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A B S T R A C T 
There is evidence that the climate on the planet has been 
undergoing variations over the years, resulting in climate events 
that are becoming increasingly extreme, such as heavy raining. The 
objective of this study was to verify the behavior and tendency of 
heavy rain in Brazil, and possible correlations with atmospheric 
temperature. The methodology utilizes Climate Extremes Indices 
(CEI), and the Mann-Kendall Test (MKT) and Sen’s Slope (SS) were 
applied in each of them to evaluate the statistical significance of the 
trends in climate extremes, as well as to measure the magnitudes, 
respectively. Then, Pearson’s Correlate Coefficient (PCC) between 
indexes was calculated. The  total period of analysis was between 
1991 to 2022. The MKT and SS results presented tendencies of 
extreme rain increase in the South, North, parts of the Northeast 
and Southeast coastline, and the decrease trend in the Midwest, 
Southeast and North. There are, too, increase trends in the maximum 
(TX) and minimum temperature (TN) in the whole country. PCCs 
were significant, between total/extreme rainfall and temperature, 
as follows: Northeast and Southeast (negative PCCs for TX); North 
and South (positive PCCs for TN). There are some areas where the 
SS and PCCs presented non-linear interdependence between these 
climatic variables. Therefore, the changes in the climate pattern can 
contribute to the increase trend in extreme precipitation events in 
different areas of Brazil.

Keywords: heavy rainfall; trends; correlations; climate change.

R E S U M O
Existem evidências de que o clima no planeta vem sofrendo variações 
ao longo dos anos, as quais têm gerado eventos climáticos que estão 
se tornando cada vez mais extremos, como os de chuvas intensas. O 
objetivo deste estudo foi verificar o comportamento e a tendência das 
chuvas extremas no Brasil e suas possíveis correlações com as tendências 
da temperatura atmosférica. A metodologia utilizou Índices de Extremos 
Climáticos e, em cada um deles, foi aplicado o Teste de Mann-Kendall 
(TMK) e a Declividade de Sen (DS) para avaliar a significância estatística 
das tendências dos extremos climáticos, assim como mensurar as 
magnitudes, respectivamente. Em seguida, foi calculado o coeficiente 
de correlação de Pearson (CCP) entre índices. O período total de análise 
foi de 1991 a 2022. Os resultados da TMK e DS mostraram tendência 
de aumento das chuvas extremas nas Regiões Sul, Norte, partes do 
Nordeste e na faixa litorânea do Sudeste e tendência de diminuição nas 
Regiões Centro-Oeste, Sudeste e Norte. Também houve tendência de 
aumento da temperatura máxima (TX) e mínima (TN) na maior parte 
do país. Os CCP foram significativos, entre as chuvas totais/extremas e 
as temperaturas, do seguinte modo: regiões Nordeste e Sudeste (CCP 
negativas para TX); Sul e Norte (CCP positivas para TN). Houve então 
locais onde as DS e os CCP apresentaram interdependência não linear 
entre essas variáveis climáticas. Assim, a mudança no padrão climático 
das temperaturas pode estar contribuindo para a tendência de aumento 
dos eventos extremos de precipitação em várias regiões do Brasil.

Palavras-chave: chuvas intensas; tendências; correlações; mudanças 
climáticas.
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Introduction
The spatial and temporal variability of precipitation forms the ba-

sis for different research areas, such as territorial planning, agriculture, 
water resources, energy, natural disasters, and public health (Chagas 
et al., 2022; Costa et al., 2022; Freire et al., 2023). Due to global warm-
ing, an increase in the frequency, distribution, and intensity of extreme 
precipitation events can be observed. These events are characterized 
by intense rainfall, significantly above the region’s historical average, 
and can be classified as high (above the 95th percentile) and extreme 
(above the 99th percentile) according to their frequency distribution. 
Such events trigger flooding, water accumulation, and wet mass move-
ments. This intensification poses risks to public safety, infrastructural 
damage, disruption of water and energy supply, health hazards, eco-
nomic impacts, devastation of agricultural and forested areas, and ex-
acerbation of social disparities (Teixeira and Satyamurty, 2007; Grimm 
and Zilli, 2009; Lima et al., 2010; Marengo et al., 2016; Cardoso et al., 
2020; Moreira et al., 2020; Rocha, 2021).

Nobre (2001) had already pointed out that rising air temperatures 
could accelerate the hydrological cycle, generating more water vapor 
in the atmosphere and leading to a higher frequency of extreme events 
such as hurricanes, droughts, and extreme rainfall. The relationship 
between temperature and precipitation has a physical basis: according 
to the Clausius-Clapeyron equation (Brown, 1951), the vapor pres-
sure (VP) of water varies exponentially with temperature changes. 
At higher temperatures, more water vapor is required to reach satu-
ration. This process occurs when an air parcel rises in the atmosphere, 
expands, and cools pseudo-adiabatically, increasing relative humidity 
(RH) due to the reduction of the saturation vapor pressure (SVP) of 
water (Lamb and Verlinde, 2011). When RH reaches 100%, the parcel 
becomes saturated, and condensation occurs, transitioning water from 
vapor to liquid form, leading to cloud droplet formation.

Therefore, the higher the temperature, the higher the SVP and the 
evaporation rate in the atmosphere, increasing the vapor disposition in 
the air. This relationship directly impacts the intensity, duration, and 
frequency of precipitation events. With more steam in the atmosphere 
and a higher SVP, the air can retain larger amounts of water vapor, 
slowing the condensation process, and reducing the frequency of rain-
fall. And although the frequency decreases, with higher accumulation 
of steam inside the clouds, there will also be a higher volume of water 
available to precipitate when this steam condenses, increasing the in-
tensity and duration of the events. Therefore, the increase in tempera-
tures around the planet can trigger the increase in extreme rainfall in 
different locations around the world (Pall et al., 2007).

