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A B S T R A C T 
Brazilian biodiversity is considered a source of bioactive 
substances, and one of the species found is Solanum viarum Dunal, 
which is mainly composed of pyrrolizidine alkaloids. The purpose 
of this study was to evaluate two non-conventional extraction 
techniques — microwave hydrodiffusion and gravity (MHG) 
and pressurized-liquid extraction (PLE) — in obtaining bioactive 
compounds from S. viarum. Different parameters were assessed 
that directly influenced the yield and chemical composition of 
extracts. For PLE, the percentage of ethanol and temperature were 
evaluated on yield and composition. For MHG, temperature and 
pressure were evaluated on the same responses. PLE presented 
the highest extract yield (26.11 wt.%) and bioactive compounds 
concentration, while the highest extract yield of MHG was 1.68 wt.%. 
Both  techniques indicated efficiency in extracting integerrimine, 
senecionine, and quinic acid. Knowing the compounds present 
in plants, using different extractive methods, enables the 
development of research that addresses their possible potential in  
the future.

Keywords: active substances; pyrrolizidine alkaloids; plant secondary 
metabolites; vegetable extracts.

R E S U M O
A biodiversidade brasileira é considerada fonte de substâncias 
bioativas, e uma das espécies encontradas é a Solanum viarum Dunal, 
que é composta, principalmente, por alcaloides pirrolizidínicos. 
O propósito deste estudo foi avaliar duas técnicas de extração não 
convencionais — micro-ondas de hidrodifusão e gravidade (MHG) e 
extração em líquido pressurizado (ELP) — na obtenção de compostos 
bioativos de S. viarum. Foram examinados diferentes parâmetros que 
influenciaram diretamente o rendimento e a composição química 
dos extratos. Para ELP, foram avaliadas a porcentagem de etanol e 
a temperatura sobre os rendimentos e composição. Para MHG, 
temperatura e pressão foram avaliadas nas mesmas respostas. O ELP 
apresentou o maior rendimento de extrato (26,11% em peso) e 
concentração de compostos bioativos, enquanto o maior rendimento 
de extrato de MHG foi de 1,68% em peso. Ambas as técnicas indicaram 
eficiência na extração de integerrimina, senecionina e ácido quínico. 
Conhecer os compostos presentes nas plantas utilizando diferentes 
métodos extrativos possibilita o desenvolvimento de pesquisas que 
abordem seu possível potencial no futuro.

Palavras-chave: substâncias ativas; alcaloides pirrolizidínicos; 
metabólitos secundários vegetais; extratos vegetais.
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Introduction
Bioactive substances are functional ingredients or molecules 

with potential applicability, which can be naturally found in plants  
(Santos et  al., 2022). In addition to important primary metabolites 
such as lipids, carbohydrates, and amino acids, plants also synthesize 
a significant diversity of secondary metabolites (Qaderi et al., 2023). 
The plant secondary metabolism comprises a variety of metabolites 
that have evolved to promote plant survival by providing protection 
against general stresses such as environmental factors, insects, herbi-
vores, predators, pathogens, and ultraviolet radiation (Jan et al., 2021). 
Some  secondary metabolites can interfere with the growth and de-
velopment of biological systems, considered allelopathic compounds. 
These compounds (allelochemicals) can be used directly for the for-
mulation of agricultural pesticides or even altered in order to improve 
their biological action (Gajger and Dar, 2021).

Some aspects must be considered when working with bioactive 
compounds from plants, including the environmental condition of the 
habitat where the species grow and the extraction technique applied 
(Krakowska-Sieprawska et  al., 2022). Appropriately, various tech-
niques have been explored for extracting bioactive compounds and 
these are structured into two categories: conventional or traditional 
and non-conventional. For a long time, extractions were performed by 
traditional methods such as Soxhlet and maceration, but due to certain 
disadvantages, the development and use of new methods have arisen 
(Ilyas et al., 2021). Non-conventional technologies such as microwave 
hydrodiffusion and gravity (MHG) and pressurized-liquid extraction 
(PLE) showed advantages such as low toxicity, high efficiency, and re-
duced extraction time when compared to techniques such as Soxhlet 
and maceration (Ali et al., 2021).

