length determined size–mass relationships at a high sig-
nificance level in the three mathematical models (p<0.001; Table 2). 
The  coefficients of determination (r²) for the significant equations 
ranged from 0.51 (Tupiperla) to 0.85 (Elasmothemis) in the linear mod-
el, from 0.60 (Tupiperla) to 0.96 (Enderleina) in the exponential model, 
and from 0.58 (Tupiperla) to 0.94 (Neocordulia) in the power model. 
The slope values (b), indicating the effect of size on the dry mass of 
individuals, ranged from 0.06 (Tupiperla) to 2.65 (Phylloicus) in the 
linear model, from 0.15 (Massartella) to 0.55 (Anacroneuria) in the ex-
ponential model, and from 1.57 (Tupiperla) to 3.59 (Archaegomphus) 
in the power model (Table 2).

The equations described by the power model showed good predic-
tive power (r²≥0.80) for the genera Anacroneuria, Enderleina, Macrogy-
noplax (Plecoptera), Smicridea (Trichoptera), Archaegomphus, Elasmo-
themis, Idiataphe, Hetaerina, Heteragrion, and Neocordulia (Odonata). 
The power model also described equations with moderate predictive 
power (0.60<r²<0.80) for the genera Massartella (Ephemeroptera), 
Triplectides, and Phylloicus (Trichoptera) and low predictive power 
(r²<0.60) for the genus Tupiperla (Plecoptera; Table 2). The size–mass 
equations determined for the genera Phylloicus (r²=0.74), Enderleina 
(r²=0.96), and Tupiperla (r²=0.60) presented the best fit with the ex-

ponential model, whereas those for the genera Elasmothemis (r²=0.85) 
and Massartella (r²=0.63) had the best fit with the linear models (Ta-
ble 2). The equations determined for the genera Tupiperla and Triplec-
tides had the lowest coefficients of determination across all the studied 
taxa, with the best fits observed in the exponential and power models 
(r²=0.60, Table 2). Figure 1 shows the relationships of the biomass of 
the studied genera as a function of body length.

Discussion
Our results indicated that body length is a robust predictor of 

dry mass for most of the insect genera studied, with a high predictive 
power (r²>0.80) in most cases. However, the size–mass relationships 
determined for Massartella (Ephemeroptera), Tupiperla (Plecoptera), 
Triplectides, and Phylloicus (Trichoptera) presented a moderate predic-
tive power (0.60<r²<0.80), suggesting that body length may not ful-
ly capture the variation in dry mass for these taxa. These findings are 
consistent with previous research, which has established body length 
as a reliable proxy for estimating the dry mass of aquatic invertebrates 
(Smock, 1980; Meyer, 1989; Benke et  al., 1999; Becker et  al., 2009), 
particularly regarding its broader measurement range than other 
morphological metrics, such as head capsule width or tarsus length. 
Body length usually presents the highest coefficient of variation among 
other metrics, representing effectively the size variation among spec-
imens of a population. Notably, the power models provided the best 
fit for the size–mass relationships across most genera, outperforming 
both the exponential and linear models in terms of predictive accuracy.

The power models accounted for 75 to 94% of the variation in dry 
mass across most genera, including Anacroneuria, Macrogynoplax, 
Archaegomphus, Idiataphe, Neocordulia, Heteragrion, Hetaerina, and 
Smicridea. These results corroborate previous studies in aquatic eco-
systems, which have consistently demonstrated that power models are 
effective in describing the relationship between the body length and 
dry mass of freshwater invertebrates (Burgherr and Meyer, 1997; Benke 
et  al., 1999; Becker et  al., 2009), suggesting a typical nonlinear rela-
tionship between size and mass. This high level of predictive power 
reinforces the utility of the power model as a reliable tool in ecological 
research, particularly for taxa in which body length is a strong indica-
tor of biomass (Meyer, 1989; Miserendino, 2001). However, the expo-
nential model showed the highest predictive power for some genera, 
such as Enderleina, Phylloicus, and Tupiperla, suggesting that different 
ecological and biological factors may influence size–mass relationships 
(Smock, 1980; Kiffer et  al., 2016). While the power model is broad-
ly applicable across many taxa, incorporating alternative models may 
provide a more nuanced understanding of biomass estimation in par-
ticular ecological contexts (Wenzel et al., 1990; González, 2002).