Globally, the magnitude of extreme precipitation has increased 
(Donat et  al., 2016). Maximum daily annual rainfall has grown by 
an average of 5.9 to 7.7%, which corresponds to the theoretical Clau-
sius-Clapeyron increase (6-7%/°C) in the moisture holding capacity 
of the atmosphere due to higher temperatures (Fowler et  al., 2021; 

Sun et al., 2021). Extreme rains from October to December 2019 over 
East Africa formed one of the wettest seasons on record, leading to 
flooding and landslides, with initial estimates suggesting that more 
than 2.8 million people were negatively affected (Wainwright et al., 
2021). In July 2021, extreme rainfall across Western Europe caused 
severe flooding and substantial impacts, where 200 thousand prop-
erties lost electricity, including more than 200 deaths and extensive 
infrastructure damage in Germany and the Benelux countries (Trad-
owsky et al., 2023). In the same month and year, there was torrential 
rain in Asia with a maximum intensity of 201.9 millimeters in a single 
hour and that led to major floods in Henan province, China, forcing 
more than one million people to move (Liang, 2022). In the United 
States, the 2017 Oroville Dam Crisis in California, which caused the 
evacuation of more than 180 thousand people, occurred due to heavy 
precipitation that led to extensive flooding in the region (Vahedifard 
et al., 2017; Hollins et al., 2018).

In Brazil, the National Water and Sanitation Agency (ANA) re-
ports that in 2017, approximately three million people were impacted 
by floods and inundations (ANA, 2018). Each region of the country 
faces specific challenges regarding its ability to deal with the impacts of 
extreme events. This happens due to geographical, socioeconomic, and 
environmental differences, which influence the deficiencies of each lo-
cation in the preparation and response to these events, as pointed out 
by the study of Perez et al. (2020). The South part of Brazil is historical-
ly the most affected by extreme precipitation events, facing significant 
risks due to its geography and lack of adequate infrastructure, which 
causes landslides and major floods (Palenzuela et  al., 2019; Cardoso 
et al., 2020; Goudard and Mendonça, 2020; Teixeira and Prieto, 2020; 
Zandonadi, 2020). The Midwest, an area of large agricultural produc-
tion, faces the threat of economic losses due to floods and storms (Silva 
and da Franca, 2021).

The Southeast, with its large metropolitan areas, has vulnerabilities 
in infrastructure and water supply. Additionally, hillside areas are more 
prone to landslides as extreme events increase (Caetano and Barbosa, 
2019; Marengo et al., 2020; Tavares and Ferreira, 2020; Bonfim et al., 
2020; Sanches, 2022). The Northeast, despite recurring drought epi-
sodes, has increasingly faced extreme precipitation and temperature 
events, where inadequate drainage infrastructure and shallow, poor-
ly drainable soils exacerbate their impacts, particularly in urban and 
coastal areas (Alves et al., 2017; Sena et al., 2019; da Silva et al., 2020; 
Guedes and Silva, 2020; Duarte et  al., 2021; Gonçalves et  al., 2023). 
In the Northern region, deforestation combined with climate change 
increases exposure to landslides, floods, and ecosystem degradation, 
heightening the vulnerability of riverine populations and socioeco-
nomic activities dependent on waterways (Loureiro et al., 2014; Back 
and Cadorin, 2020; Cavalcante et al., 2020).

Thus, several studies have already been carried out seeking to 
understand the event of these extreme rains in the country; how-



Trend analysis of precipitation extremes in Brazil: the role of atmospheric temperature

3
Revista Brasileira de Ciências Ambientais (RBCIAMB) | v.60 | e2123 | 2025

ever, they are case studies on a local scale and do not usually relate 
precipitation to other climatological variables, such as air tempera-
ture. The study by Regoto et  al. (2021) analyzed these variables 
across Brazil using indexes and trends. However, despite providing 
important information on the subject, the findings were limited 
to data from weather stations that are unevenly distributed across 
the country, and results were spatially represented based on station 
locations. Additionally, trend analyses were conducted by region 
rather than by state, making it difficult to assess extreme rainfall 
behavior on a smaller scale. Even so, this and other studies present 
evidence of increasing extreme rainfall episodes in different parts 
of Brazil, especially in the South and Southeast regions. Studies 
also indicate a trend of rising maximum and minimum tempera-
tures in the country, but it is necessary to investigate whether there 
is any relation between the increase in these trends, as well as pos-
sible geographic patterns, through other data sources with better 
spatial resolution.

This study aimed to analyze the behavior and evolution of extreme 
precipitation events in Brazil, identifying possible patterns in their geo-
graphical distribution, trends in historical series, and potential correla-
tions with atmospheric temperature trends.

Material and Methods
The methodological approach of this research consisted of 

the following main steps (Figure 1). First, the study area was de-
fined, encompassing the entire Brazilian territory. Next, the data-
sets were collected, with the chosen source being the one provided 
by Xavier et  al. (2022). The selected variables for the entire Bra-
zilian territory were precipitation and maximum and minimum 
temperatures. In the following step, the Climate Extremes Indi-

ces (CEI) were calculated, comprising 11 indices for the Evalu-
ation of High and Extreme Precipitation (EHEP) and 11 for the 
Evaluation of Maximum and Minimum Temperatures (EMMT).  
After computing the indices, their trends were analyzed using the 
Mann-Kendall Test (MKT) and Sen’s Slope (SS), along with correla-
tion analyses between some of the indices. Finally, based on the re-
sults obtained in the previous steps, the potential implications of the 
findings were discussed.