Contextually, the MHG procedure is a new technology with huge 
potential for a variety of applications (Farias et al., 2022). The use of 
microwaves influences the textural properties of the plant material and 
increases the diffusion of secondary metabolites, improving tissue soft-
ness and cell permeability. It emerges as an energy-saving technology 
since microwaves can also improve cell rupture due to their high pen-
etration power, resulting in increased mass transfer inside and outside 
the plant tissues (Chouhan et al., 2019). On the other hand, PLE is based 
on the use of solvents at elevated pressures and temperatures, but not 
above the critical point. The main purpose of this technique is to pro-
mote the extraction of compounds from solid or semi-solid matrices in 
a short time and using a small amount of solvent (Wianowska and Gil, 
2019). A main advantage of ELP compared to conventional extraction 
methods is that the solvents pressurized remain in liquid state when 
brought to temperatures above their boiling points. These conditions 
improve the solvation power of liquids and the kinetics of solid ma-
trix desorption. Additionally, it features higher automation, extraction 
yields at higher levels, shorter extraction time, and lower toxicity of 
solvents than other conventional methods (Kang et al., 2016).

Many plants of the Solanaceae family, including S. viarum, present 
in their chemical constitution a large number of alkaloids and steroids 
such as solasodine, which has several medicinal properties, specifically 
for cardiotonic, antifungal, antispermatogenic, antiandrogenic, immu-
nomodulatory, anticancer, anti-inflammatory, contraceptive, antimicro-
bial, and antipyretic applications (Pandey et al., 2018). Kausar and Singh 
(2018) reported other compounds present in the leaves of S. viarum as 
caffeoylquinic acid derivatives, 5-caffeoyl acid, 3-malonyl-5-caffeoyl-
[4-(1-beta-[6-(5-caffeoyl) quinate] glucopyranosyl)], and quinic acid. 
Only one study with S. viarum fruits was observed in the literature so 
far, where high percentages of polyphenols and tannins were indicated.

Based on the aforementioned aspects and the importance of such bio-
active compounds, and considering upcoming agricultural applicability of 
the obtained extracts, the interest in the extraction research of compounds 
from S. viarum with two different non-conventional techniques arose. The 
yield and chemical composition of the extracts were evaluated using PLE 
and MHG. There are few studies about the extraction yield and chemical 
composition involving the fruits and roots of S. viarum, and so far, no ref-
erences have been noticed using PLE and MHG as extraction techniques.

Material and Methods

Samples preparation
The fruits and roots of S. viarum were collected in southern Bra-

zil (27°55’39.43S, 52°7’37.14W). The samples were dried (40°C) un-
til constant mass and refrigerated (-4°C) until extraction procedures. 
The samples were dried at 40°C until reaching a moisture content of 
approximately 10%. Then, they were ground (Marconi, SP, Brazil) and 
particles were classified by the Sauter Mean Diameter by the Tyler se-
ries. Sizes varied from 8 to 48 mesh (0.3–2 mm) and were used for 
subsequent steps. The samples were maintained at -4°C until extraction 
(Confortin et al., 2019). Moreover, the assays were performed in tripli-
cate. For a better comprehension of the steps performed in this study, a 
structural flowchart is indicated in Figure 1.