As indicated by the slope values, the effect of size on dry mass var-
ied considerably among taxa and models. Body dimensions increase 
proportionately when the coefficient b is close to 3, indicating isometric 
growth, where body dimensions, i.e., length, width, and height, scale 
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Table 2 – Parameters (± SE) of the linear, exponential, and power models for the relationship between body length (L, mm) and dry mass (mg) of the most 
abundant genera of Ephemeroptera, Plecoptera, Trichoptera, and Odonata found in leaf patches in an Atlantic Forest stream (SE Brazil). 

Taxon Function A ln a b r2

Massartella (Leptophlebiidae)

Linear -2.74±1.28  0.45±0.09 0.63*

Exponential  -1.05±0.45 0.15±0.03 0.61*

Power  -4.21±1.06 2.04±0.40 0.63*

Anacroneuria (Perlidae)

Linear -2.19±0.40  0.49±0.05 0.74*

Exponential  -4.01±0.32 0.55±0.04 0.84*

Power  -6.99±0.37 3.59±0.18 0.92*

Enderleina (Perlidae)

Linear -9.26±4.37 1.75±0.39 0.69*

Exponential -3.63±0.27 0.37±0.02 0.96*

Power -6.86±0.76 3.32±0.35 0.91*

Macrogynoplax (Perlidae)

Linear -2.68±0.29 0.68±0.05 0.82*

Exponential -2.93±0.17 0.41±0.03 0.82*

Power -4.99±0.30 2.67±0.18 0.85*

Tupiperla (Gripoptegygidae)

Linear -0.11±0.05 0.06±0.01 0.51*

Exponential -3.71±0.28 0.36±0.05 0.60*

Power -4.31±0.38 1.57±0.23 0.58*

Phylloicus (Calamoceratidae)

Linear -11.54±1.14  2.65±0.14 0.59*

Exponential  -0.54±0.08 0.27±0.01 0.74*

Power  -1.89±0.16 1.78±0.08 0.64*

Smicridea (Hydropsychidae)

Linear -1.64±0.41  0.33±0.04 0.62*

Exponential  -3.79±0.23 0.32±0.02 0.83*

Power  -6.36±0.35 2.80±0.17 0.88*

Triplectides (Leptoceridae)

Linear -11.26±1.80  2.39±0.19 0.52*

Exponential  -1.04±0.19 0.29±0.02 0.60*

Power  -3.52±0.35 2.43±0.17 0.60*

Archaegomphus (Gomphidae)

Linear -13.18±2.28 1.70±0.16 0.78*

Exponential -2.15±0.18 0.22±0.01 0.90*

Power -6.57±0.33 3.05±0.13 0.93*

Elasmothemis (Libellulidae)

Linear -2.63±0.60 0.73±0.09 0.85*

Exponential -1.98±0.33 0.37±0.05 0.82*

Power -3.82±0.60 2.35±0.33 0.81*

Idiataphe (Libellulidae)

Linear -4.11±1.11 0.73±0.09 0.81*

Exponential -2.14±0.26 0.27±0.02 0.91*

Power -4.96±0.47 2.52±0.20 0.92*

Hetaerina (Calopterygidae)

Linear -2.45±0.69  0.43±0.04 0.77*

Exponential  -2.53±0.30 0.24±0.02 0.85*

Power  -5.62±0.39 2.51±0.15 0.92*

Heteragrion (Megapodagrionidae)

Linear -1.33±0.23 0.33±0.02 0.76*

Exponential -3.00±0.19 0.34±0.02 0.82*

Power -5.19±0.26 2.48±0.13 0.89*

Neocordulia (Corduliidae)

Linear -6.11±1.52 1.02±0.13 0.77*

Exponential -2.11±0.32 0.29±0.02 0.86*

Power -5.39±0.39 2.81±0.17 0.94*

a/b: regression coefficients; r2: coefficient of determination (*p<0.001).
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Figure 1 – Scatter diagrams of dry mass versus body length for the most abundant genera of Ephemeroptera, Plecoptera, Trichoptera, and Odonata found in 
leaf patches in an Atlantic Forest stream (SE Brazil). The regression equation is power dry mass=a. Lb (in linear format: ln dry mass=ln a+b. ln L; Panels A to 
J, black regression lines), exponential dry mass=a. ebL (in linear format: ln dry mass=ln a+b. L; Panels L to N, cyan regression lines), and linear dry mass=a+b. 
L (Panel O, orange regression line). The confidence intervals are represented in light gray.
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