Study area
The study area corresponds to the Brazilian territory (Figure 2), the 

largest country in South America. With a territorial extension of 8.5 
million square kilometers, Brazil ranks fifth among the largest coun-
tries in the world in terms of area (Brasil, 2022).

The country is divided into five distinct geographic regions: North, 
Northeast, Midwest, Southeast, and South. Each region has unique 
characteristics in terms of climate, soil, rainfall, fauna, flora, culture, 
economy, and topography. Brazil consists of 26 federated states and one 
Federal District, where the country’s capital, Brasília, is located (Caval-
canti, 2016; Brasil, 2022).

Figure 1 – Flowchart containing the steps necessary to carry out the study. Source: Shapefile of the Climate Zones of Brazil (Alvares et al., 2013).
Figure 2 – Location map of the study area.
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Brazil has three main climatic zones: Tropical Zone (A), Dry Zone (B), 
and Humid Subtropical Zone (C), each with its own subclassifications, to-
taling 12 climate types (Figure 2), which are defined according to the Köp-
pen system (Köppen, 1936; Peel et al., 2007; Alvares et al., 2013). Further de-
tails on this classification can be found in the Supplementary Material.

Data
The Brazilian Daily Weather Gridded Data (BR-DWGD) is a dai-

ly-scale meteorological dataset for Brazil [0.1° × 0.1° resolution], which 
provides data on precipitation (Pr, mm), maximum and minimum 
temperatures (Tmax, Tmin: °C), solar radiation (Rs: MJ/m²), relative 
humidity (RH: %), wind speed at 2 meters (u2: m/s), and potential 
evapotranspiration (ETo: mm). The data were compiled by Xavier et al. 
(2022), and the current time series spans from 1961 to 2022 for Pr, and 
from 1961 to 2020 for the other meteorological variables.

The variables were gridded through interpolation using ob-
served data from 11,473 rain gauges and 1,252 weather stations  

(see details in Xavier et  al., 2022). In this study, Pr data from the 
most recent 32 years available, spanning from 1991 to 2022, were 
used. The Tmax and Tmin data used correspond to the period from 
1991 to 2020 (30 years). This same period was used for Pr when 
correlating it with temperature. 

Extreme precipitation and maximum and minimum 
temperature evaluation index

At this stage, the CEIs related to EHEP and EMMT were adopted, 
applied to the entire Brazilian territory, according to studies proposed 
and applied in different regions of the world, such as: Manton et al. 
(2001); Griffiths et al. (2003); Haylock et al. (2006); Hountondji et al. 
(2011); Donat et al. (2013); Berhane et al. (2020); Bhatti et al. (2020); 
Cavalcante et al. (2020); Regoto et al. (2021); Yaduvanshi et al. (2021); 
Yao et  al. (2021); Zhu et  al. (2022). Table 1 shows these indices, as 
well as their acronyms, definitions, and units of measurement used 
for each analysis.

Acronym Name Definition Unit

Precipitation

1) TOTPR Total Precipitation Accumulated annual rainfall (mm/year)

2) DPR Days with Precipitation Annual total rainy days (A rainy day has rainfall≥1 mm) (days/year)

3) SDII Simple Daily Intensity Index Average rainfall on rainy days (mm/day)

4) MAXPR-1D Maximum Rainfall in 1 Day Maximum rainfall occurred in just 1 day (mm/day)

5) MAXPR-5D Maximum Precipitation in 5 Days Maximum accumulated rainfall in 5 consecutive days (mm/5 days)

6) FDHR-P95 Frequency of Days with High Rainfall (P95) Annual count of days with precipitation ≥95th percentile (days/year)

7) FDER-P99 Frequency of Days with Extreme Rainfall (P99) Annual count of days with precipitation ≥99th percentile (days/year)

8) IDHR-P95 Intensity of Days with High Rainfall (P95) Cumulative annual rainfall of rainy days ≥95th percentile (mm/year)

9) IDER-P99 Intensity of Days with Extreme Rainfall (P99) Cumulative annual rainfall of days with rain ≥99th percentile (mm/year)

10) PDHR-P95 Proportion of Days with High Rainfall (P95) Percentage of total annual days with precipitation ≥95th percentile (%)

11) PDER-P99 Proportion of Days with Extreme Rainfall (P99) Percentage of total annual days with precipitation ≥99th percentile (%)

Maximum and Minimum Temperatures

1)TX-M Average Maximum Temperature (TX) Annual average between daily maximum temperatures (°C/year)

2)TN-M Average Minimum Temperature (TN) Annual average between daily minimum temperatures (°C/year)

3) DTA Daily Thermal Amplitude Annual average between maximum and minimum daily temperature differences (°C/year)

4) TX-X Maximum TX Maximum annual value of TX (°C)

5) TN-X Maximum TN Maximum annual value of TN (°C)

6) TX-N Minimum TX Minimum annual value of TX (°C)

7) TN-N Minimum TN Minimum annual value of TN (°C)

8) TX-P10 Cold days Percentage of days per year with TX ≤percentile 10 (%)

9) TN-P10 Cold nights Percentage of days per year with TN ≤percentile 10 (%)

10) TX-P90 Hot days Percentage of days per year with TX ≥percentile 90 (%)

11) TN-P90 Hot nights Percentage of days per year with TN ≥percentile 90 (%)

Table 1 – Indexes of climatic extremes, with their acronyms, definitions, and units.
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Annual total precipitation, days with annual precipitation  and 
simple daily intensity index

The total annual accumulated precipitation (TOTPR) was obtained 
by averaging the accumulated precipitation values for each year ana-
lyzed. In other words, the climatology for each region of the country 
was carried out to understand the spatial distribution of rainfall across 
the entire study area.