Extraction techniques
The PLE and MHG extraction were performed according to 

the procedures described by Confortin et  al. (2021). PLE is one 
of the main modern extraction techniques and its operation in-
volves the use of high pressure and temperature to improve the 
extraction process. In this study, the solid sample was ground 
and dried to increase the surface area and facilitate extraction.  
Subsequently, the sample was placed in a sealed extraction cell, 
and the solvent was pumped from the reservoir to the extraction 
cell by an HPLC pump. Afterward, the extraction cell was heat-
ed and the extraction process was established, increasing the 
solubility of the target compounds in the solvent. Thus,  the sol-
vent extracted the bioactive compounds from the sample matrix.  
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The main reason for choosing the method was its highly efficient ex-
traction strategy, which allows rapid extraction of target compounds. 
Furthermore, PLE generally results in higher extraction yields than 
traditional methods, due to the compounds’ greater solubility at high 
pressure and temperature. In summary, PLE is an advanced method 
that uses high pressure and temperature to increase the efficiency, 
selectivity, and yield of extracting bioactive compounds from solid 
samples, offering several benefits over traditional extraction tech-
niques. On the other side, MHG extraction was performed in a 2.45 
GHz microwave equipment (Milestone multimode NEOS-GR, Ber-
gamo, Italy). The operational process was established by Confortin 
et  al. (2021), under atmospheric pressure (0.1 MPa) and 400 W of 
power for 20min. Approximately 100 g for each matrix plant were hu-
midified before extraction, by immersing the plant in the solvent for 
1h. Extractions were evaluated by soaking the matrices only in water 
or hydroalcoholic solution (60 mL of ethanol and 40 mL of water).  
After extraction, the extract was collected and the solvent was evapo-
rated. For the extraction procedures, approximately 10 g of the sam-
ple were used. For PLE, the temperatures used in the tests were 30, 
45, and 60°C, and the ethanol percentages were 70, 85, and 100% 
(v/v). Thepressure was held constant at 10 MPa. The solvent flow 
rates were 3.0, 2.8, and 2.7 mL/min for ethanol at 100, 85, and 70%, 
respectively, in order to maintain the mass flow rate of the solvent 
constant (2.4 g/min), and the extraction time was 30min. Finally, ex-
tractions with MHG were kept at atmospheric pressure under 400 W 
power for 20 min. They were then evaluated by soaking the matrix 
only in water and in a mixture of hydroalcoholic solution (60 mL 
ethanol and 40 mL of water).

Samples characterization
The chemical composition and scanning electron microscopy 

(SEM) analysis were determined according to the procedures described 
by Confortin et al. (2021). The injector temperature was maintained at 
320°C. A volume of 1 μL of each sample was injected at a split ratio 
of 1:40. The oven temperature program used was 5°C/min from 80 to 
300°C (waiting 15 min). The interface temperature was maintained at 
320°C and the ion source temperature at 260°C. Mass spectra were re-
corded over 35-500 amu at 3.33 scan/s with an ionization energy of 
70 eV. The SEM analysis was employed since it plays a crucial role in 
identifying the main compounds of raw material due to its ability to 
provide detailed insights into their microstructure, elemental compo-
sition, and surface characteristics.

Statistical evaluation
A factorial experimental design was utilized to investigate the 

effect of different independent variables on one or more dependent 
variables. This made it possible to verify the isolated effect of each 
variable and the interactions between them. For this study, the spec-
ified variables were A (plant extract from S. viarum fruits and roots), 
B (extraction methods PLE and MHG), and C (PLE temperatures of 
30, 45, and 60°C, and the ethanol percentages of 70, 85, and 100% 
v/v). Finally, data analysis was performed using a mean comparison 
test using the Tukey method (p<0.050) and the software Statistica 
8.0 (Statsoft Inc., USA). The Tukey test was applied to determine 
significant differences between yields at the 5% uncertainty level. 
This test enabled the identification of which groups were significant-
ly different from each other after performing the analysis of variance 
(ANOVA) test.

Results and Discussion

Extraction yields
PLE is widely used to extract plant compounds as it is a fast-

er, more efficient, and economical methodology (Dobroslavić et  al., 
2022). This technique uses solvents always below their critical points, 
maintaining their liquid phase throughout the extraction process and 
at high temperatures, as well as indicating higher yields than MHG 
(Lama-Muñoz et al., 2019).

The yields for the studied matrices are presented in Table 1. 
For both matrices of S. viarum, the behavior was similar. When a 
hydroalcoholic mixture and higher temperatures were used, the 
yields increased considerably. The highest yields were obtained in 
the condition at 60°C and 70% ethanol (assay 3), while the lowest 
yields were attained in the condition with the lowest temperature 
(30°C) and highest ethanol percentage (100%). Notably, the yields 
using pressurized liquids were higher than the yields using the  
ultrasound strategy.