The days with annual precipitation (DPRs) were calculated by 
counting the annual number of days considered rainy (rainfall greater 
than or equal to 1 mm). This means that any day without rainfall, or 
with minimal rainfall (below 1 mm), was excluded from this count. 
Afterward, the annual average was calculated using the values obtained 
from the count for each year in the analyzed historical series.

The SDII was calculated by quantifying the DPRs obtained from 
the previous metric, and based on them, the daily average of pre-
cipitation that occurred on these rainy days was determined. It was 
also possible to find the average rainfall intensity, expressed in mil-
limeters per day.

Maximum precipitation at one day and five days
The maximum precipitation at one day (MAXPR-1D) metric ver-

ified the maximum daily rainfall that occurred in the analyzed histor-
ical period. Thus, it was possible to obtain the maximum daily rainfall 
volume and observe the areas with the highest and lowest impact based 
on their respective maximums.

MAXPR-5D analyzes the maximum accumulated rainfall that 
occurred on the next five consecutive days. In other words, the total 
precipitation volumes were summed up every five days, with overlap. 
The precipitation from the first to the fifth day was summed first, then 
from the second to the sixth day, and so on. At the end of this process, 
performed on all days within the selected historical series, the highest 
five-day total was found, and this became the maximum precipitation 
at five days (PRMAX-5D).

Frequency, intensity and proportion of days with high or extreme rainfal 
The other EHEP indexes (6-11), which are FDHR-P95, FDER-P99, 

IDHR-P95, IDER-P99, PDHR-P95, PDER-P99, are related to the pre-
cipitation percentiles obtained from the historical series. First, these 
percentiles were generated by classifying the respective DPR data in 
ascending order, which were then divided into hundredths (each part 
representing 1% of the data) and are denoted as P1, P2, ..., P100. Based 
on this, the P95 and P99 were calculated, which, according to Manton 
et al. (2001), are related to high and extreme rainfall, respectively.

After obtaining the 95th and 99th percentiles, these were applied to 
the indexes mentioned in this section. FDHR-P95 was calculated as the 
average of the number of annual days with daily precipitation equal to 
or greater than P95, while the FDER-P99 used the same calculation but 
applied to P99. The IDHR-P95 and IDER-P99 also considered rainfall 

equal to or above their respective percentiles. However, this time, the 
sum of the precipitated values for each year in the data series was calcu-
lated, followed by the subsequent average of the annual accumulations. 
Finally, PDHR-95 and PDHR-99 were determined by the ratio between 
the annual accumulated volume of precipitation that was equal to or 
greater than the 95th and 99th percentiles, respectively, and the total 
annual accumulated rainfall in the same year. So it is the average (or 
proportion) between high (≥P95) or extreme (≥P99) rainfall and the 
total precipitation in a given year. The average of these annual sums 
was then calculated.

Maximum average and minimum average temperatures and daily 
thermal amplitude

The average maximum temperature (TX-M) metric was ob-
tained through the simple annual average between the daily values 
of maximum temperature. The same logic was applied to the av-
erage minimum temperature (TN-M) metric, which was obtained 
through the simple annual average between the daily minimum 
temperature data.

The daily thermal amplitude (DTA), however, relates the daily 
maximum and minimum temperature data by calculating the differ-
ence between their values, thus obtaining the daily temperature varia-
tion over the proposed period. After that, the annual average of these 
daily temperature ranges was calculated for each year. Finally, the an-
nual averages (for all years) for each of the three indices mentioned in 
this section were calculated.

Maximum Maximum Temperature, Maximum Minimum 
Temperature, Minimum Maximum Temperature and Minimum 
Minimum Temperature

These four indices follow the same premise, which is to assess the 
extremes, both higher and lower, for each type of temperature an-
alyzed. For each metric, the extremes were obtained within the pro-
posed historical period as follows: the maximum temperature among 
the daily maximum temperatures (TX-X); the maximum temperature 
among the daily minimum temperatures (TN-X); the minimum tem-
perature among the daily maximum temperatures (TX-N); the mini-
mum temperature among the daily minimum temperatures (TN-N).

Cold days, cold nights, hot days and hot nights
TX-P10 and TN-P10 are indices that relate to the coldest days and 

nights over a given year, respectively. They were obtained by quanti-
fying the days when the daily maximum and minimum temperatures 
were less than or equal to the 10th percentile (≤P10). On the other hand, 
TX-P90 and TN-P90 were the indices used to detect the hottest days 
and nights in each analyzed year, respectively, and they were measured 
by quantifying the days when the daily maximum and minimum tem-
peratures were higher than or equal to the 90th percentile (≥P90).
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Trend analysis: Mann-Kendall Test and Sen’s Slope
Trend analysis was performed for all EHEP and EMMT index-

es, using the Mann-Kendall Test (MKT), along with Sen’s Slope 
(SS). According to Yue and Wang (2004), the application of the 
Mann-Kendall Test statistic to a sample of “n” random variables, 
independent and distributed identically, is performed by Equations 
1 and 2:

𝑆𝑆 =  ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖 = 1
 

(1) 

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖)  = {
 +1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) > 0; 
     0 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) = 0; 
−1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) < 0 

}  
(2) 

 

𝑄𝑄𝑖𝑖𝑖𝑖 =
𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖

𝑗𝑗 − 𝑖𝑖 , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖 < 𝑗𝑗  (3) 

 

𝑟𝑟𝑥𝑥𝑥𝑥 =  
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) ∑(𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)

√∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2   √∑(𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)2  
 

(4) 

 

� (1)

Where S = the time series values at equal time intervals; 
i and j = the time index;
n = number of time series elements. And:

𝑆𝑆 =  ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖 = 1
 

(1) 

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖)  = {
 +1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) > 0; 
     0 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) = 0; 
−1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) < 0 
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According to the null hypothesis test (Ho), which assumes no 
trend, this is valid for the Mann-Kendall Test when the p-values are 
lower than the critical values (called alpha)—in this case alpha=0.05 
(used to obtain a significance level of 95%); that is, when p<alpha, 
the time series has no trend. Otherwise, if the p≥alpha, the time se-
ries has a trend. Further details can be found in Yue and Wang (2004).  
The Python data used was “pymannkendall”.
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Where “Xi” and “Xj” are related to the values of the variable under 
study at the “i” and “j”. 

Positive values of Q indicate an increasing trend and negative val-
ues indicate a decreasing trend. By analyzing the temporal order of the 
data, the test examines whether the observations show consistent pat-
terns over time, without assuming a specific distribution of the data 
(Sen, 1968). The test results indicate whether there is sufficient statis-
tical evidence for the presence or absence of a significant trend. If the 
test shows statistical significance, this suggests that there is a systematic 
change in observations over time, which helps to understand patterns 
of variability and changes in time series, such as those related to cli-
mate or the environment (Hirsch et al., 1982).

Pearson correlation coefficient
Pearson’s Correlation Coefficient (PCC) is a statistical metric that 

measures the strength and direction of a linear relationship between 
two random variables. Historically, it is the first formal measure of cor-

relation and is still one of the most widely used (Zhou et  al., 2016). 
The PCC of two variables X and Y is formally defined as the covari-
ance between these two variables (which indicates the level at which 
they vary together) divided by the product of their standard deviations 
(which acts as a normalization factor), and can be defined equivalently 
by Equation 4:
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𝑟𝑟𝑥𝑥𝑥𝑥  ranges from -1 to 1 and is invariant to the linear 
transformations of any of the variables.

Thus, it is possible to identify whether the variables are positive, 
negative or uncorrelated, in a range from +1 (directly related) to -1 
(inversely related), with 0 denoting the absence of relationship between 
the variables, respectively (Adler and Parmryd, 2010). In this study, the 
“numpy.corrcoef ” function was used, which returns Pearson’s prod-
uct-moment correlation coefficients, belonging to the Python pro-
gramming language. Correlations were made between cumulative an-
nual rainfall data (total, high [≥p95] and extreme [≥p99]), and annual 
averages of maximum and minimum temperatures. For the analysis of 
correlations, the classification defined by Hinkle et al. (2003) was used, 
according to Table 2.

Table 2 – Practical rule for interpretation of the correlation coefficient interval.

Correlation Range Interpretation

±0.9 to ±1.0 (<-0.9 or >0.9) Very high

±0.7 to ±0.9 (-0.7 to -0.9 or 0.7 to 0.9) High

±0.5 to ±0.7 (-0.5 to -0.7 or 0.5 to 0.7) Moderate

±0.3 to ±0.5 (-0.3 to -0.5 or 0.3 to 0.5) Low

±0.0 to ±0.3 (-0.3 to 0.3) Very low

Results

Evaluation of high and extreme precipitation and its tendencies

Total precipitation  and simple daily intensity index
The mean values of TOTPR are presented in Figure 3A. The North 

region exhibits the highest annual precipitation totals, whereas the 
Northeast presents the lowest. Figure 3B suggests a positive trend 
across much of the North region and a negative trend in parts of the 
Center-West and different areas of the Southeast. The results for TOT-
PR and DPR were spatially similar; therefore, DPR has been included 
in the Supplementary Material.
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The Simple Daily Intensity Index (SDII) (Figure 3C) indicates that 
the regions with the lowest and highest daily precipitation values are 
the Northeast and South, respectively. The corresponding SS for ISID is 
presented in Figure 3D and shows a positive trend mainly in the North 
and South regions. The Northeast and Center-West display both positive 
and negative trend areas; however, areas with negative trends prevail.  
Further details regarding the results of Figures 3A-3D can be found in 
the Supplementary Material.

Maximum precipitation in 1 day and maximum precipitation in 5 days
MAXPR-1D is shown in Figure 4A. The results indicate that 

most of the Brazilian territory experienced maximum daily rainfall 
values ranging between 50 mm/day and 125 mm/day. The South re-
gion generally exhibited the highest values. The SS associated with 
MAXPR-1D (Figure 4B) shows that most states displayed positive 
trends across various areas of their territories, while negative trends 
were more concentrated in the Center-West and Southeast regions.

Figure 3 – Map of Brazil containing: (A) Total Precipitation (TOTPR); (B) TOTPR Trend; (C) Simple Daily Intensity Index (SDII); (D) SDII Trend. The white 
color indicates no trend.
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MAXPR-5D (Figure 4C) shows that the maximum 5-day rainfall 
was lower in almost the entire Northeast, while the Southeast and 
South were the regions with the highest aggregate values. The  SS 
shown in Figure 4D indicates an increase in these consecutive rain-
fall events in almost the entire country, with negative trends ob-
served mainly in large parts of the North, some coastal areas of the 
Northeast, and a few locations in the Southeast and South. Further 
details regarding the results for this index can be found in the Sup-
plementary Material.

Proportion of days with high rainfall and proportion of days with 
extreme rainfall

The proportion of days with high rainfall (PDHR-P95) is shown in Fig-
ure 5A. The results suggest that the states in the North and Center-West 
regions exhibit the lowest percentage indices. The South, in general, record-
ed the highest average percentage, with almost its entire territory showing 
values above 21%. The SS obtained for annual PDHR-P95 (Figure 5B) 
indicates an increasing trend in the North, Northeast, and South regions, 
whereas the Center-West and Southeast regions exhibit a decreasing trend.