Figure 1 – Comprehensive structural flowchart of the steps conducted in 
this study.
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Regarding the fruit extract yield, the most promising results were 
indicated for samples 3 (temperature 60°C and ethanol 70%; 26.11 
wt.%), 1 (temperature 30°C and ethanol 70%; 20.29 wt.%), and 5  
(temperature 45°C and ethanol 85%; 14.74 wt.%). These results dif-
fered statistically from each other and from all other samples. The least 
promising results were observed for samples 2 (temperature 30°C  and 
ethanol 100%; 1.26 wt.%), 4 (temperature 60°C and ethanol 100%; 
4.79 wt.%), and 7 (temperature 45°C and ethanol 85%; 13.74 wt.%).  
Additionally, root extract yields provided the most promising results 
for samples 3 (temperature 60°C and ethanol 70%; 11.22 wt.%), 1  
(temperature 30°C and ethanol 70%; 7.92 wt.%) and 7 (temperature 
45°C and ethanol 85%; 5.36 wt.%). These results differed statistically 
from each other and from all other samples. The least promising results 
were observed for samples 2 (temperature 30°C and ethanol 100%; 
1.66 wt.%), 4 (temperature 60°C and ethanol 100%; 2.36 wt.%), and 7  
(temperature 45°C and ethanol 85%; 5.02 wt.%).

The linear, quadratic, and interaction terms of the studied variables 
over the responses were calculated using data from Table 1, and the 
effects were expressed as a Pareto chart (Figure 2). The linear effects 
of ethanol percentage and temperature were statistically significant 
(p<0.050) for the two matrices of S. viarum. The ethanol percentage 
presented a negative effect. This means that the higher the percent-
age of ethanol in the solvent, the lower the yield. The temperature 
presented a positive effect, the increase of which can raise yields.  
Comparing tests 1 and 3 for the two matrices, the highest yields were 
obtained at the highest temperature, while the percentage of ethanol 
was kept constant. For all the ethanol percentages investigated, the in-
crease in temperature increases yields.

The increase in temperature and binary mixture of solvents sat-
isfactorily influences the extraction yield when it comes to pressur-
ized liquids (Getachew et  al., 2022). The highest global yields are 
reached when the mass transfer rate increases (Dias et  al., 2021).  

The surface tension and viscosity of the solvents decrease and the diffusiv-
ity increases as the temperature increases, augmenting the capacity of the 
solvent to penetrate the matrix and accelerating the dissolution of ana-
lytes in the extract (Chaves et al., 2020; Dias et al., 2021). Extraction yields 
are increased with the use of solvent mixtures, improving the solubility 
and enhancing the interaction between the extraction solvent and the 
target components (Nawaz et al., 2020). Moreover, the presence of water 
in the extractions causes swelling of plant cells, improving their perme-
ability and facilitating cell wall rupture, consequently increasing yields  
(Lasta et al., 2019). Water is also essential for breaking down the matrix 
and solute-matrix (hydrogen) bonds (Hammami and Issaoui, 2022).

In the recovery of phenolic compounds from passion fruit peel ini-
tially using PLE, the results affirmed the influence of temperature on 
global yield (Pereira et al., 2021). Also, some studies indicated increased 
yield when using higher temperatures and a solvent mixture (80°C/etha-
nol-water) (Santos et al., 2021). Furthermore, reports showed the condi-
tion of ethanol+water as solvent at 100°C as the best condition for PLE, 
which provided higher yields of blackberries (Machado et al., 2015).

The MHG extraction boosted microwave-assisted extraction 
even further towards an innovative, fast, and eco-friendly process 
(Fernandes et al., 2021). This technique, which combines microwave 
heating and terrestrial gravity at atmospheric pressure, was original-
ly designed for essential oils, but later extended to the extraction of 
other compounds present in plant matrices (Ferreira et  al., 2020).  

Table 1 – Extract yields of fruit and root from Solanum viarum obtained by 
pressurized-liquid extraction*. 

CV: coefficient of variation.
*Groups sharing identical letters do not exhibit statistically significant differen-
ces (p>0.05 based on ANOVA with Tukey’s test).

Assay Temperature 
(°C) Ethanol (%)

Yield (wt.%)

Fruit Root

1 (-1) 30 (-1) 70 20.29b 7.92b

2 (-1) 30 (+1) 100 1.26f 1.66e

3 (+1) 60 (-1) 70 26.11a 11.22a

4 (+1) 60 (+1) 100 4.79e 2.36d

5 (0) 45 (0) 85 14.74c 5.33c

6 (0) 45 (0) 85 14.52c 5.02c

7 (0) 45 (0) 85 13.74d 5.36c

Average
CV (%)

13.66
0.86

5.50
2.58

Figure 2 – Pareto’s charts of process variables effects on the extraction yield 
of Solanum viarum using PLE for (A) fruit and (B) root.
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Only different solvents for plant humidification were evaluated for 
MHG extraction. The power output was 450 W and the time was 
15 min, which was sufficient for complete extraction. The yields 
obtained from plant humidification with the hydroalcoholic solu-
tion and water were very similar. Nevertheless, the hydroalcoholic 
solution presented a slight increase in results. The matrix that re-
sulted in the highest yields was the fruit with 1.68% (wt.%), while 
the root resulted in the lowest yields with 0.11% (wt.%) (Table 2). 
Considering root and fruit extracts, treatments differed statistically 
for both samples.