Figure 4 – Map of Brazil containing: (A) Maximum Precipitation in 1 day (MAXPR-1D); (B) MAXPR-1D Trend; (C) Maximum Precipitation in 5 days 
(MAXPR-5D); (D) MAXPR-5D Trend. The white color indicates no trend.
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Figure 5C shows the proportion of days with extreme rainfall 
(PDER-P99). The South region recorded, in general, the highest average 
percentage. The SS of the PDER-P99 (Figure 5D) shows that most of the 
country exhibits positive trends, with higher frequency in the North, 
Northeast, and South regions. Negative trends were mostly detected in 
portions of the states of Pará, Goiás, Minas Gerais, and São Paulo. 

Further details of the results of these indexes can be found 
in the Supplementary Material. The results between FDHR-P95, 
IDHR-P95, and FDER-P99, IDER-P99, were spatially similar to 
those of PDHR-P95 and PDER-P99, respectively, mainly regarding 
SS maps. Consequently, these results have also been included in the 
Supplementary Material.

Figure 5 – Map of Brazil containing: (A) Proportion of Days with High Rainfall (≥P95) (PDHR-P95); (B) Trend of PDHR-P95; (C) Proportion of Days with Extreme 
Rainfall (≥P99) (PDER-P99); (D) Trend of PDER-P99. The white color indicates no trend.
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Evaluation of maximum and minimum temperatures and its trends

Average maximum temperature, average minimum temperature 
and daily thermal amplitude 

The TX-M, depicted in Figure 6A, indicates that the highest maxi-
mum temperatures occur in the North, Northeast, and Center-West re-
gions. The SS for TX-M, shown in Figure 6B, suggests a positive trend 
across most of Brazil, especially in the Northeast. The TN-M, presented 
in Figure 6C, shows that the highest minimum temperatures are found 
in the North and Northeast regions, while the other regions have mild-
er temperatures, especially in the South. Figure 6D displays the DS, 
which indicates an increasing trend in TN-M across the entire North 
region, much of the Northeast, Center-West, and Southeast. Figure 6E 
illustrates the DTA, which was lower in coastal regions throughout 
Brazil. The highest DTAs were recorded in the more central parts of 
the country. In Figure 6F, the SS obtained for DTAs indicates a positive 
trend in the Northeast and Center-West, a negative trend in the North 
and Southeast, and mixed signals in the South.

Further details on the description of the results of these indexes 
can be found in the Supplementary Material. The results for TX-X, TN-
X, TX-N, TN-N, TX-P10, TN-P10, TX-P90 and TN-P90 were spatially 
similar to those of TX-M, TN-M and DTA, showing an overall increase 
in both maximum and minimum temperatures across most of the 
country. These results are also available in the Supplementary Material.

Correlation and comparison of trends between evaluation of 
high and extreme precipitation and evaluation of maximum 
and minimum temperatures

The first correlation was conducted between TOTPR and TX-M 
(Figure 7A), showing a negative correlation across most of the coun-
try, indicating an inverse interdependence between these variables. 
The  North region exhibited both negative and positive correlations 
more frequently than other regions. The second analysis examined the 
correlation between TOTPR and TN-M (Figure 7B), with results sug-
gesting stronger negative correlations in parts of the Northeast. The 
South was the region with the most positive correlation values overall.

Additionally, the correlation between TX-M and precipitation 
events greater than or equal to the 95th percentile (≥P95) was calcu-
lated (Figure 7C), covering the FDHR-P95, IDHR-P95 and PDHR-P95 
indexes. The most positive correlations (ranging between 0.4 and 0.8, 
classified as low to high) were more frequent in the states of Amazo-
nas and Rondônia. Meanwhile, negative correlations (ranging between 
-0.4 and -0.8) were more prevalent in parts of the Northeast. The cor-
relation between TN-M and precipitation events related to P95 (Fig-
ure  7D) indicates a positive correlation in the South of the country, 
with values ranging from 0.6 to 0.8 (classified as moderate to high).  
Conversely, negative correlations were more prominent in parts of 
Amazonas state, also classified as moderate to high.

Further details on these PCCs results can be found in the Supple-
mentary Material. The correlations between TX-M and TN-M with 
P99 were spatially similar to those with P95, differing only in the cor-
relation scale, which was lower. Therefore, these results were also in-
cluded in the Supplementary Material.

The PCCs indicated whether climate variables were directly or in-
versely interdependent, but the SS results reveal which of these variables 
showed increasing or decreasing trends. To enhance understanding, Fig-
ures 8A-8D was created using the same method as Figure 7 but compar-
ing trends instead of correlations. Our results suggest that the Northern 
region exhibited the most compatible trends, particularly those related to 
the increase in maximum/minimum temperatures and extreme rainfall. 
The Northeast and South regions showed fewer trend relationships be-
tween PRTOT and TX-M/TN-M. However, this changes when PR(≥P95) 
is related to these temperature indices, revealing several locations with 
positive trends for both climate variables, especially near the coastal areas.

In the Center-West and Southeast, specifically in states Mato Gros-
so, Goiás, Minas Gerais, and the central-northern part of São Paulo, 
trends indicated decreasing precipitation and increasing temperatures. 
Only in Figure 8B was there a positive trend for TOTPR and a negative 
trend for TN-M in these states. Meanwhile, in Mato Grosso do Sul and 
along the coastal areas between São Paulo and Espírito Santo, there 
were combined trends of increasing heavy rainfall and rising maxi-
mum and minimum air temperatures (Figures 8C and 8D).