Comparing the results of this technique with PLE, lower yields 
for both matrices were obtained. There are no reports in the litera-
ture using this technique for this plant, but when compared to the 
extraction using supercritical carbon dioxide (CO2), the yields for 
fruits were higher and for roots were similar, but with reduced ex-
traction time (Confortin et al., 2019). When correlating with the ex-
traction of Rosmarinus officinalis leaves, where the yield was 0.33% 
under conditions of 1000 W and 15 min (Bousbia et al., 2009), the 
results found for the fruit matrix were superior. Additionally, a 
study involving the extraction of Rosmarinus officinalis essential oil 
in the same conditions used in this scientific work (power of 400 
W and 20 min), resulted in a yield of 2.32%, reporting that MHG 
extraction recovered significant volatile and non-volatile fractions 
in low reaction time and can be explored as an eco-friendly strategy 
for extraction of antioxidants without the application of conven-
tional solvents (Ferreira et al., 2020).

The low yields can be explained by the excessive use of microwave 
irradiation power. A shorter time was used and these conditions were 
not sufficient to recover completely the S. viarum extract. Due to the 
high irradiation power, the pyrolysis of some volatile components 
may occur, causing a decrease in yield (Gogoi et al., 2023). In order to 
improve the extraction yield, the best extraction conditions should be 
investigated in future continued studies. Considering the importance 
of the technique applied, it is suggested to consider MHG in combi-
nation with sequential extractive technologies to improve yields be-
cause the extracts obtained may be suitable for applications in a wide 
range of fields, with the main idea of obtaining new products using 
green processes.

Chemical composition by gas  
chromatography-mass spectrometry

The compounds identified in each extraction technique are repre-
sented in Tables 3 and 4. Both were efficient for the extraction of bioac-
tive compounds reported in the literature. The PLE was demonstrated 
to be more efficient since it extracted more compounds (29), while 
the MHG extracted a smaller number (7). The root matrix allowed re-
covering 12 compounds with PLE and five with MHG, while the fruit 
matrix allowed recovering 11 with PLE and seven with MHG. The sol-
vent used for compound extractions determines which compound will 
be extracted. In the case of the extractions used in this study, ethanol 
can dissolve moderately polar compounds, whereas water can dis-
solve highly polar compounds. When a binary mixture is prepared, 
the behavior is positive based on the amount of extracted compounds 
(Barrales et al., 2018). The composition of the extracts obtained also 
changes with temperature because it causes an increase in solubility 
when it is high (Onyebuchi and Kavaz, 2020). This scenario breaks the 
analyte-matrix bonds, stimulating the diffusion of the analyte on the 
matrix surface (Chaves et al., 2020). These statements are in agreement 
with the findings of this study, since in the extractions with PLE, the 
condition of 60°C and 70% ethanol for both matrices extracted a high-
er number of compounds, and for MHG when using the hydroalcohol-
ic solution, the results were more promising.

Results of the extraction of bioactive compounds from passion fruit 
peel reported by Viganó et al. (2016) corroborate this study. The authors 
obtained phenolic content (3.186±0.025 mg GAE/g dry mass) and high-
er antioxidant capacity under the conditions of 60°C and 70% ethanol. 
Also, the extraction kinetic analysis indicated that the target compounds 
can be recovered in a short time under PLE, evidencing the economic 
viability and reaction efficiency of PLE extraction. Furthermore, a study 
exploring the recovery of phenolic compounds in a mixture of solvents 
(50% ethanol-water), with higher temperatures (100°C) in grape pom-
ace indicated PLE with the conditions ethanol-water pH 2.0 (50% p/p) 
with an excellent technique for recovering monomeric anthocyanins 
(up to 10.21 mg of malvidin-3-O-glycoside/g of dried grape pomace/
dr), as well as the condition ethanol-water (50% p/p) as a solvent at 
100°C showed a total phenolic content of up to 65.68 mg GAE/gdr and 
antioxidant capacity of up to 772.11 μmolTE/gdr (Pereira et al., 2019).  

Table 2 – Extract yields of fruit and root from Solanum viarum obtained by microwave hydrodiffusion and gravity extraction*.

CV: coefficient of variation.
*Groups sharing identical letters do not exhibit statistically significant differen-
ces (p>0.05 based on ANOVA with Tukey’s test).

Assay Microwave Power (W) Solvent
Yield (wt.%)

Root Fruit

1 450 Water 0.11b 1.37b

2 450 Hydroalcoholic solution 0.15a 1.68a

Average
CV (%)

0.14
8.35

1.53
1.36
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Finally, a study explored the performance of different alternative ex-
tractions, including PLE, on rosemary (Rosmarinus officinalis) leaves, 
and it was reported that PLE using ethanol at 200°C was highly efficient 
in the synthesis of extracts with significant antioxidant activity, and 
yields were up to 40% extraction of high potential antioxidants, such as 
carnosic and rosmarinic acids (Herrero et al., 2010).

Both techniques presented promising results regarding the ex-
tracted compounds, having as main compounds quinic acid, cyt-
idine, and solasodine. These compounds were also found in the 
matrices of S. viarum by Confortin et  al. (2019), using as an ex-
traction technique ultrasound and supercritical CO2. These com-
pounds have important activities reported in the literature.  

Table 3 – Chemical compounds obtained by pressurized-liquid extraction (PLE) from the fruit and root of Solanum viarum.

Assay

Relative area (%)

Fruit Root

PLE PLE

1 2 3 4 5/6/7 1 2 3 4 5/6/7

Compounds

2,3-butanediol 2.36 - 9.65 24.23 23.63

Dl-glyceraldehyde 9.45 8.16 2.78 4.55 24.79

5H-1-Pyrindine 9.62 5.36 18.23 20.13

9-octadecenamide 1.05 4.09

2-Propanone, 1,3-dihydroxy

Pentadecane 3.06

Neophytadiene 8.21 3.75 3.97

1,2-Benzenedicarboxylic acid,  
bis (2-methyl propyl) ester 16.10 6.23 19.36 4.16 3.52 1.48

Benzoic acid, 2-hydroxy, 
phenylmethyl ester 9.22 5.69 6.94

Heptadecanoic acid, ethyl ester 8,17 13.09 - 0.64 6.0

Ethyl linoleate 9.93

Bicyclo[10.1.0]tridec-1-ene

Hexadecadienoic acid, methyl ester 18.13 10.36 9.45 8.25

2-Butanone, 3-hydroxy- 

9,12-Octadecadienoic acid (Z,Z)-, 
methyl ester 21.94

Methane, sulfinylbis 2.89

N-Methyl-L-prolinol 9.51 6.42

Quinic acid 38.33 7.84 10.56 8.26 6.25 23.03 16.52 5.05 23.91

Ergost-5-en-3-ol, (3 beta,24R) 2.15 14.02 12.05 13.72 7.42 7.34 3.84

Spirosol-5-en-3-ol (Solasodine) 33.36 4.62 16.35 8.56 3.26 14.40 13.12 13.58 19.51 19.53

Cytidine 13.30 13.36 7.36 30.84 21.39 42.78 27.49 31.87

5H-1-pyrindine 7.14

Neophytadiene

Integerrimine 5.64 7.66 6.59 33.64

Methyl commate B

Ethyl linoleate 6.59 7.07

9,12,15-Octadecatrien-1-ol (CAS) 2.10

9,12-Octadecadien-1-ol (CAS) 2.39

Cholest-5-ene, 3-bromo-, (3 beta)- 2.92
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Table 4 – Chemical compounds obtained by microwave hydrodiffusion and gravity from the fruit and root of Solanum viarum.