Discussion
Based on the presented results, there is a noticeable trend of in-

creasing extreme rainfall in the South region and parts of the North and 
Northeast, specifically along the northeastern coast, in Sergipe, portions 
of Bahia, and the Southeast coast. At the same time, there is a decreas-
ing trend in precipitation in the Central-West and Southeast regions, and 
to a lesser extent in the North. Chagas et al. (2022) described the per-
formance of satellite products for extreme rainfall events that triggered 
natural disasters across various climatic regimes in Brazil, indicating 
that Mesoscale Convective Systems (MCS) accounted for over 90% of 
extreme rainfall in the South and about 60 to 90% of extreme rainfall 
in the Northeast. Extreme droughts in the North and Northeast, along 
with extreme rainfall and flooding in the South, also reflect the impacts 
of the El Niño-Southern Oscillation (ENSO), a meteorological phenome-
non affecting the Equatorial Pacific Ocean and causing climate variations 
worldwide, including in Brazil (Philander, 1998; Yeh et al., 2009). Howev-
er, other climatic factors may also be associated with these extreme events 
in the specified regions, as well as in other areas of the country, leading to 
an increase in both the frequency and intensity of extreme rainfall.

By understanding the role of air temperature and its influence 
on the hydrological cycle, the atmosphere, and consequently, cloud 
and rainfall formation, it is possible to perceive that changes in 
the climate of a region can bring significant impacts and changes 
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Figure 6 – Map of Brazil containing: (A) Maximum Temperature (TX) Average (TX-M); (B) TX-M Trend; (C) Minimum Temperature (TN) Average (TN-M); 
(D) TN-M Trend; (E) Daily Thermal Amplitude (DTA); (F) DTA Trend. The white color indicates no trend.
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in the climate structure, not only at the local scale but also at the 
regional, national, and global scales. The increase in atmospheric 
temperatures compared to the pre-industrial period (1850–1900), 
as indicated by the Intergovernmental Panel on Climate Change 
(IPCC), shows a global average rise of +1.09°C in the recent peri-
od (2011–2020), according to its Sixth Assessment Report (AR6).  

Projections estimate temperatures of +1 to +1.8°C by the end of the 
century (2081–2100) under the best emissions scenario and +3.3 to 
+5.7°C under the worst scenario (IPCC, 2023). The results of this 
study also indicate a trend of increasing maximum temperatures 
(TX-M) across Brazil, as well as minimum temperatures (TN-M), 
albeit to a lesser extent in Mato Grosso do Sul, São Paulo, Santa Ca-

Figure 7 – Map of Brazil containing: (A) Correlation between TOTPR and TX-M; (B) Correlation between TOTPR and TN-M; (C) Correlation between PR 
(≥p95) and TX-M; (D) Correlation between PR (≥p95) and TN-M. 
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Figure 8 – Map of Brazil containing trend comparisons: (A) TOTPR and TX-M; (B) TOTPR and TN-M; (C) PR (≥p95) and TX-M; (D) PR (≥p95) and TN-M. 
The white color indicates non-combination between trends.

tarina, and Rio Grande do Sul. Additionally, there is an observed in-
crease in hot days and nights (TX-P90 and TN-P90) and a decrease 
in cold days and nights (TX-P10 and TN-P10), findings consistent 
with those reported by da Silva et al. (2019) and Costa et al. (2020).

Such an increase in temperatures may cause permanent 
damage, as in the case of the Amazon Rainforest, for example.  

According to the study by Flores et al. (2024), there is a possibility that 
the Amazon forest system could soon reach a tipping point due to the 
unprecedented stress it has been experiencing, caused by rising tem-
peratures, extreme droughts, deforestation, and fires, even in central 
and remote parts of the system. The authors estimated that, by 2050, 
between 10 and 47% of the forests in the Amazon could be exposed 
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to compositional disturbances, triggering unexpected ecosystem tran-
sitions and potentially exacerbating regional climate change. This is 
concerning, as rainfall regimes in Brazil also depend on the Amazon, 
which emits large amounts of humid air resulting from plant evapo-
transpiration. This moisture is drawn by suction into the trade winds 
from the Atlantic Ocean and transported into the continent, generat-
ing the so-called “flying rivers” (Paiva and Prezoto, 2021). The disrup-
tion of this system could lead to an imbalance in rainfall across the 
country, particularly in the Southeast and South, as, according to Fisch 
et al. (1998) and Clement and Higuchi (2006), the Amazon is responsi-
ble for 25–50% of the rainfall in the Southeast and also exerts a strong 
influence on rainfall in the South.

To better investigate this interaction, trend analyses were con-
ducted using MKT and SS, and PCCs. The PCCs showed a stronger 
negative correlation in the Northeast and Southeast, followed by the 
Central-West region (TOTPR/PR-P95 and TX-M). When analyzing 
the DSs, it was observed that maximum temperature shows an increas-
ing trend, while precipitation exhibits a decreasing trend, particularly 
in the Southeast and Central-West regions. In the Northeast, no sig-
nificant trends were detected for most EHEP indexes, and in some ar-
eas there was even a trend of increasing extreme rainfall. On the other 
hand, SDII showed a positive trend in some locations where DPR had 
a negative trend, indicating an increase in intensity and a decrease 
in frequency and a reduction in MAXPR-5D in parts of its coastline. 
The results obtained in this study align with those of Costa et al. (2020), 
which did not report statistically significant trends for most EHEP in-
dexes. Similarly, Carvalho et  al. (2019) identified a decreasing trend 
in the number of rainy days along the northeastern coast, as well as a 
rising temperature trend in inland regions. In the South, a significant 
positive correlation was found only in a small area between the cen-
tral-northern part of Rio Grande do Sul, where both maximum tem-
perature and extreme rainfall exhibited a positive trend.