Assay

Relative area (%)

Fruit Root

Water Water/Ethanol Water Water/Ethanol

Compounds

2,3-Butanediol 10.03 1.33

1,3-Butanediol 21.40 1.08 9.95

5H-1-Pyrindine 7.57 9.58 10.01

Spirosol-5-en-3-ol (Solasodine) 12.43 13.43 5.36 17.54

Cytidine 20.35 40.41 14.38 51.07

Quinic acid 18.40 22.11 8.26 11.15

Integerrimine 9.52 12.06 62.05 10.23

Quinic acid has been reported for its anti-inflammatory and anti-
oxidant activities (Valanciene and Malys, 2022). Martín et al. (2017)  
attributed antiviral action to cytidine, which is a compound with a py-
rimidine nucleus that plays a vital role in biological activities such as 
antifungal. Cytidine is also described as a compound responsible for 
antifungal action against Aspergillus niger, Fusarium culmorum, Peni-
cillium expansum, and Penicillium roqueforti (Pawlowska et al., 2012). 
Some other compounds, such as esters, can probably be considered 
contaminants of anthropogenic origin. The investigation of the true 
origin of some compounds from natural products is very important 
(Thiemann, 2021). According to Venditti (2020), the use of methanol 
(ethanol and butanol) as an extractive or eluting solvent in the analyti-
cal procedure can lead to the isolation of a methyl (ethyl or butyl) ester, 
which can produce other compounds.

Finally, solasodine is a compound found in the Solanaceae family 
and is described as highly toxic in many scientific studies. It is also 
described as the main compound in the root extract of S. viarum  
(Confortin et al., 2019). Nonetheless, it can be extracted from different 
vegetative parts of S. viarum plants such as the leaf and stalk (Patel 
et al., 2021). This solasodine is reported to be an excellent insecticide 
and anthelmintic agent (Khaserao and Somani, 2017). Previously, the 
importance of solasodine on the death of the fifth instar larvae of Tri-
bolium confusum was emphasized (Lingampally et al., 2014). Lastly, it 
has been widely employed for a number of medically based treatments, 
such as anti-oxidant, neuroprotective, anti-cancer, and anti-tumor an-
ticonvulsant activity. This panorama indicates the importance of com-
pounds originating from S. viarum and a strong spectrum of potential 
applications for a series of fields of study that involve the use of bioac-
tive compounds from plants.

Furthermore, S. viarum extracts contain a wide range of 
phytochemicals, including alkaloids, flavonoids, phenolic com-
pounds, and steroids, which contribute to its antioxidant potential.  
Nevertheless, scientific studies focus on the evaluation of S. viarum 

leaves. They indicated the elimination of DPPH radicals (2,2-diphe-
nyl-1-picrylhydrazyl), ABTS radicals (2,2’-azino-bis (3-ethylben-
zothiazoline-6-sulfonic acid)), and FRAP (ferric ion reducing an-
tioxidant power) to evaluate the antioxidant capacity of S. viarum 
extracts, and demonstrate the antioxidant activity of extracts (Silva 
et al., 2023).

Conclusions
Considering this study as a pioneer in the use of MHG extraction 

and PLE for extracting compounds from S. viarum, the results obtained 
were extremely satisfactory, indicating that the plant has important 
compounds in its composition with possible applicability. The  PLE 
technique demonstrated to be more efficient in obtaining higher yields 
(up to 26.11% for fruit and up to 11.22% for root) and concentration 
of chemical compounds. Nonetheless, the MHG technique was found 
to be effective in concentrating quinic acid, cytidine, and solasodine 
in the extracts. Finally, it can be concluded that innovative extraction 
technologies based on green approaches can be an excellent alterna-
tive to conventional extraction methods. The S. viarum extracts indi-
cated promising results for extraction yields and its components can 
be applied in a diversity of applications. This scenario can positively 
impact the encouragement of future research that proposes to study 
in detail the potential of compounds obtained from S. viarum, mainly 
optimization and performance of toxicity tests, potential for industrial 
and agricultural use, optimization of microbial tests by testing different 
application dosages of extracts, etc. Furthermore, understanding the 
compounds extracted from plants using different methods opens up 
an avenue for further research exploring their potential applications 
in the future. This work highlights the importance of innovative ex-
traction techniques in unlocking the bioactive potential of Brazilian 
biodiversity, paving the way for the development of novel bioactive 
compounds with diverse applications in pharmaceutical, agricultural, 
and other industries.
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