Significant PCCs (>0.5) between TOTPR/PR-P95 and TN-M were 
negative in the Northeast (central-northern portion), Central-West, 
and Southeast (specifically in the states of Goiás and Minas Gerais). 
In contrast, they were positive in the South (mainly in Rio Grande do 
Sul) and exhibited both positive and negative values in the North (no-
tably in Amazonas and Rondônia). The SSs indicated an increase in 
minimum temperatures in the specified northeastern region, though 
this was not necessarily accompanied by a decrease in precipitation de-
spite the high negative correlation in this area. In the Central-West and 
Southeast, there was a clear trend of rising minimum temperatures, 
along with areas showing a decreasing trend in precipitation. For ex-
ample, in the Federal District, no increasing trend in extreme rainfall 
was observed, a finding also reported by Silva and da Franca (2021). 
However, in São Paulo’s metropolitan region, the results suggest a ris-
ing trend in extreme rainfall. Marengo et al. (2020) similarly identified 
a significant increase in total precipitation during the rainy season over 

the past seven decades. In the 1950s, heavy rainfall events (exceeding 
50 mm) were absent, whereas, in the past ten years, such events have 
occurred two to five times annually. This, combined with inadequate 
land use in risk-prone areas, such as riverbanks and hillsides, has con-
tributed to flooding, inundations, and landslides.

In the North, given that there are both positive and negative signif-
icant correlations and that temperatures are trending upward, most of 
these correlations align with precipitation trends. In the South, there is 
a strong increasing trend in heavy and extreme rainfall across nearly 
all EHEP indexes for different regions of Rio Grande do Sul. Addition-
ally, there is a high positive correlation between these extreme rainfall 
events and minimum temperature, particularly in the southern part of 
the state. However, there are almost no significant trends for TN-M. 
Where such trends do exist (in the northern and eastern portions of 
the state), there is also an increasing trend in heavy and extreme rain-
fall. This suggests that if, in the future, minimum temperature trends 
increase in the southernmost part of Rio Grande do Sul, there may be 
a corresponding rise in extreme rainfall in this region. Furthermore, 
there is the potential for the North, with rising temperatures, to gener-
ate even more humid air, which could be transported by atmospheric 
circulation. This moisture may be directed by the Andes Mountains 
toward southern Brazil (Portella et al., 2022), potentially causing more 
extreme rainfall events in the region.

The study by Regoto et al. (2021) presents similar findings, showing 
an increase in hot extremes and a decrease in cold extremes, indicating 
widespread and consistent warming across Brazil. It also identified an in-
creasing trend in extreme rainfall in the South while detecting a decreas-
ing trend in the Northeast. However, in the present study, the latter re-
sult diverged, as there was little significant trend in elevated and extreme 
rainfall for the Northeast, and where trends did appear, they were most-
ly positive. This discrepancy may be related to differences in the years 
selected for analysis, the type of data used, the methodology applied in 
data processing, or even the lack of significant variation in annual rainfall 
totals over the past three decades. The Northeast has experienced severe 
droughts for centuries, has low yearly precipitation totals, and is already 
undergoing desertification in some areas, such as parts of Bahia (da Cos-
ta et al., 2018; Montenegro, 2023). Even if rainfall decreases further, these 
variations tend to be small due to the region’s persistent water deficit, 
making them difficult to detect using MKT and SS analyses.

It is also important to highlight that in a semi-arid region like the 
Brazilian Northeast, there may be a decreasing trend in total annual 
precipitation while still observing an increasing trend in extreme rain-
fall events, as shown in the present study, which aligns with the findings 
of da Silva et al. (2019) and Costa et al. (2020). Regoto et al. (2021) also 
considered that, with the intensification of temperature extremes, the 
effects of El Niño-Southern Oscillation (ENSO) could become more 
pronounced, further exacerbating conditions in regions already affect-
ed by this climatic phenomenon. In the South, increased convection 
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would occur, while the opposite effect would be observed in the North-
east. This would influence the positioning of the Intertropical Conver-
gence Zone (ITCZ), shifting it further into the Northern Hemisphere 
and creating a more drought-prone scenario in the Brazilian Northeast. 
Simultaneously, the South Atlantic Convergence Zone (SACZ) would 
be displaced further into the Southern Hemisphere, contributing to 
wetter conditions in southern Brazil (Haylock et al., 2006).

Conclusion
In general, the results of this study indicated a trend of increasing 

average maximum and minimum temperatures across most of Brazil, 
along with a rise in hot days and nights and a decrease in cold days 
and nights. The trends and correlations between precipitation and tem-
perature revealed a reduction in extreme rainfall in the Central-West, 
Southeast, and parts of the North, while extreme precipitation in-
creased in the South and North, as well as in parts of the Northeast 
and Southeast, with a greater concentration along their coastal areas. 
This pattern may suggest a potential increase in atmospheric moisture 
due to rising temperatures, with this moisture being transported to 
other regions of the country through atmospheric circulation. As a re-
sult, cloud formation could intensify, leading to more frequent extreme 
rainfall events both in areas experiencing temperature increases and in 
regions receiving transported humidity.

The climate phenomena MCS and ENSO, which are active in Bra-
zil, already contribute to the occurrence of extreme rainfall events. 

However, as seen in the results of this study, there is a probable change 
underway in the country’s climate, which may be related to global 
climate change, mainly due to greenhouse gas (GHG) emissions, as 
pointed out in the IPCC AR6 (IPCC, 2023). This may be significant-
ly contributing to the increasing frequency, distribution, and intensity 
of extreme precipitation events, which should be further investigated 
in future studies. Densely populated areas are more affected by these 
extreme events due to high concentrations of pollutants that enhance 
condensation processes, the formation of urban heat islands, increased 
surface runoff due to reduced soil infiltration, and improper land use 
and occupation. These factors collectively exacerbate flooding, inunda-
tions, and even desertification in certain regions.

Therefore, it is crucial to implement adaptation strategies such as 
strengthening early warning systems, investing in resilient infrastruc-
ture, protecting aquifer recharge areas, and promoting environmental 
conservation efforts. These measures are essential to address the grow-
ing challenges posed by extreme precipitation events across all regions 
of Brazil.
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